123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- JPH_NAMESPACE_BEGIN
- Quat Quat::operator * (QuatArg inRHS) const
- {
- #if defined(JPH_USE_SSE4_1)
- // Taken from: http://momchil-velikov.blogspot.nl/2013/10/fast-sse-quternion-multiplication.html
- __m128 abcd = mValue.mValue;
- __m128 xyzw = inRHS.mValue.mValue;
- __m128 t0 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(3, 3, 3, 3));
- __m128 t1 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 3, 0, 1));
- __m128 t3 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(0, 0, 0, 0));
- __m128 t4 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(1, 0, 3, 2));
- __m128 t5 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(1, 1, 1, 1));
- __m128 t6 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 0, 3, 1));
- // [d,d,d,d] * [z,w,x,y] = [dz,dw,dx,dy]
- __m128 m0 = _mm_mul_ps(t0, t1);
- // [a,a,a,a] * [y,x,w,z] = [ay,ax,aw,az]
- __m128 m1 = _mm_mul_ps(t3, t4);
- // [b,b,b,b] * [z,x,w,y] = [bz,bx,bw,by]
- __m128 m2 = _mm_mul_ps(t5, t6);
- // [c,c,c,c] * [w,z,x,y] = [cw,cz,cx,cy]
- __m128 t7 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(2, 2, 2, 2));
- __m128 t8 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(3, 2, 0, 1));
- __m128 m3 = _mm_mul_ps(t7, t8);
- // [dz,dw,dx,dy] + -[ay,ax,aw,az] = [dz+ay,dw-ax,dx+aw,dy-az]
- __m128 e = _mm_addsub_ps(m0, m1);
- // [dx+aw,dz+ay,dy-az,dw-ax]
- e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(1, 3, 0, 2));
- // [dx+aw,dz+ay,dy-az,dw-ax] + -[bz,bx,bw,by] = [dx+aw+bz,dz+ay-bx,dy-az+bw,dw-ax-by]
- e = _mm_addsub_ps(e, m2);
- // [dz+ay-bx,dw-ax-by,dy-az+bw,dx+aw+bz]
- e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 0, 1, 3));
- // [dz+ay-bx,dw-ax-by,dy-az+bw,dx+aw+bz] + -[cw,cz,cx,cy] = [dz+ay-bx+cw,dw-ax-by-cz,dy-az+bw+cx,dx+aw+bz-cy]
- e = _mm_addsub_ps(e, m3);
- // [dw-ax-by-cz,dz+ay-bx+cw,dy-az+bw+cx,dx+aw+bz-cy]
- return Quat(Vec4(_mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 3, 1, 0))));
- #else
- float lx = mValue.GetX();
- float ly = mValue.GetY();
- float lz = mValue.GetZ();
- float lw = mValue.GetW();
- float rx = inRHS.mValue.GetX();
- float ry = inRHS.mValue.GetY();
- float rz = inRHS.mValue.GetZ();
- float rw = inRHS.mValue.GetW();
- float x = lw * rx + lx * rw + ly * rz - lz * ry;
- float y = lw * ry - lx * rz + ly * rw + lz * rx;
- float z = lw * rz + lx * ry - ly * rx + lz * rw;
- float w = lw * rw - lx * rx - ly * ry - lz * rz;
- return Quat(x, y, z, w);
- #endif
- }
- Quat Quat::sMultiplyImaginary(Vec3Arg inLHS, QuatArg inRHS)
- {
- #if defined(JPH_USE_SSE4_1)
- __m128 abc0 = inLHS.mValue;
- __m128 xyzw = inRHS.mValue.mValue;
- // [a,a,a,a] * [w,y,z,x] = [aw,ay,az,ax]
- __m128 aaaa = _mm_shuffle_ps(abc0, abc0, _MM_SHUFFLE(0, 0, 0, 0));
- __m128 xzyw = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(3, 1, 2, 0));
- __m128 axazayaw = _mm_mul_ps(aaaa, xzyw);
- // [b,b,b,b] * [z,x,w,y] = [bz,bx,bw,by]
- __m128 bbbb = _mm_shuffle_ps(abc0, abc0, _MM_SHUFFLE(1, 1, 1, 1));
- __m128 ywxz = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 0, 3, 1));
- __m128 bybwbxbz = _mm_mul_ps(bbbb, ywxz);
- // [c,c,c,c] * [w,z,x,y] = [cw,cz,cx,cy]
- __m128 cccc = _mm_shuffle_ps(abc0, abc0, _MM_SHUFFLE(2, 2, 2, 2));
- __m128 yxzw = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(3, 2, 0, 1));
- __m128 cycxczcw = _mm_mul_ps(cccc, yxzw);
- // [+aw,+ay,-az,-ax]
- __m128 e = _mm_xor_ps(axazayaw, _mm_set_ps(0.0f, 0.0f, -0.0f, -0.0f));
- // [+aw,+ay,-az,-ax] + -[bz,bx,bw,by] = [+aw+bz,+ay-bx,-az+bw,-ax-by]
- e = _mm_addsub_ps(e, bybwbxbz);
- // [+ay-bx,-ax-by,-az+bw,+aw+bz]
- e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 0, 1, 3));
- // [+ay-bx,-ax-by,-az+bw,+aw+bz] + -[cw,cz,cx,cy] = [+ay-bx+cw,-ax-by-cz,-az+bw+cx,+aw+bz-cy]
- e = _mm_addsub_ps(e, cycxczcw);
- // [-ax-by-cz,+ay-bx+cw,-az+bw+cx,+aw+bz-cy]
- return Quat(Vec4(_mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 3, 1, 0))));
- #else
- float lx = inLHS.GetX();
- float ly = inLHS.GetY();
- float lz = inLHS.GetZ();
- float rx = inRHS.mValue.GetX();
- float ry = inRHS.mValue.GetY();
- float rz = inRHS.mValue.GetZ();
- float rw = inRHS.mValue.GetW();
- float x = (lx * rw) + ly * rz - lz * ry;
- float y = -(lx * rz) + ly * rw + lz * rx;
- float z = (lx * ry) - ly * rx + lz * rw;
- float w = -(lx * rx) - ly * ry - lz * rz;
- return Quat(x, y, z, w);
- #endif
- }
- Quat Quat::sRotation(Vec3Arg inAxis, float inAngle)
- {
- // returns [inAxis * sin(0.5f * inAngle), cos(0.5f * inAngle)]
- JPH_ASSERT(inAxis.IsNormalized());
- Vec4 s, c;
- Vec4::sReplicate(0.5f * inAngle).SinCos(s, c);
- return Quat(Vec4::sSelect(Vec4(inAxis) * s, c, UVec4(0, 0, 0, 0xffffffffU)));
- }
- void Quat::GetAxisAngle(Vec3 &outAxis, float &outAngle) const
- {
- JPH_ASSERT(IsNormalized());
- Quat w_pos = EnsureWPositive();
- float abs_w = w_pos.GetW();
- if (abs_w >= 1.0f)
- {
- outAxis = Vec3::sZero();
- outAngle = 0.0f;
- }
- else
- {
- outAngle = 2.0f * ACos(abs_w);
- outAxis = w_pos.GetXYZ().NormalizedOr(Vec3::sZero());
- }
- }
- Quat Quat::sFromTo(Vec3Arg inFrom, Vec3Arg inTo)
- {
- /*
- Uses (inFrom = v1, inTo = v2):
- angle = arcos(v1 . v2 / |v1||v2|)
- axis = normalize(v1 x v2)
- Quaternion is then:
- s = sin(angle / 2)
- x = axis.x * s
- y = axis.y * s
- z = axis.z * s
- w = cos(angle / 2)
- Using identities:
- sin(2 * a) = 2 * sin(a) * cos(a)
- cos(2 * a) = cos(a)^2 - sin(a)^2
- sin(a)^2 + cos(a)^2 = 1
- This reduces to:
- x = (v1 x v2).x
- y = (v1 x v2).y
- z = (v1 x v2).z
- w = |v1||v2| + v1 . v2
- which then needs to be normalized because the whole equation was multiplied by 2 cos(angle / 2)
- */
- float len_v1_v2 = sqrt(inFrom.LengthSq() * inTo.LengthSq());
- float w = len_v1_v2 + inFrom.Dot(inTo);
- if (w == 0.0f)
- {
- if (len_v1_v2 == 0.0f)
- {
- // If either of the vectors has zero length, there is no rotation and we return identity
- return Quat::sIdentity();
- }
- else
- {
- // If vectors are perpendicular, take one of the many 180 degree rotations that exist
- return Quat(Vec4(inFrom.GetNormalizedPerpendicular(), 0));
- }
- }
- Vec3 v = inFrom.Cross(inTo);
- return Quat(Vec4(v, w)).Normalized();
- }
- template <class Random>
- Quat Quat::sRandom(Random &inRandom)
- {
- std::uniform_real_distribution<float> zero_to_one(0.0f, 1.0f);
- float x0 = zero_to_one(inRandom);
- float r1 = sqrt(1.0f - x0), r2 = sqrt(x0);
- std::uniform_real_distribution<float> zero_to_two_pi(0.0f, 2.0f * JPH_PI);
- Vec4 s, c;
- Vec4(zero_to_two_pi(inRandom), zero_to_two_pi(inRandom), 0, 0).SinCos(s, c);
- return Quat(s.GetX() * r1, c.GetX() * r1, s.GetY() * r2, c.GetY() * r2);
- }
- Quat Quat::sEulerAngles(Vec3Arg inAngles)
- {
- Vec4 half(0.5f * inAngles);
- Vec4 s, c;
- half.SinCos(s, c);
- float cx = c.GetX();
- float sx = s.GetX();
- float cy = c.GetY();
- float sy = s.GetY();
- float cz = c.GetZ();
- float sz = s.GetZ();
- return Quat(
- cz * sx * cy - sz * cx * sy,
- cz * cx * sy + sz * sx * cy,
- sz * cx * cy - cz * sx * sy,
- cz * cx * cy + sz * sx * sy);
- }
- Vec3 Quat::GetEulerAngles() const
- {
- float y_sq = GetY() * GetY();
- // X
- float t0 = 2.0f * (GetW() * GetX() + GetY() * GetZ());
- float t1 = 1.0f - 2.0f * (GetX() * GetX() + y_sq);
- // Y
- float t2 = 2.0f * (GetW() * GetY() - GetZ() * GetX());
- t2 = t2 > 1.0f? 1.0f : t2;
- t2 = t2 < -1.0f? -1.0f : t2;
- // Z
- float t3 = 2.0f * (GetW() * GetZ() + GetX() * GetY());
- float t4 = 1.0f - 2.0f * (y_sq + GetZ() * GetZ());
- return Vec3(ATan2(t0, t1), ASin(t2), ATan2(t3, t4));
- }
- Quat Quat::GetTwist(Vec3Arg inAxis) const
- {
- Quat twist(Vec4(GetXYZ().Dot(inAxis) * inAxis, GetW()));
- float twist_len = twist.LengthSq();
- if (twist_len != 0.0f)
- return twist / sqrt(twist_len);
- else
- return Quat::sIdentity();
- }
- void Quat::GetSwingTwist(Quat &outSwing, Quat &outTwist) const
- {
- float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
- float s = sqrt(Square(w) + Square(x));
- if (s != 0.0f)
- {
- outTwist = Quat(x / s, 0, 0, w / s);
- outSwing = Quat(0, (w * y - x * z) / s, (w * z + x * y) / s, s);
- }
- else
- {
- // If both x and w are zero, this must be a 180 degree rotation around either y or z
- outTwist = Quat::sIdentity();
- outSwing = *this;
- }
- }
- Quat Quat::LERP(QuatArg inDestination, float inFraction) const
- {
- float scale0 = 1.0f - inFraction;
- return Quat(Vec4::sReplicate(scale0) * mValue + Vec4::sReplicate(inFraction) * inDestination.mValue);
- }
- Quat Quat::SLERP(QuatArg inDestination, float inFraction) const
- {
- // Difference at which to LERP instead of SLERP
- const float delta = 0.0001f;
- // Calc cosine
- float sign_scale1 = 1.0f;
- float cos_omega = Dot(inDestination);
- // Adjust signs (if necessary)
- if (cos_omega < 0.0f)
- {
- cos_omega = -cos_omega;
- sign_scale1 = -1.0f;
- }
- // Calculate coefficients
- float scale0, scale1;
- if (1.0f - cos_omega > delta)
- {
- // Standard case (slerp)
- float omega = ACos(cos_omega);
- float sin_omega = Sin(omega);
- scale0 = Sin((1.0f - inFraction) * omega) / sin_omega;
- scale1 = sign_scale1 * Sin(inFraction * omega) / sin_omega;
- }
- else
- {
- // Quaternions are very close so we can do a linear interpolation
- scale0 = 1.0f - inFraction;
- scale1 = sign_scale1 * inFraction;
- }
- // Interpolate between the two quaternions
- return Quat(Vec4::sReplicate(scale0) * mValue + Vec4::sReplicate(scale1) * inDestination.mValue).Normalized();
- }
- Vec3 Quat::operator * (Vec3Arg inValue) const
- {
- // Rotating a vector by a quaternion is done by: p' = q * (p, 0) * q^-1 (q^-1 = conjugated(q) for a unit quaternion)
- // Using Rodrigues formula: https://en.m.wikipedia.org/wiki/Euler%E2%80%93Rodrigues_formula
- // This is equivalent to: p' = p + 2 * (q.w * q.xyz x p + q.xyz x (q.xyz x p))
- //
- // This is:
- //
- // Vec3 xyz = GetXYZ();
- // Vec3 q_cross_p = xyz.Cross(inValue);
- // Vec3 q_cross_q_cross_p = xyz.Cross(q_cross_p);
- // Vec3 v = mValue.SplatW3() * q_cross_p + q_cross_q_cross_p;
- // return inValue + (v + v);
- //
- // But we can write out the cross products in a more efficient way:
- JPH_ASSERT(IsNormalized());
- Vec3 xyz = GetXYZ();
- Vec3 yzx = xyz.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>();
- Vec3 q_cross_p = (inValue.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>() * xyz - yzx * inValue).Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>();
- Vec3 q_cross_q_cross_p = (q_cross_p.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>() * xyz - yzx * q_cross_p).Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>();
- Vec3 v = mValue.SplatW3() * q_cross_p + q_cross_q_cross_p;
- return inValue + (v + v);
- }
- Vec3 Quat::InverseRotate(Vec3Arg inValue) const
- {
- JPH_ASSERT(IsNormalized());
- Vec3 xyz = GetXYZ(); // Needs to be negated, but we do this in the equations below
- Vec3 yzx = xyz.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>();
- Vec3 q_cross_p = (yzx * inValue - inValue.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>() * xyz).Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>();
- Vec3 q_cross_q_cross_p = (yzx * q_cross_p - q_cross_p.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>() * xyz).Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>();
- Vec3 v = mValue.SplatW3() * q_cross_p + q_cross_q_cross_p;
- return inValue + (v + v);
- }
- Vec3 Quat::RotateAxisX() const
- {
- // This is *this * Vec3::sAxisX() written out:
- JPH_ASSERT(IsNormalized());
- Vec4 t = mValue + mValue;
- return Vec3(t.SplatX() * mValue + (t.SplatW() * mValue.Swizzle<SWIZZLE_W, SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X>()).FlipSign<1, 1, -1, 1>() - Vec4(1, 0, 0, 0));
- }
- Vec3 Quat::RotateAxisY() const
- {
- // This is *this * Vec3::sAxisY() written out:
- JPH_ASSERT(IsNormalized());
- Vec4 t = mValue + mValue;
- return Vec3(t.SplatY() * mValue + (t.SplatW() * mValue.Swizzle<SWIZZLE_Z, SWIZZLE_W, SWIZZLE_X, SWIZZLE_Y>()).FlipSign<-1, 1, 1, 1>() - Vec4(0, 1, 0, 0));
- }
- Vec3 Quat::RotateAxisZ() const
- {
- // This is *this * Vec3::sAxisZ() written out:
- JPH_ASSERT(IsNormalized());
- Vec4 t = mValue + mValue;
- return Vec3(t.SplatZ() * mValue + (t.SplatW() * mValue.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W, SWIZZLE_Z>()).FlipSign<1, -1, 1, 1>() - Vec4(0, 0, 1, 0));
- }
- void Quat::StoreFloat3(Float3 *outV) const
- {
- JPH_ASSERT(IsNormalized());
- EnsureWPositive().GetXYZ().StoreFloat3(outV);
- }
- Quat Quat::sLoadFloat3Unsafe(const Float3 &inV)
- {
- Vec3 v = Vec3::sLoadFloat3Unsafe(inV);
- float w = sqrt(max(1.0f - v.LengthSq(), 0.0f)); // It is possible that the length of v is a fraction above 1, and we don't want to introduce NaN's in that case so we clamp to 0
- return Quat(Vec4(v, w));
- }
- JPH_NAMESPACE_END
|