SixDOFConstraint.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt/Jolt.h>
  4. #include <Jolt/Physics/Constraints/SixDOFConstraint.h>
  5. #include <Jolt/Physics/Body/Body.h>
  6. #include <Jolt/Geometry/Ellipse.h>
  7. #include <Jolt/ObjectStream/TypeDeclarations.h>
  8. #include <Jolt/Core/StreamIn.h>
  9. #include <Jolt/Core/StreamOut.h>
  10. #ifdef JPH_DEBUG_RENDERER
  11. #include <Jolt/Renderer/DebugRenderer.h>
  12. #endif // JPH_DEBUG_RENDERER
  13. JPH_NAMESPACE_BEGIN
  14. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SixDOFConstraintSettings)
  15. {
  16. JPH_ADD_BASE_CLASS(SixDOFConstraintSettings, TwoBodyConstraintSettings)
  17. JPH_ADD_ENUM_ATTRIBUTE(SixDOFConstraintSettings, mSpace)
  18. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mPosition1)
  19. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisX1)
  20. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisY1)
  21. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mPosition2)
  22. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisX2)
  23. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisY2)
  24. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mMaxFriction)
  25. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitMin)
  26. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitMax)
  27. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mMotorSettings)
  28. }
  29. void SixDOFConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  30. {
  31. ConstraintSettings::SaveBinaryState(inStream);
  32. inStream.Write(mSpace);
  33. inStream.Write(mPosition1);
  34. inStream.Write(mAxisX1);
  35. inStream.Write(mAxisY1);
  36. inStream.Write(mPosition2);
  37. inStream.Write(mAxisX2);
  38. inStream.Write(mAxisY2);
  39. inStream.Write(mMaxFriction);
  40. inStream.Write(mLimitMin);
  41. inStream.Write(mLimitMax);
  42. for (const MotorSettings &m : mMotorSettings)
  43. m.SaveBinaryState(inStream);
  44. }
  45. void SixDOFConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  46. {
  47. ConstraintSettings::RestoreBinaryState(inStream);
  48. inStream.Read(mSpace);
  49. inStream.Read(mPosition1);
  50. inStream.Read(mAxisX1);
  51. inStream.Read(mAxisY1);
  52. inStream.Read(mPosition2);
  53. inStream.Read(mAxisX2);
  54. inStream.Read(mAxisY2);
  55. inStream.Read(mMaxFriction);
  56. inStream.Read(mLimitMin);
  57. inStream.Read(mLimitMax);
  58. for (MotorSettings &m : mMotorSettings)
  59. m.RestoreBinaryState(inStream);
  60. }
  61. TwoBodyConstraint *SixDOFConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  62. {
  63. return new SixDOFConstraint(inBody1, inBody2, *this);
  64. }
  65. void SixDOFConstraint::UpdateRotationLimits()
  66. {
  67. // Make values sensible
  68. for (int i = 3; i < 6; ++i)
  69. if (IsAxisFixed((EAxis)i))
  70. mLimitMin[i] = mLimitMax[i] = 0.0f;
  71. else
  72. {
  73. mLimitMin[i] = max(-JPH_PI, mLimitMin[i]);
  74. mLimitMax[i] = min(JPH_PI, mLimitMax[i]);
  75. }
  76. // The swing twist constraint part requires symmetrical rotations around Y and Z
  77. JPH_ASSERT(mLimitMin[EAxis::RotationY] == -mLimitMax[EAxis::RotationY]);
  78. JPH_ASSERT(mLimitMin[EAxis::RotationZ] == -mLimitMax[EAxis::RotationZ]);
  79. // Pass limits on to constraint part
  80. mSwingTwistConstraintPart.SetLimits(mLimitMin[EAxis::RotationX], mLimitMax[EAxis::RotationX], mLimitMax[EAxis::RotationY], mLimitMax[EAxis::RotationZ]);
  81. }
  82. SixDOFConstraint::SixDOFConstraint(Body &inBody1, Body &inBody2, const SixDOFConstraintSettings &inSettings) :
  83. TwoBodyConstraint(inBody1, inBody2, inSettings),
  84. mLocalSpacePosition1(inSettings.mPosition1),
  85. mLocalSpacePosition2(inSettings.mPosition2)
  86. {
  87. // Assert that input adheres to the limitations of this class
  88. JPH_ASSERT(inSettings.mLimitMin[EAxis::RotationY] == -inSettings.mLimitMax[EAxis::RotationY]);
  89. JPH_ASSERT(inSettings.mLimitMin[EAxis::RotationZ] == -inSettings.mLimitMax[EAxis::RotationZ]);
  90. // Calculate rotation needed to go from constraint space to body1 local space
  91. Vec3 axis_z1 = inSettings.mAxisX1.Cross(inSettings.mAxisY1);
  92. Mat44 c_to_b1(Vec4(inSettings.mAxisX1, 0), Vec4(inSettings.mAxisY1, 0), Vec4(axis_z1, 0), Vec4(0, 0, 0, 1));
  93. mConstraintToBody1 = c_to_b1.GetQuaternion();
  94. // Calculate rotation needed to go from constraint space to body2 local space
  95. Vec3 axis_z2 = inSettings.mAxisX2.Cross(inSettings.mAxisY2);
  96. Mat44 c_to_b2(Vec4(inSettings.mAxisX2, 0), Vec4(inSettings.mAxisY2, 0), Vec4(axis_z2, 0), Vec4(0, 0, 0, 1));
  97. mConstraintToBody2 = c_to_b2.GetQuaternion();
  98. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  99. {
  100. // If all properties were specified in world space, take them to local space now
  101. mLocalSpacePosition1 = inBody1.GetInverseCenterOfMassTransform() * mLocalSpacePosition1;
  102. mConstraintToBody1 = inBody1.GetRotation().Conjugated() * mConstraintToBody1;
  103. mLocalSpacePosition2 = inBody2.GetInverseCenterOfMassTransform() * mLocalSpacePosition2;
  104. mConstraintToBody2 = inBody2.GetRotation().Conjugated() * mConstraintToBody2;
  105. }
  106. // Cache which axis are fixed and which ones are free
  107. mFreeAxis = 0;
  108. mFixedAxis = 0;
  109. for (int a = 0; a < EAxis::Num; ++a)
  110. {
  111. if (inSettings.IsFixedAxis((EAxis)a))
  112. mFixedAxis |= 1 << a;
  113. if (inSettings.IsFreeAxis((EAxis)a))
  114. mFreeAxis |= 1 << a;
  115. }
  116. // Copy translation and rotation limits
  117. memcpy(mLimitMin, inSettings.mLimitMin, sizeof(mLimitMin));
  118. memcpy(mLimitMax, inSettings.mLimitMax, sizeof(mLimitMax));
  119. UpdateRotationLimits();
  120. // Store friction settings
  121. memcpy(mMaxFriction, inSettings.mMaxFriction, sizeof(mMaxFriction));
  122. // Store motor settings
  123. for (int i = 0; i < EAxis::Num; ++i)
  124. mMotorSettings[i] = inSettings.mMotorSettings[i];
  125. // Cache if motors are active (motors are off initially, but we may have friction)
  126. CacheTranslationMotorActive();
  127. CacheRotationMotorActive();
  128. }
  129. void SixDOFConstraint::SetTranslationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax)
  130. {
  131. mLimitMin[EAxis::TranslationX] = inLimitMin.GetX();
  132. mLimitMin[EAxis::TranslationY] = inLimitMin.GetY();
  133. mLimitMin[EAxis::TranslationZ] = inLimitMin.GetZ();
  134. mLimitMax[EAxis::TranslationX] = inLimitMax.GetX();
  135. mLimitMax[EAxis::TranslationY] = inLimitMax.GetY();
  136. mLimitMax[EAxis::TranslationZ] = inLimitMax.GetZ();
  137. }
  138. void SixDOFConstraint::SetRotationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax)
  139. {
  140. mLimitMin[EAxis::RotationX] = inLimitMin.GetX();
  141. mLimitMin[EAxis::RotationY] = inLimitMin.GetY();
  142. mLimitMin[EAxis::RotationZ] = inLimitMin.GetZ();
  143. mLimitMax[EAxis::RotationX] = inLimitMax.GetX();
  144. mLimitMax[EAxis::RotationY] = inLimitMax.GetY();
  145. mLimitMax[EAxis::RotationZ] = inLimitMax.GetZ();
  146. UpdateRotationLimits();
  147. }
  148. void SixDOFConstraint::SetMaxFriction(EAxis inAxis, float inFriction)
  149. {
  150. mMaxFriction[inAxis] = inFriction;
  151. if (inAxis >= EAxis::TranslationX && inAxis <= EAxis::TranslationZ)
  152. CacheTranslationMotorActive();
  153. else
  154. CacheRotationMotorActive();
  155. }
  156. void SixDOFConstraint::GetPositionConstraintProperties(Vec3 &outR1PlusU, Vec3 &outR2, Vec3 &outU) const
  157. {
  158. Vec3 p1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
  159. Vec3 p2 = mBody2->GetCenterOfMassTransform() * mLocalSpacePosition2;
  160. outR1PlusU = p2 - mBody1->GetCenterOfMassPosition(); // r1 + u = (p1 - x1) + (p2 - p1) = p2 - x1
  161. outR2 = p2 - mBody2->GetCenterOfMassPosition();
  162. outU = p2 - p1;
  163. }
  164. Quat SixDOFConstraint::GetRotationInConstraintSpace() const
  165. {
  166. // Let b1, b2 be the center of mass transform of body1 and body2 (For body1 this is mBody1->GetCenterOfMassTransform())
  167. // Let c1, c2 be the transform that takes a vector from constraint space to local space of body1 and body2 (For body1 this is Mat44::sRotationTranslation(mConstraintToBody1, mLocalSpacePosition1))
  168. // Let q be the rotation of the constraint in constraint space
  169. // b2 takes a vector from the local space of body2 to world space
  170. // To express this in terms of b1: b2 = b1 * c1 * q * c2^-1
  171. // c2^-1 goes from local body 2 space to constraint space
  172. // q rotates the constraint
  173. // c1 goes from constraint space to body 1 local space
  174. // b1 goes from body 1 local space to world space
  175. // So when the body rotations are given, q = (b1 * c1)^-1 * b2 c2
  176. // Or: q = (q1 * c1)^-1 * (q2 * c2) if we're only interested in rotations
  177. return (mBody1->GetRotation() * mConstraintToBody1).Conjugated() * mBody2->GetRotation() * mConstraintToBody2;
  178. }
  179. void SixDOFConstraint::CacheTranslationMotorActive()
  180. {
  181. mTranslationMotorActive = mMotorState[EAxis::TranslationX] != EMotorState::Off
  182. || mMotorState[EAxis::TranslationY] != EMotorState::Off
  183. || mMotorState[EAxis::TranslationZ] != EMotorState::Off
  184. || HasFriction(EAxis::TranslationX)
  185. || HasFriction(EAxis::TranslationY)
  186. || HasFriction(EAxis::TranslationZ);
  187. }
  188. void SixDOFConstraint::CacheRotationMotorActive()
  189. {
  190. mRotationMotorActive = mMotorState[EAxis::RotationX] != EMotorState::Off
  191. || mMotorState[EAxis::RotationY] != EMotorState::Off
  192. || mMotorState[EAxis::RotationZ] != EMotorState::Off
  193. || HasFriction(EAxis::RotationX)
  194. || HasFriction(EAxis::RotationY)
  195. || HasFriction(EAxis::RotationZ);
  196. }
  197. void SixDOFConstraint::SetMotorState(EAxis inAxis, EMotorState inState)
  198. {
  199. JPH_ASSERT(inState == EMotorState::Off || mMotorSettings[inAxis].IsValid());
  200. if (mMotorState[inAxis] != inState)
  201. {
  202. mMotorState[inAxis] = inState;
  203. // Ensure that warm starting next frame doesn't apply any impulses (motor parts are repurposed for different modes)
  204. if (inAxis >= EAxis::TranslationX && inAxis <= EAxis::TranslationZ)
  205. {
  206. mMotorTranslationConstraintPart[inAxis - EAxis::TranslationX].Deactivate();
  207. CacheTranslationMotorActive();
  208. }
  209. else
  210. {
  211. JPH_ASSERT(inAxis >= EAxis::RotationX && inAxis <= EAxis::RotationZ);
  212. mMotorRotationConstraintPart[inAxis - EAxis::RotationX].Deactivate();
  213. CacheRotationMotorActive();
  214. mRotationPositionMotorActive = 0;
  215. for (int i = 0; i < 3; ++i)
  216. if (mMotorState[EAxis::RotationX + i] == EMotorState::Position)
  217. mRotationPositionMotorActive |= 1 << i;
  218. }
  219. }
  220. }
  221. void SixDOFConstraint::SetTargetOrientationCS(QuatArg inOrientation)
  222. {
  223. Quat q_swing, q_twist;
  224. inOrientation.GetSwingTwist(q_swing, q_twist);
  225. bool twist_clamped, swing_y_clamped, swing_z_clamped;
  226. mSwingTwistConstraintPart.ClampSwingTwist(q_swing, swing_y_clamped, swing_z_clamped, q_twist, twist_clamped);
  227. if (twist_clamped || swing_y_clamped || swing_z_clamped)
  228. mTargetOrientation = q_swing * q_twist;
  229. else
  230. mTargetOrientation = inOrientation;
  231. }
  232. void SixDOFConstraint::SetupVelocityConstraint(float inDeltaTime)
  233. {
  234. // Get body rotations
  235. Quat rotation1 = mBody1->GetRotation();
  236. Quat rotation2 = mBody2->GetRotation();
  237. // Quaternion that rotates from body1's constraint space to world space
  238. Quat constraint_body1_to_world = rotation1 * mConstraintToBody1;
  239. // Store world space axis of constraint space
  240. Mat44 translation_axis_mat = Mat44::sRotation(constraint_body1_to_world);
  241. for (int i = 0; i < 3; ++i)
  242. mTranslationAxis[i] = translation_axis_mat.GetColumn3(i);
  243. if (IsTranslationFullyConstrained())
  244. {
  245. // All translation locked: Setup point constraint
  246. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(rotation1), mLocalSpacePosition1, *mBody2, Mat44::sRotation(rotation2), mLocalSpacePosition2);
  247. }
  248. else if (IsTranslationConstrained() || mTranslationMotorActive)
  249. {
  250. // Update world space positions (the bodies may have moved)
  251. Vec3 r1_plus_u, r2, u;
  252. GetPositionConstraintProperties(r1_plus_u, r2, u);
  253. // Setup axis constraint parts
  254. for (int i = 0; i < 3; ++i)
  255. {
  256. EAxis axis = EAxis(EAxis::TranslationX + i);
  257. Vec3 translation_axis = mTranslationAxis[i];
  258. // Setup limit constraint
  259. bool constraint_active = false;
  260. if (IsAxisFixed(axis))
  261. {
  262. // When constraint is fixed it is always active
  263. constraint_active = true;
  264. }
  265. else if (!IsAxisFree(axis))
  266. {
  267. // When constraint is limited, it is only active when outside of the allowed range
  268. float d = translation_axis.Dot(u);
  269. constraint_active = d <= mLimitMin[i] || d >= mLimitMax[i];
  270. mDisplacement[i] = d; // Store for SolveVelocityConstraint
  271. }
  272. if (constraint_active)
  273. mTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  274. else
  275. mTranslationConstraintPart[i].Deactivate();
  276. // Setup motor constraint
  277. switch (mMotorState[i])
  278. {
  279. case EMotorState::Off:
  280. if (HasFriction(axis))
  281. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  282. else
  283. mMotorTranslationConstraintPart[i].Deactivate();
  284. break;
  285. case EMotorState::Velocity:
  286. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis, -mTargetVelocity[i]);
  287. break;
  288. case EMotorState::Position:
  289. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis, 0.0f, translation_axis.Dot(u) - mTargetPosition[i], mMotorSettings[i].mFrequency, mMotorSettings[i].mDamping);
  290. break;
  291. }
  292. }
  293. }
  294. // Setup rotation constraints
  295. if (IsRotationFullyConstrained())
  296. {
  297. // All rotation locked: Setup rotation contraint
  298. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  299. }
  300. else if (IsRotationConstrained() || mRotationMotorActive)
  301. {
  302. // GetRotationInConstraintSpace without redoing the calculation of constraint_body1_to_world
  303. Quat constraint_body2_to_world = mBody2->GetRotation() * mConstraintToBody2;
  304. Quat q = constraint_body1_to_world.Conjugated() * constraint_body2_to_world;
  305. // Use swing twist constraint part
  306. if (IsRotationConstrained())
  307. mSwingTwistConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, q, constraint_body1_to_world);
  308. else
  309. mSwingTwistConstraintPart.Deactivate();
  310. if (mRotationMotorActive)
  311. {
  312. // Calculate rotation motor axis
  313. Mat44 ws_axis = Mat44::sRotation(constraint_body2_to_world);
  314. for (int i = 0; i < 3; ++i)
  315. mRotationAxis[i] = ws_axis.GetColumn3(i);
  316. // Get target orientation along the shortest path from q
  317. Quat target_orientation = q.Dot(mTargetOrientation) > 0.0f? mTargetOrientation : -mTargetOrientation;
  318. // The definition of the constraint rotation q:
  319. // R2 * ConstraintToBody2 = R1 * ConstraintToBody1 * q (1)
  320. //
  321. // R2' is the rotation of body 2 when reaching the target_orientation:
  322. // R2' * ConstraintToBody2 = R1 * ConstraintToBody1 * target_orientation (2)
  323. //
  324. // The difference in body 2 space:
  325. // R2' = R2 * diff_body2 (3)
  326. //
  327. // We want to specify the difference in the constraint space of body 2:
  328. // diff_body2 = ConstraintToBody2 * diff * ConstraintToBody2^* (4)
  329. //
  330. // Extracting R2' from 2: R2' = R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* (5)
  331. // Combining 3 & 4: R2' = R2 * ConstraintToBody2 * diff * ConstraintToBody2^* (6)
  332. // Combining 1 & 6: R2' = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^* (7)
  333. // Combining 5 & 7: R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^*
  334. // <=> target_orientation = q * diff
  335. // <=> diff = q^* * target_orientation
  336. Quat diff = q.Conjugated() * target_orientation;
  337. // Project diff so that only rotation around axis that have a position motor are remaining
  338. Quat projected_diff;
  339. switch (mRotationPositionMotorActive)
  340. {
  341. case 0b001:
  342. // Keep only rotation around X
  343. projected_diff = diff.GetTwist(Vec3::sAxisX());
  344. break;
  345. case 0b010:
  346. // Keep only rotation around Y
  347. projected_diff = diff.GetTwist(Vec3::sAxisY());
  348. break;
  349. case 0b100:
  350. // Keep only rotation around Z
  351. projected_diff = diff.GetTwist(Vec3::sAxisZ());
  352. break;
  353. case 0b011:
  354. // Remove rotation around Z
  355. // q = swing_xy * twist_z <=> swing_xy = q * twist_z^*
  356. projected_diff = diff * diff.GetTwist(Vec3::sAxisZ()).Conjugated();
  357. break;
  358. case 0b101:
  359. // Remove rotation around Y
  360. // q = swing_xz * twist_y <=> swing_xz = q * twist_y^*
  361. projected_diff = diff * diff.GetTwist(Vec3::sAxisY()).Conjugated();
  362. break;
  363. case 0b110:
  364. // Remove rotation around X
  365. // q = swing_yz * twist_x <=> swing_yz = q * twist_x^*
  366. projected_diff = diff * diff.GetTwist(Vec3::sAxisX()).Conjugated();
  367. break;
  368. case 0b111:
  369. default: // All motors off is handled here but the results are unused
  370. // Keep entire rotation
  371. projected_diff = diff;
  372. break;
  373. }
  374. // Approximate error angles
  375. // The imaginary part of a quaternion is rotation_axis * sin(angle / 2)
  376. // If angle is small, sin(x) = x so angle[i] ~ 2.0f * rotation_axis[i]
  377. // We'll be making small time steps, so if the angle is not small at least the sign will be correct and we'll move in the right direction
  378. Vec3 rotation_error = -2.0f * projected_diff.GetXYZ();
  379. // Setup motors
  380. for (int i = 0; i < 3; ++i)
  381. {
  382. EAxis axis = EAxis(EAxis::RotationX + i);
  383. Vec3 rotation_axis = mRotationAxis[i];
  384. switch (mMotorState[axis])
  385. {
  386. case EMotorState::Off:
  387. if (HasFriction(axis))
  388. mMotorRotationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, rotation_axis);
  389. else
  390. mMotorRotationConstraintPart[i].Deactivate();
  391. break;
  392. case EMotorState::Velocity:
  393. mMotorRotationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, rotation_axis, -mTargetAngularVelocity[i]);
  394. break;
  395. case EMotorState::Position:
  396. mMotorRotationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, rotation_axis, 0.0f, rotation_error[i], mMotorSettings[axis].mFrequency, mMotorSettings[axis].mDamping);
  397. break;
  398. }
  399. }
  400. }
  401. }
  402. }
  403. void SixDOFConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  404. {
  405. // Warm start translation motors
  406. if (mTranslationMotorActive)
  407. for (int i = 0; i < 3; ++i)
  408. if (mMotorTranslationConstraintPart[i].IsActive())
  409. mMotorTranslationConstraintPart[i].WarmStart(*mBody1, *mBody2, mTranslationAxis[i], inWarmStartImpulseRatio);
  410. // Warm start rotation motors
  411. if (mRotationMotorActive)
  412. for (AngleConstraintPart &c : mMotorRotationConstraintPart)
  413. if (c.IsActive())
  414. c.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  415. // Warm start rotation constraints
  416. if (IsRotationFullyConstrained())
  417. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  418. else if (IsRotationConstrained())
  419. mSwingTwistConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  420. // Warm start translation constraints
  421. if (IsTranslationFullyConstrained())
  422. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  423. else if (IsTranslationConstrained())
  424. for (int i = 0; i < 3; ++i)
  425. if (mTranslationConstraintPart[i].IsActive())
  426. mTranslationConstraintPart[i].WarmStart(*mBody1, *mBody2, mTranslationAxis[i], inWarmStartImpulseRatio);
  427. }
  428. bool SixDOFConstraint::SolveVelocityConstraint(float inDeltaTime)
  429. {
  430. bool impulse = false;
  431. // Solve translation motor
  432. if (mTranslationMotorActive)
  433. for (int i = 0; i < 3; ++i)
  434. if (mMotorTranslationConstraintPart[i].IsActive())
  435. switch (mMotorState[i])
  436. {
  437. case EMotorState::Off:
  438. {
  439. // Apply friction only
  440. float max_lambda = mMaxFriction[i] * inDeltaTime;
  441. impulse |= mMotorTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], -max_lambda, max_lambda);
  442. break;
  443. }
  444. case EMotorState::Velocity:
  445. case EMotorState::Position:
  446. // Drive motor
  447. impulse |= mMotorTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], inDeltaTime * mMotorSettings[i].mMinForceLimit, inDeltaTime * mMotorSettings[i].mMaxForceLimit);
  448. break;
  449. }
  450. // Solve rotation motor
  451. if (mRotationMotorActive)
  452. for (int i = 0; i < 3; ++i)
  453. {
  454. EAxis axis = EAxis(EAxis::RotationX + i);
  455. if (mMotorRotationConstraintPart[i].IsActive())
  456. switch (mMotorState[axis])
  457. {
  458. case EMotorState::Off:
  459. {
  460. // Apply friction only
  461. float max_lambda = mMaxFriction[axis] * inDeltaTime;
  462. impulse |= mMotorRotationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mRotationAxis[i], -max_lambda, max_lambda);
  463. break;
  464. }
  465. case EMotorState::Velocity:
  466. case EMotorState::Position:
  467. // Drive motor
  468. impulse |= mMotorRotationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mRotationAxis[i], inDeltaTime * mMotorSettings[axis].mMinTorqueLimit, inDeltaTime * mMotorSettings[axis].mMaxTorqueLimit);
  469. break;
  470. }
  471. }
  472. // Solve rotation constraint
  473. if (IsRotationFullyConstrained())
  474. impulse |= mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  475. else if (IsRotationConstrained())
  476. impulse |= mSwingTwistConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  477. // Solve position constraint
  478. if (IsTranslationFullyConstrained())
  479. impulse |= mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  480. else if (IsTranslationConstrained())
  481. for (int i = 0; i < 3; ++i)
  482. if (mTranslationConstraintPart[i].IsActive())
  483. {
  484. // If the axis is not fixed it must be limited (or else the constraint would not be active)
  485. // Calculate the min and max constraint force based on on which side we're limited
  486. float limit_min = -FLT_MAX, limit_max = FLT_MAX;
  487. if (!IsAxisFixed(EAxis(EAxis::TranslationX + i)))
  488. {
  489. JPH_ASSERT(!IsAxisFree(EAxis(EAxis::TranslationX + i)));
  490. if (mDisplacement[i] <= mLimitMin[i])
  491. limit_min = 0;
  492. else if (mDisplacement[i] >= mLimitMax[i])
  493. limit_max = 0;
  494. }
  495. impulse |= mTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], limit_min, limit_max);
  496. }
  497. return impulse;
  498. }
  499. bool SixDOFConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  500. {
  501. bool impulse = false;
  502. if (IsRotationFullyConstrained())
  503. {
  504. // Rotation locked: Solve rotation constraint
  505. // Inverse of initial rotation from body 1 to body 2 in body 1 space
  506. // Definition of initial orientation r0: q2 = q1 r0
  507. // Initial rotation (see: GetRotationInConstraintSpace): q2 = q1 c1 c2^-1
  508. // So: r0^-1 = (c1 c2^-1)^-1 = c2 * c1^-1
  509. Quat inv_initial_orientation = mConstraintToBody2 * mConstraintToBody1.Conjugated();
  510. // Solve rotation violations
  511. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  512. impulse |= mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inv_initial_orientation, inBaumgarte);
  513. }
  514. else if (IsRotationConstrained())
  515. {
  516. // Rotation partially constraint
  517. // Solve rotation violations
  518. Quat q = GetRotationInConstraintSpace();
  519. impulse |= mSwingTwistConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, q, mConstraintToBody1, mConstraintToBody2, inBaumgarte);
  520. }
  521. // Solve position violations
  522. if (IsTranslationFullyConstrained())
  523. {
  524. // Translation locked: Solve point constraint
  525. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  526. impulse |= mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  527. }
  528. else if (IsTranslationConstrained())
  529. {
  530. // Translation partially locked: Solve per axis
  531. for (int i = 0; i < 3; ++i)
  532. {
  533. // Update world space positions (the bodies may have moved)
  534. Vec3 r1_plus_u, r2, u;
  535. GetPositionConstraintProperties(r1_plus_u, r2, u);
  536. // Quaternion that rotates from body1's constraint space to world space
  537. Quat constraint_body1_to_world = mBody1->GetRotation() * mConstraintToBody1;
  538. // Calculate axis
  539. Vec3 translation_axis;
  540. switch (i)
  541. {
  542. case 0: translation_axis = constraint_body1_to_world.RotateAxisX(); break;
  543. case 1: translation_axis = constraint_body1_to_world.RotateAxisY(); break;
  544. default: JPH_ASSERT(i == 2); translation_axis = constraint_body1_to_world.RotateAxisZ(); break;
  545. }
  546. // Determine position error
  547. float error = 0.0f;
  548. EAxis axis(EAxis(EAxis::TranslationX + i));
  549. if (IsAxisFixed(axis))
  550. error = u.Dot(translation_axis);
  551. else if (!IsAxisFree(axis))
  552. {
  553. float displacement = u.Dot(translation_axis);
  554. if (displacement <= mLimitMin[axis])
  555. error = displacement - mLimitMin[axis];
  556. else if (displacement >= mLimitMax[axis])
  557. error = displacement - mLimitMax[axis];
  558. }
  559. if (error != 0.0f)
  560. {
  561. // Setup axis constraint part and solve it
  562. mTranslationConstraintPart[i].CalculateConstraintProperties(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  563. impulse |= mTranslationConstraintPart[i].SolvePositionConstraint(*mBody1, *mBody2, translation_axis, error, inBaumgarte);
  564. }
  565. }
  566. }
  567. return impulse;
  568. }
  569. #ifdef JPH_DEBUG_RENDERER
  570. void SixDOFConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  571. {
  572. // Get constraint properties in world space
  573. Vec3 position1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
  574. Quat rotation1 = mBody1->GetRotation() * mConstraintToBody1;
  575. Quat rotation2 = mBody2->GetRotation() * mConstraintToBody2;
  576. // Draw constraint orientation
  577. inRenderer->DrawCoordinateSystem(Mat44::sRotationTranslation(rotation1, position1), mDrawConstraintSize);
  578. if ((IsRotationConstrained() || mRotationPositionMotorActive != 0) && !IsRotationFullyConstrained())
  579. {
  580. // Draw current swing and twist
  581. Quat q = GetRotationInConstraintSpace();
  582. Quat q_swing, q_twist;
  583. q.GetSwingTwist(q_swing, q_twist);
  584. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_twist).RotateAxisY(), Color::sWhite);
  585. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_swing).RotateAxisX(), Color::sWhite);
  586. }
  587. // Draw target rotation
  588. Quat m_swing, m_twist;
  589. mTargetOrientation.GetSwingTwist(m_swing, m_twist);
  590. if (mMotorState[EAxis::RotationX] == EMotorState::Position)
  591. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * m_twist).RotateAxisY(), Color::sYellow);
  592. if (mMotorState[EAxis::RotationY] == EMotorState::Position || mMotorState[EAxis::RotationZ] == EMotorState::Position)
  593. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * m_swing).RotateAxisX(), Color::sYellow);
  594. // Draw target angular velocity
  595. Vec3 target_angular_velocity = Vec3::sZero();
  596. for (int i = 0; i < 3; ++i)
  597. if (mMotorState[EAxis::RotationX + i] == EMotorState::Velocity)
  598. target_angular_velocity.SetComponent(i, mTargetAngularVelocity[i]);
  599. if (target_angular_velocity != Vec3::sZero())
  600. inRenderer->DrawArrow(position1, position1 + rotation2 * target_angular_velocity, Color::sRed, 0.1f);
  601. }
  602. void SixDOFConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  603. {
  604. // Get matrix that transforms from constraint space to world space
  605. Mat44 constraint_body1_to_world = Mat44::sRotationTranslation(mBody1->GetRotation() * mConstraintToBody1, mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1);
  606. // Draw limits
  607. inRenderer->DrawSwingLimits(constraint_body1_to_world, mLimitMax[EAxis::RotationY], mLimitMax[EAxis::RotationZ], mDrawConstraintSize, Color::sGreen, DebugRenderer::ECastShadow::Off);
  608. inRenderer->DrawPie(constraint_body1_to_world.GetTranslation(), mDrawConstraintSize, constraint_body1_to_world.GetAxisX(), constraint_body1_to_world.GetAxisY(), mLimitMin[EAxis::RotationX], mLimitMax[EAxis::RotationX], Color::sPurple, DebugRenderer::ECastShadow::Off);
  609. }
  610. #endif // JPH_DEBUG_RENDERER
  611. void SixDOFConstraint::SaveState(StateRecorder &inStream) const
  612. {
  613. TwoBodyConstraint::SaveState(inStream);
  614. for (const AxisConstraintPart &c : mTranslationConstraintPart)
  615. c.SaveState(inStream);
  616. mPointConstraintPart.SaveState(inStream);
  617. mSwingTwistConstraintPart.SaveState(inStream);
  618. mRotationConstraintPart.SaveState(inStream);
  619. for (const AxisConstraintPart &c : mMotorTranslationConstraintPart)
  620. c.SaveState(inStream);
  621. for (const AngleConstraintPart &c : mMotorRotationConstraintPart)
  622. c.SaveState(inStream);
  623. inStream.Write(mMotorState);
  624. inStream.Write(mTargetVelocity);
  625. inStream.Write(mTargetAngularVelocity);
  626. inStream.Write(mTargetPosition);
  627. inStream.Write(mTargetOrientation);
  628. }
  629. void SixDOFConstraint::RestoreState(StateRecorder &inStream)
  630. {
  631. TwoBodyConstraint::RestoreState(inStream);
  632. for (AxisConstraintPart &c : mTranslationConstraintPart)
  633. c.RestoreState(inStream);
  634. mPointConstraintPart.RestoreState(inStream);
  635. mSwingTwistConstraintPart.RestoreState(inStream);
  636. mRotationConstraintPart.RestoreState(inStream);
  637. for (AxisConstraintPart &c : mMotorTranslationConstraintPart)
  638. c.RestoreState(inStream);
  639. for (AngleConstraintPart &c : mMotorRotationConstraintPart)
  640. c.RestoreState(inStream);
  641. inStream.Read(mMotorState);
  642. inStream.Read(mTargetVelocity);
  643. inStream.Read(mTargetAngularVelocity);
  644. inStream.Read(mTargetPosition);
  645. inStream.Read(mTargetOrientation);
  646. }
  647. Ref<ConstraintSettings> SixDOFConstraint::GetConstraintSettings() const
  648. {
  649. SixDOFConstraintSettings *settings = new SixDOFConstraintSettings;
  650. ToConstraintSettings(*settings);
  651. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  652. settings->mPosition1 = mLocalSpacePosition1;
  653. settings->mAxisX1 = mConstraintToBody1.RotateAxisX();
  654. settings->mAxisY1 = mConstraintToBody1.RotateAxisY();
  655. settings->mPosition2 = mLocalSpacePosition2;
  656. settings->mAxisX2 = mConstraintToBody2.RotateAxisX();
  657. settings->mAxisY2 = mConstraintToBody2.RotateAxisY();
  658. memcpy(settings->mLimitMin, mLimitMin, sizeof(mLimitMin));
  659. memcpy(settings->mLimitMax, mLimitMax, sizeof(mLimitMax));
  660. memcpy(settings->mMaxFriction, mMaxFriction, sizeof(mMaxFriction));
  661. for (int i = 0; i < EAxis::Num; ++i)
  662. settings->mMotorSettings[i] = mMotorSettings[i];
  663. return settings;
  664. }
  665. JPH_NAMESPACE_END