SliderConstraint.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/SliderConstraint.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. #include <Jolt/ObjectStream/TypeDeclarations.h>
  8. #include <Jolt/Core/StreamIn.h>
  9. #include <Jolt/Core/StreamOut.h>
  10. #ifdef JPH_DEBUG_RENDERER
  11. #include <Jolt/Renderer/DebugRenderer.h>
  12. #endif // JPH_DEBUG_RENDERER
  13. JPH_NAMESPACE_BEGIN
  14. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  15. {
  16. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  17. JPH_ADD_ENUM_ATTRIBUTE(SliderConstraintSettings, mSpace)
  18. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mAutoDetectPoint)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
  21. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
  22. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
  23. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
  24. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
  25. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  26. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  27. JPH_ADD_ENUM_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mMode, "mSpringMode")
  28. JPH_ADD_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mFrequency, "mFrequency") // Renaming attributes to stay compatible with old versions of the library
  29. JPH_ADD_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mDamping, "mDamping")
  30. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  31. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  32. }
  33. void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
  34. {
  35. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  36. mSliderAxis1 = mSliderAxis2 = inSliderAxis;
  37. mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
  38. }
  39. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  40. {
  41. ConstraintSettings::SaveBinaryState(inStream);
  42. inStream.Write(mSpace);
  43. inStream.Write(mAutoDetectPoint);
  44. inStream.Write(mPoint1);
  45. inStream.Write(mSliderAxis1);
  46. inStream.Write(mNormalAxis1);
  47. inStream.Write(mPoint2);
  48. inStream.Write(mSliderAxis2);
  49. inStream.Write(mNormalAxis2);
  50. inStream.Write(mLimitsMin);
  51. inStream.Write(mLimitsMax);
  52. inStream.Write(mMaxFrictionForce);
  53. mLimitsSpringSettings.SaveBinaryState(inStream);
  54. mMotorSettings.SaveBinaryState(inStream);
  55. }
  56. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  57. {
  58. ConstraintSettings::RestoreBinaryState(inStream);
  59. inStream.Read(mSpace);
  60. inStream.Read(mAutoDetectPoint);
  61. inStream.Read(mPoint1);
  62. inStream.Read(mSliderAxis1);
  63. inStream.Read(mNormalAxis1);
  64. inStream.Read(mPoint2);
  65. inStream.Read(mSliderAxis2);
  66. inStream.Read(mNormalAxis2);
  67. inStream.Read(mLimitsMin);
  68. inStream.Read(mLimitsMax);
  69. inStream.Read(mMaxFrictionForce);
  70. mLimitsSpringSettings.RestoreBinaryState(inStream);
  71. mMotorSettings.RestoreBinaryState(inStream);
  72. }
  73. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  74. {
  75. return new SliderConstraint(inBody1, inBody2, *this);
  76. }
  77. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  78. TwoBodyConstraint(inBody1, inBody2, inSettings),
  79. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  80. mMotorSettings(inSettings.mMotorSettings)
  81. {
  82. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  83. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXY(inSettings.mSliderAxis1, inSettings.mNormalAxis1, inSettings.mSliderAxis2, inSettings.mNormalAxis2);
  84. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  85. {
  86. RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  87. RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  88. if (inSettings.mAutoDetectPoint)
  89. {
  90. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point
  91. RVec3 anchor;
  92. if (!inBody1.CanBeKinematicOrDynamic())
  93. anchor = inBody2.GetCenterOfMassPosition();
  94. else if (!inBody2.CanBeKinematicOrDynamic())
  95. anchor = inBody1.GetCenterOfMassPosition();
  96. else
  97. {
  98. // Otherwise use weighted anchor point towards the lightest body
  99. Real inv_m1 = Real(inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked());
  100. Real inv_m2 = Real(inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked());
  101. anchor = (inv_m1 * inBody1.GetCenterOfMassPosition() + inv_m2 * inBody2.GetCenterOfMassPosition()) / (inv_m1 + inv_m2);
  102. }
  103. // Store local positions
  104. mLocalSpacePosition1 = Vec3(inv_transform1 * anchor);
  105. mLocalSpacePosition2 = Vec3(inv_transform2 * anchor);
  106. }
  107. else
  108. {
  109. // Store local positions
  110. mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
  111. mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
  112. }
  113. // If all properties were specified in world space, take them to local space now
  114. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(inSettings.mSliderAxis1).Normalized();
  115. mLocalSpaceNormal1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
  116. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  117. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  118. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  119. }
  120. else
  121. {
  122. // Store local positions
  123. mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
  124. mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
  125. // Store local space axis
  126. mLocalSpaceSliderAxis1 = inSettings.mSliderAxis1;
  127. mLocalSpaceNormal1 = inSettings.mNormalAxis1;
  128. }
  129. // Calculate 2nd local space normal
  130. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  131. // Store limits
  132. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mLimitsSpringSettings.mFrequency > 0.0f, "Better use a fixed constraint");
  133. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  134. // Store spring settings
  135. SetLimitsSpringSettings(inSettings.mLimitsSpringSettings);
  136. }
  137. void SliderConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
  138. {
  139. if (mBody1->GetID() == inBodyID)
  140. mLocalSpacePosition1 -= inDeltaCOM;
  141. else if (mBody2->GetID() == inBodyID)
  142. mLocalSpacePosition2 -= inDeltaCOM;
  143. }
  144. float SliderConstraint::GetCurrentPosition() const
  145. {
  146. // See: CalculateR1R2U and CalculateSlidingAxisAndPosition
  147. Vec3 r1 = mBody1->GetRotation() * mLocalSpacePosition1;
  148. Vec3 r2 = mBody2->GetRotation() * mLocalSpacePosition2;
  149. Vec3 u = Vec3(mBody2->GetCenterOfMassPosition() - mBody1->GetCenterOfMassPosition()) + r2 - r1;
  150. return u.Dot(mBody1->GetRotation() * mLocalSpaceSliderAxis1);
  151. }
  152. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  153. {
  154. JPH_ASSERT(inLimitsMin <= 0.0f);
  155. JPH_ASSERT(inLimitsMax >= 0.0f);
  156. mLimitsMin = inLimitsMin;
  157. mLimitsMax = inLimitsMax;
  158. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  159. }
  160. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  161. {
  162. // Calculate points relative to body
  163. mR1 = inRotation1 * mLocalSpacePosition1;
  164. mR2 = inRotation2 * mLocalSpacePosition2;
  165. // Calculate X2 + R2 - X1 - R1
  166. mU = Vec3(mBody2->GetCenterOfMassPosition() - mBody1->GetCenterOfMassPosition()) + mR2 - mR1;
  167. }
  168. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  169. {
  170. // Calculate world space normals
  171. mN1 = inRotation1 * mLocalSpaceNormal1;
  172. mN2 = inRotation1 * mLocalSpaceNormal2;
  173. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  174. }
  175. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  176. {
  177. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  178. {
  179. // Calculate world space slider axis
  180. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  181. // Calculate slide distance along axis
  182. mD = mU.Dot(mWorldSpaceSliderAxis);
  183. }
  184. }
  185. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime)
  186. {
  187. // Check if distance is within limits
  188. bool below_min = mD <= mLimitsMin;
  189. if (mHasLimits && (below_min || mD >= mLimitsMax))
  190. mPositionLimitsConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - (below_min? mLimitsMin : mLimitsMax), mLimitsSpringSettings);
  191. else
  192. mPositionLimitsConstraintPart.Deactivate();
  193. }
  194. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  195. {
  196. switch (mMotorState)
  197. {
  198. case EMotorState::Off:
  199. if (mMaxFrictionForce > 0.0f)
  200. mMotorConstraintPart.CalculateConstraintProperties(*mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  201. else
  202. mMotorConstraintPart.Deactivate();
  203. break;
  204. case EMotorState::Velocity:
  205. mMotorConstraintPart.CalculateConstraintProperties(*mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  206. break;
  207. case EMotorState::Position:
  208. mMotorConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mSpringSettings);
  209. break;
  210. }
  211. }
  212. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  213. {
  214. // Calculate constraint properties that are constant while bodies don't move
  215. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  216. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  217. CalculateR1R2U(rotation1, rotation2);
  218. CalculatePositionConstraintProperties(rotation1, rotation2);
  219. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  220. CalculateSlidingAxisAndPosition(rotation1);
  221. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  222. CalculateMotorConstraintProperties(inDeltaTime);
  223. }
  224. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  225. {
  226. // Warm starting: Apply previous frame impulse
  227. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  228. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  229. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  230. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  231. }
  232. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  233. {
  234. // Solve motor
  235. bool motor = false;
  236. if (mMotorConstraintPart.IsActive())
  237. {
  238. switch (mMotorState)
  239. {
  240. case EMotorState::Off:
  241. {
  242. float max_lambda = mMaxFrictionForce * inDeltaTime;
  243. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  244. break;
  245. }
  246. case EMotorState::Velocity:
  247. case EMotorState::Position:
  248. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  249. break;
  250. }
  251. }
  252. // Solve position constraint along 2 axis
  253. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  254. // Solve rotation constraint
  255. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  256. // Solve limits along slider axis
  257. bool limit = false;
  258. if (mPositionLimitsConstraintPart.IsActive())
  259. {
  260. float min_lambda, max_lambda;
  261. if (mLimitsMin == mLimitsMax)
  262. {
  263. min_lambda = -FLT_MAX;
  264. max_lambda = FLT_MAX;
  265. }
  266. else if (mD <= mLimitsMin)
  267. {
  268. min_lambda = 0.0f;
  269. max_lambda = FLT_MAX;
  270. }
  271. else
  272. {
  273. min_lambda = -FLT_MAX;
  274. max_lambda = 0.0f;
  275. }
  276. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, min_lambda, max_lambda);
  277. }
  278. return motor || pos || rot || limit;
  279. }
  280. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  281. {
  282. // Motor operates on velocities only, don't call SolvePositionConstraint
  283. // Solve position constraint along 2 axis
  284. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  285. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  286. CalculateR1R2U(rotation1, rotation2);
  287. CalculatePositionConstraintProperties(rotation1, rotation2);
  288. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  289. // Solve rotation constraint
  290. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  291. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  292. // Solve limits along slider axis
  293. bool limit = false;
  294. if (mHasLimits && mLimitsSpringSettings.mFrequency <= 0.0f)
  295. {
  296. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  297. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  298. CalculateR1R2U(rotation1, rotation2);
  299. CalculateSlidingAxisAndPosition(rotation1);
  300. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  301. if (mPositionLimitsConstraintPart.IsActive())
  302. {
  303. if (mD <= mLimitsMin)
  304. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  305. else
  306. {
  307. JPH_ASSERT(mD >= mLimitsMax);
  308. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  309. }
  310. }
  311. }
  312. return pos || rot || limit;
  313. }
  314. #ifdef JPH_DEBUG_RENDERER
  315. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  316. {
  317. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  318. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  319. // Transform the local positions into world space
  320. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  321. RVec3 position1 = transform1 * mLocalSpacePosition1;
  322. RVec3 position2 = transform2 * mLocalSpacePosition2;
  323. // Draw constraint
  324. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  325. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  326. inRenderer->DrawLine(position1, position2, Color::sGreen);
  327. // Draw motor
  328. switch (mMotorState)
  329. {
  330. case EMotorState::Position:
  331. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  332. break;
  333. case EMotorState::Velocity:
  334. {
  335. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  336. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  337. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  338. break;
  339. }
  340. case EMotorState::Off:
  341. break;
  342. }
  343. }
  344. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  345. {
  346. if (mHasLimits)
  347. {
  348. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  349. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  350. // Transform the local positions into world space
  351. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  352. RVec3 position1 = transform1 * mLocalSpacePosition1;
  353. RVec3 position2 = transform2 * mLocalSpacePosition2;
  354. // Calculate the limits in world space
  355. RVec3 limits_min = position1 + mLimitsMin * slider_axis;
  356. RVec3 limits_max = position1 + mLimitsMax * slider_axis;
  357. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  358. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  359. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  360. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  361. }
  362. }
  363. #endif // JPH_DEBUG_RENDERER
  364. void SliderConstraint::SaveState(StateRecorder &inStream) const
  365. {
  366. TwoBodyConstraint::SaveState(inStream);
  367. mMotorConstraintPart.SaveState(inStream);
  368. mPositionConstraintPart.SaveState(inStream);
  369. mRotationConstraintPart.SaveState(inStream);
  370. mPositionLimitsConstraintPart.SaveState(inStream);
  371. inStream.Write(mMotorState);
  372. inStream.Write(mTargetVelocity);
  373. inStream.Write(mTargetPosition);
  374. }
  375. void SliderConstraint::RestoreState(StateRecorder &inStream)
  376. {
  377. TwoBodyConstraint::RestoreState(inStream);
  378. mMotorConstraintPart.RestoreState(inStream);
  379. mPositionConstraintPart.RestoreState(inStream);
  380. mRotationConstraintPart.RestoreState(inStream);
  381. mPositionLimitsConstraintPart.RestoreState(inStream);
  382. inStream.Read(mMotorState);
  383. inStream.Read(mTargetVelocity);
  384. inStream.Read(mTargetPosition);
  385. }
  386. Ref<ConstraintSettings> SliderConstraint::GetConstraintSettings() const
  387. {
  388. SliderConstraintSettings *settings = new SliderConstraintSettings;
  389. ToConstraintSettings(*settings);
  390. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  391. settings->mPoint1 = RVec3(mLocalSpacePosition1);
  392. settings->mSliderAxis1 = mLocalSpaceSliderAxis1;
  393. settings->mNormalAxis1 = mLocalSpaceNormal1;
  394. settings->mPoint2 = RVec3(mLocalSpacePosition2);
  395. Mat44 inv_initial_rotation = Mat44::sRotation(mInvInitialOrientation);
  396. settings->mSliderAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceSliderAxis1);
  397. settings->mNormalAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceNormal1);
  398. settings->mLimitsMin = mLimitsMin;
  399. settings->mLimitsMax = mLimitsMax;
  400. settings->mLimitsSpringSettings = mLimitsSpringSettings;
  401. settings->mMaxFrictionForce = mMaxFrictionForce;
  402. settings->mMotorSettings = mMotorSettings;
  403. return settings;
  404. }
  405. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  406. {
  407. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  408. }
  409. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  410. {
  411. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  412. mat.SetTranslation(mLocalSpacePosition2);
  413. return mat;
  414. }
  415. JPH_NAMESPACE_END