SliderConstraint.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt/Jolt.h>
  4. #include <Jolt/Physics/Constraints/SliderConstraint.h>
  5. #include <Jolt/Physics/Body/Body.h>
  6. #include <Jolt/ObjectStream/TypeDeclarations.h>
  7. #include <Jolt/Core/StreamIn.h>
  8. #include <Jolt/Core/StreamOut.h>
  9. #ifdef JPH_DEBUG_RENDERER
  10. #include <Jolt/Renderer/DebugRenderer.h>
  11. #endif // JPH_DEBUG_RENDERER
  12. JPH_NAMESPACE_BEGIN
  13. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  14. {
  15. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  16. JPH_ADD_ENUM_ATTRIBUTE(SliderConstraintSettings, mSpace)
  17. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
  18. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
  21. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
  22. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
  23. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  24. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  25. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  26. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  27. }
  28. void SliderConstraintSettings::SetPoint(const Body &inBody1, const Body &inBody2)
  29. {
  30. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  31. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point
  32. Vec3 anchor;
  33. if (!inBody1.CanBeKinematicOrDynamic())
  34. anchor = inBody2.GetCenterOfMassPosition();
  35. else if (!inBody2.CanBeKinematicOrDynamic())
  36. anchor = inBody1.GetCenterOfMassPosition();
  37. else
  38. {
  39. // Otherwise use weighted anchor point towards the lightest body
  40. float inv_m1 = inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked();
  41. float inv_m2 = inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked();
  42. anchor = (inv_m1 * inBody1.GetCenterOfMassPosition() + inv_m2 * inBody2.GetCenterOfMassPosition()) / (inv_m1 + inv_m2);
  43. }
  44. mPoint1 = mPoint2 = anchor;
  45. }
  46. void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
  47. {
  48. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  49. mSliderAxis1 = mSliderAxis2 = inSliderAxis;
  50. mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
  51. }
  52. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  53. {
  54. ConstraintSettings::SaveBinaryState(inStream);
  55. inStream.Write(mSpace);
  56. inStream.Write(mPoint1);
  57. inStream.Write(mSliderAxis1);
  58. inStream.Write(mNormalAxis1);
  59. inStream.Write(mPoint2);
  60. inStream.Write(mSliderAxis2);
  61. inStream.Write(mNormalAxis2);
  62. inStream.Write(mLimitsMin);
  63. inStream.Write(mLimitsMax);
  64. inStream.Write(mMaxFrictionForce);
  65. mMotorSettings.SaveBinaryState(inStream);
  66. }
  67. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  68. {
  69. ConstraintSettings::RestoreBinaryState(inStream);
  70. inStream.Read(mSpace);
  71. inStream.Read(mPoint1);
  72. inStream.Read(mSliderAxis1);
  73. inStream.Read(mNormalAxis1);
  74. inStream.Read(mPoint2);
  75. inStream.Read(mSliderAxis2);
  76. inStream.Read(mNormalAxis2);
  77. inStream.Read(mLimitsMin);
  78. inStream.Read(mLimitsMax);
  79. inStream.Read(mMaxFrictionForce);
  80. mMotorSettings.RestoreBinaryState(inStream);
  81. }
  82. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  83. {
  84. return new SliderConstraint(inBody1, inBody2, *this);
  85. }
  86. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  87. TwoBodyConstraint(inBody1, inBody2, inSettings),
  88. mLocalSpacePosition1(inSettings.mPoint1),
  89. mLocalSpacePosition2(inSettings.mPoint2),
  90. mLocalSpaceSliderAxis1(inSettings.mSliderAxis1),
  91. mLocalSpaceNormal1(inSettings.mNormalAxis1),
  92. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  93. mMotorSettings(inSettings.mMotorSettings)
  94. {
  95. // Store inverse of initial rotation from body 1 to body 2 in body 1 space:
  96. //
  97. // q20 = q10 r0
  98. // <=> r0 = q10^-1 q20
  99. // <=> r0^-1 = q20^-1 q10
  100. //
  101. // where:
  102. //
  103. // q10, q20 = world space initial orientation of body 1 and 2
  104. // r0 = initial rotation rotation from body 1 to body 2 in local space of body 1
  105. //
  106. // We can also write this in terms of the constraint matrices:
  107. //
  108. // q20 c2 = q10 c1
  109. // <=> q20 = q10 c1 c2^-1
  110. // => r0 = c1 c2^-1
  111. // <=> r0^-1 = c2 c1^-1
  112. //
  113. // where:
  114. //
  115. // c1, c2 = matrix that takes us from body 1 and 2 COM to constraint space 1 and 2
  116. if (inSettings.mSliderAxis1 == inSettings.mSliderAxis2 && inSettings.mNormalAxis1 == inSettings.mNormalAxis2)
  117. {
  118. // Axis are the same -> identity transform
  119. mInvInitialOrientation = Quat::sIdentity();
  120. }
  121. else
  122. {
  123. Mat44 constraint1(Vec4(inSettings.mSliderAxis1, 0), Vec4(inSettings.mNormalAxis1, 0), Vec4(inSettings.mSliderAxis1.Cross(inSettings.mNormalAxis1), 0), Vec4(0, 0, 0, 1));
  124. Mat44 constraint2(Vec4(inSettings.mSliderAxis2, 0), Vec4(inSettings.mNormalAxis2, 0), Vec4(inSettings.mSliderAxis2.Cross(inSettings.mNormalAxis2), 0), Vec4(0, 0, 0, 1));
  125. mInvInitialOrientation = constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated();
  126. }
  127. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  128. {
  129. // If all properties were specified in world space, take them to local space now
  130. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  131. mLocalSpacePosition1 = inv_transform1 * mLocalSpacePosition1;
  132. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(mLocalSpaceSliderAxis1).Normalized();
  133. mLocalSpaceNormal1 = inv_transform1.Multiply3x3(mLocalSpaceNormal1).Normalized();
  134. mLocalSpacePosition2 = inBody2.GetInverseCenterOfMassTransform() * mLocalSpacePosition2;
  135. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  136. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  137. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  138. }
  139. // Calculate 2nd local space normal
  140. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  141. // Store limits
  142. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax, "Better use a fixed constraint");
  143. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  144. }
  145. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  146. {
  147. JPH_ASSERT(inLimitsMin <= 0.0f);
  148. JPH_ASSERT(inLimitsMax >= 0.0f);
  149. mLimitsMin = inLimitsMin;
  150. mLimitsMax = inLimitsMax;
  151. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  152. }
  153. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  154. {
  155. // Calculate points relative to body
  156. mR1 = inRotation1 * mLocalSpacePosition1;
  157. mR2 = inRotation2 * mLocalSpacePosition2;
  158. // Calculate X2 + R2 - X1 - R1
  159. mU = mBody2->GetCenterOfMassPosition() + mR2 - mBody1->GetCenterOfMassPosition() - mR1;
  160. }
  161. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  162. {
  163. // Calculate world space normals
  164. mN1 = inRotation1 * mLocalSpaceNormal1;
  165. mN2 = inRotation1 * mLocalSpaceNormal2;
  166. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  167. }
  168. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  169. {
  170. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  171. {
  172. // Calculate world space slider axis
  173. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  174. // Calculate slide distance along axis
  175. mD = mU.Dot(mWorldSpaceSliderAxis);
  176. }
  177. }
  178. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime)
  179. {
  180. // Check if distance is within limits
  181. if (mHasLimits && (mD <= mLimitsMin || mD >= mLimitsMax))
  182. mPositionLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  183. else
  184. mPositionLimitsConstraintPart.Deactivate();
  185. }
  186. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  187. {
  188. switch (mMotorState)
  189. {
  190. case EMotorState::Off:
  191. if (mMaxFrictionForce > 0.0f)
  192. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  193. else
  194. mMotorConstraintPart.Deactivate();
  195. break;
  196. case EMotorState::Velocity:
  197. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  198. break;
  199. case EMotorState::Position:
  200. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mFrequency, mMotorSettings.mDamping);
  201. break;
  202. }
  203. }
  204. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  205. {
  206. // Calculate constraint properties that are constant while bodies don't move
  207. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  208. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  209. CalculateR1R2U(rotation1, rotation2);
  210. CalculatePositionConstraintProperties(rotation1, rotation2);
  211. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  212. CalculateSlidingAxisAndPosition(rotation1);
  213. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  214. CalculateMotorConstraintProperties(inDeltaTime);
  215. }
  216. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  217. {
  218. // Warm starting: Apply previous frame impulse
  219. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  220. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  221. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  222. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  223. }
  224. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  225. {
  226. // Solve motor
  227. bool motor = false;
  228. if (mMotorConstraintPart.IsActive())
  229. {
  230. switch (mMotorState)
  231. {
  232. case EMotorState::Off:
  233. {
  234. float max_lambda = mMaxFrictionForce * inDeltaTime;
  235. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  236. break;
  237. }
  238. case EMotorState::Velocity:
  239. case EMotorState::Position:
  240. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  241. break;
  242. }
  243. }
  244. // Solve position constraint along 2 axis
  245. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  246. // Solve rotation constraint
  247. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  248. // Solve limits along slider axis
  249. bool limit = false;
  250. if (mPositionLimitsConstraintPart.IsActive())
  251. {
  252. if (mD <= mLimitsMin)
  253. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, 0, FLT_MAX);
  254. else
  255. {
  256. JPH_ASSERT(mD >= mLimitsMax);
  257. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -FLT_MAX, 0);
  258. }
  259. }
  260. return motor || pos || rot || limit;
  261. }
  262. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  263. {
  264. // Motor operates on velocities only, don't call SolvePositionConstraint
  265. // Solve position constraint along 2 axis
  266. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  267. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  268. CalculateR1R2U(rotation1, rotation2);
  269. CalculatePositionConstraintProperties(rotation1, rotation2);
  270. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  271. // Solve rotation constraint
  272. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  273. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  274. // Solve limits along slider axis
  275. bool limit = false;
  276. if (mHasLimits)
  277. {
  278. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  279. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  280. CalculateR1R2U(rotation1, rotation2);
  281. CalculateSlidingAxisAndPosition(rotation1);
  282. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  283. if (mPositionLimitsConstraintPart.IsActive())
  284. {
  285. if (mD <= mLimitsMin)
  286. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  287. else
  288. {
  289. JPH_ASSERT(mD >= mLimitsMax);
  290. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  291. }
  292. }
  293. }
  294. return pos || rot || limit;
  295. }
  296. #ifdef JPH_DEBUG_RENDERER
  297. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  298. {
  299. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  300. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  301. // Transform the local positions into world space
  302. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  303. Vec3 position1 = transform1 * mLocalSpacePosition1;
  304. Vec3 position2 = transform2 * mLocalSpacePosition2;
  305. // Draw constraint
  306. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  307. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  308. inRenderer->DrawLine(position1, position2, Color::sGreen);
  309. // Draw motor
  310. switch (mMotorState)
  311. {
  312. case EMotorState::Position:
  313. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  314. break;
  315. case EMotorState::Velocity:
  316. {
  317. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  318. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  319. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  320. break;
  321. }
  322. case EMotorState::Off:
  323. break;
  324. }
  325. }
  326. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  327. {
  328. if (mHasLimits)
  329. {
  330. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  331. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  332. // Transform the local positions into world space
  333. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  334. Vec3 position1 = transform1 * mLocalSpacePosition1;
  335. Vec3 position2 = transform2 * mLocalSpacePosition2;
  336. // Calculate the limits in world space
  337. Vec3 limits_min = position1 + mLimitsMin * slider_axis;
  338. Vec3 limits_max = position1 + mLimitsMax * slider_axis;
  339. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  340. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  341. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  342. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  343. }
  344. }
  345. #endif // JPH_DEBUG_RENDERER
  346. void SliderConstraint::SaveState(StateRecorder &inStream) const
  347. {
  348. TwoBodyConstraint::SaveState(inStream);
  349. mMotorConstraintPart.SaveState(inStream);
  350. mPositionConstraintPart.SaveState(inStream);
  351. mRotationConstraintPart.SaveState(inStream);
  352. mPositionLimitsConstraintPart.SaveState(inStream);
  353. inStream.Write(mMotorState);
  354. inStream.Write(mTargetVelocity);
  355. inStream.Write(mTargetPosition);
  356. }
  357. void SliderConstraint::RestoreState(StateRecorder &inStream)
  358. {
  359. TwoBodyConstraint::RestoreState(inStream);
  360. mMotorConstraintPart.RestoreState(inStream);
  361. mPositionConstraintPart.RestoreState(inStream);
  362. mRotationConstraintPart.RestoreState(inStream);
  363. mPositionLimitsConstraintPart.RestoreState(inStream);
  364. inStream.Read(mMotorState);
  365. inStream.Read(mTargetVelocity);
  366. inStream.Read(mTargetPosition);
  367. }
  368. Ref<ConstraintSettings> SliderConstraint::GetConstraintSettings() const
  369. {
  370. SliderConstraintSettings *settings = new SliderConstraintSettings;
  371. ToConstraintSettings(*settings);
  372. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  373. settings->mPoint1 = mLocalSpacePosition1;
  374. settings->mSliderAxis1 = mLocalSpaceSliderAxis1;
  375. settings->mNormalAxis1 = mLocalSpaceNormal1;
  376. settings->mPoint2 = mLocalSpacePosition2;
  377. Mat44 inv_initial_rotation = Mat44::sRotation(mInvInitialOrientation);
  378. settings->mSliderAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceSliderAxis1);
  379. settings->mNormalAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceNormal1);
  380. settings->mLimitsMin = mLimitsMin;
  381. settings->mLimitsMax = mLimitsMax;
  382. settings->mMaxFrictionForce = mMaxFrictionForce;
  383. settings->mMotorSettings = mMotorSettings;
  384. return settings;
  385. }
  386. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  387. {
  388. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  389. }
  390. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  391. {
  392. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  393. mat.SetTranslation(mLocalSpacePosition2);
  394. return mat;
  395. }
  396. JPH_NAMESPACE_END