SixDOFConstraint.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/SixDOFConstraint.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. #include <Jolt/Geometry/Ellipse.h>
  8. #include <Jolt/ObjectStream/TypeDeclarations.h>
  9. #include <Jolt/Core/StreamIn.h>
  10. #include <Jolt/Core/StreamOut.h>
  11. #ifdef JPH_DEBUG_RENDERER
  12. #include <Jolt/Renderer/DebugRenderer.h>
  13. #endif // JPH_DEBUG_RENDERER
  14. JPH_NAMESPACE_BEGIN
  15. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SixDOFConstraintSettings)
  16. {
  17. JPH_ADD_BASE_CLASS(SixDOFConstraintSettings, TwoBodyConstraintSettings)
  18. JPH_ADD_ENUM_ATTRIBUTE(SixDOFConstraintSettings, mSpace)
  19. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mPosition1)
  20. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisX1)
  21. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisY1)
  22. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mPosition2)
  23. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisX2)
  24. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisY2)
  25. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mMaxFriction)
  26. JPH_ADD_ENUM_ATTRIBUTE(SixDOFConstraintSettings, mSwingType)
  27. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitMin)
  28. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitMax)
  29. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitsSpringSettings)
  30. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mMotorSettings)
  31. }
  32. void SixDOFConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  33. {
  34. ConstraintSettings::SaveBinaryState(inStream);
  35. inStream.Write(mSpace);
  36. inStream.Write(mPosition1);
  37. inStream.Write(mAxisX1);
  38. inStream.Write(mAxisY1);
  39. inStream.Write(mPosition2);
  40. inStream.Write(mAxisX2);
  41. inStream.Write(mAxisY2);
  42. inStream.Write(mMaxFriction);
  43. inStream.Write(mSwingType);
  44. inStream.Write(mLimitMin);
  45. inStream.Write(mLimitMax);
  46. for (const SpringSettings &s : mLimitsSpringSettings)
  47. s.SaveBinaryState(inStream);
  48. for (const MotorSettings &m : mMotorSettings)
  49. m.SaveBinaryState(inStream);
  50. }
  51. void SixDOFConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  52. {
  53. ConstraintSettings::RestoreBinaryState(inStream);
  54. inStream.Read(mSpace);
  55. inStream.Read(mPosition1);
  56. inStream.Read(mAxisX1);
  57. inStream.Read(mAxisY1);
  58. inStream.Read(mPosition2);
  59. inStream.Read(mAxisX2);
  60. inStream.Read(mAxisY2);
  61. inStream.Read(mMaxFriction);
  62. inStream.Read(mSwingType);
  63. inStream.Read(mLimitMin);
  64. inStream.Read(mLimitMax);
  65. for (SpringSettings &s : mLimitsSpringSettings)
  66. s.RestoreBinaryState(inStream);
  67. for (MotorSettings &m : mMotorSettings)
  68. m.RestoreBinaryState(inStream);
  69. }
  70. TwoBodyConstraint *SixDOFConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  71. {
  72. return new SixDOFConstraint(inBody1, inBody2, *this);
  73. }
  74. void SixDOFConstraint::UpdateTranslationLimits()
  75. {
  76. // Set to zero if the limits are inversed
  77. for (int i = EAxis::TranslationX; i <= EAxis::TranslationZ; ++i)
  78. if (mLimitMin[i] > mLimitMax[i])
  79. mLimitMin[i] = mLimitMax[i] = 0.0f;
  80. }
  81. void SixDOFConstraint::UpdateRotationLimits()
  82. {
  83. if (mSwingTwistConstraintPart.GetSwingType() == ESwingType::Cone)
  84. {
  85. // Cone swing upper limit needs to be positive
  86. mLimitMax[EAxis::RotationY] = max(0.0f, mLimitMax[EAxis::RotationY]);
  87. mLimitMax[EAxis::RotationZ] = max(0.0f, mLimitMax[EAxis::RotationZ]);
  88. // Cone swing limits only support symmetric ranges
  89. mLimitMin[EAxis::RotationY] = -mLimitMax[EAxis::RotationY];
  90. mLimitMin[EAxis::RotationZ] = -mLimitMax[EAxis::RotationZ];
  91. }
  92. for (int i = EAxis::RotationX; i <= EAxis::RotationZ; ++i)
  93. {
  94. // Clamp to [-PI, PI] range
  95. mLimitMin[i] = Clamp(mLimitMin[i], -JPH_PI, JPH_PI);
  96. mLimitMax[i] = Clamp(mLimitMax[i], -JPH_PI, JPH_PI);
  97. // Set to zero if the limits are inversed
  98. if (mLimitMin[i] > mLimitMax[i])
  99. mLimitMin[i] = mLimitMax[i] = 0.0f;
  100. }
  101. // Pass limits on to constraint part
  102. mSwingTwistConstraintPart.SetLimits(mLimitMin[EAxis::RotationX], mLimitMax[EAxis::RotationX], mLimitMin[EAxis::RotationY], mLimitMax[EAxis::RotationY], mLimitMin[EAxis::RotationZ], mLimitMax[EAxis::RotationZ]);
  103. }
  104. void SixDOFConstraint::UpdateFixedFreeAxis()
  105. {
  106. // Cache which axis are fixed and which ones are free
  107. mFreeAxis = 0;
  108. mFixedAxis = 0;
  109. for (int a = 0; a < EAxis::Num; ++a)
  110. {
  111. float limit = a >= EAxis::RotationX? JPH_PI : FLT_MAX;
  112. if (mLimitMin[a] >= mLimitMax[a])
  113. mFixedAxis |= 1 << a;
  114. else if (mLimitMin[a] <= -limit && mLimitMax[a] >= limit)
  115. mFreeAxis |= 1 << a;
  116. }
  117. }
  118. SixDOFConstraint::SixDOFConstraint(Body &inBody1, Body &inBody2, const SixDOFConstraintSettings &inSettings) :
  119. TwoBodyConstraint(inBody1, inBody2, inSettings)
  120. {
  121. // Override swing type
  122. mSwingTwistConstraintPart.SetSwingType(inSettings.mSwingType);
  123. // Calculate rotation needed to go from constraint space to body1 local space
  124. Vec3 axis_z1 = inSettings.mAxisX1.Cross(inSettings.mAxisY1);
  125. Mat44 c_to_b1(Vec4(inSettings.mAxisX1, 0), Vec4(inSettings.mAxisY1, 0), Vec4(axis_z1, 0), Vec4(0, 0, 0, 1));
  126. mConstraintToBody1 = c_to_b1.GetQuaternion();
  127. // Calculate rotation needed to go from constraint space to body2 local space
  128. Vec3 axis_z2 = inSettings.mAxisX2.Cross(inSettings.mAxisY2);
  129. Mat44 c_to_b2(Vec4(inSettings.mAxisX2, 0), Vec4(inSettings.mAxisY2, 0), Vec4(axis_z2, 0), Vec4(0, 0, 0, 1));
  130. mConstraintToBody2 = c_to_b2.GetQuaternion();
  131. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  132. {
  133. // If all properties were specified in world space, take them to local space now
  134. mLocalSpacePosition1 = Vec3(inBody1.GetInverseCenterOfMassTransform() * inSettings.mPosition1);
  135. mConstraintToBody1 = inBody1.GetRotation().Conjugated() * mConstraintToBody1;
  136. mLocalSpacePosition2 = Vec3(inBody2.GetInverseCenterOfMassTransform() * inSettings.mPosition2);
  137. mConstraintToBody2 = inBody2.GetRotation().Conjugated() * mConstraintToBody2;
  138. }
  139. else
  140. {
  141. mLocalSpacePosition1 = Vec3(inSettings.mPosition1);
  142. mLocalSpacePosition2 = Vec3(inSettings.mPosition2);
  143. }
  144. // Copy translation and rotation limits
  145. memcpy(mLimitMin, inSettings.mLimitMin, sizeof(mLimitMin));
  146. memcpy(mLimitMax, inSettings.mLimitMax, sizeof(mLimitMax));
  147. memcpy(mLimitsSpringSettings, inSettings.mLimitsSpringSettings, sizeof(mLimitsSpringSettings));
  148. UpdateTranslationLimits();
  149. UpdateRotationLimits();
  150. UpdateFixedFreeAxis();
  151. CacheHasSpringLimits();
  152. // Store friction settings
  153. memcpy(mMaxFriction, inSettings.mMaxFriction, sizeof(mMaxFriction));
  154. // Store motor settings
  155. for (int i = 0; i < EAxis::Num; ++i)
  156. mMotorSettings[i] = inSettings.mMotorSettings[i];
  157. // Cache if motors are active (motors are off initially, but we may have friction)
  158. CacheTranslationMotorActive();
  159. CacheRotationMotorActive();
  160. }
  161. void SixDOFConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
  162. {
  163. if (mBody1->GetID() == inBodyID)
  164. mLocalSpacePosition1 -= inDeltaCOM;
  165. else if (mBody2->GetID() == inBodyID)
  166. mLocalSpacePosition2 -= inDeltaCOM;
  167. }
  168. void SixDOFConstraint::SetTranslationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax)
  169. {
  170. mLimitMin[EAxis::TranslationX] = inLimitMin.GetX();
  171. mLimitMin[EAxis::TranslationY] = inLimitMin.GetY();
  172. mLimitMin[EAxis::TranslationZ] = inLimitMin.GetZ();
  173. mLimitMax[EAxis::TranslationX] = inLimitMax.GetX();
  174. mLimitMax[EAxis::TranslationY] = inLimitMax.GetY();
  175. mLimitMax[EAxis::TranslationZ] = inLimitMax.GetZ();
  176. UpdateTranslationLimits();
  177. UpdateFixedFreeAxis();
  178. }
  179. void SixDOFConstraint::SetRotationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax)
  180. {
  181. mLimitMin[EAxis::RotationX] = inLimitMin.GetX();
  182. mLimitMin[EAxis::RotationY] = inLimitMin.GetY();
  183. mLimitMin[EAxis::RotationZ] = inLimitMin.GetZ();
  184. mLimitMax[EAxis::RotationX] = inLimitMax.GetX();
  185. mLimitMax[EAxis::RotationY] = inLimitMax.GetY();
  186. mLimitMax[EAxis::RotationZ] = inLimitMax.GetZ();
  187. UpdateRotationLimits();
  188. UpdateFixedFreeAxis();
  189. }
  190. void SixDOFConstraint::SetMaxFriction(EAxis inAxis, float inFriction)
  191. {
  192. mMaxFriction[inAxis] = inFriction;
  193. if (inAxis >= EAxis::TranslationX && inAxis <= EAxis::TranslationZ)
  194. CacheTranslationMotorActive();
  195. else
  196. CacheRotationMotorActive();
  197. }
  198. void SixDOFConstraint::GetPositionConstraintProperties(Vec3 &outR1PlusU, Vec3 &outR2, Vec3 &outU) const
  199. {
  200. RVec3 p1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
  201. RVec3 p2 = mBody2->GetCenterOfMassTransform() * mLocalSpacePosition2;
  202. outR1PlusU = Vec3(p2 - mBody1->GetCenterOfMassPosition()); // r1 + u = (p1 - x1) + (p2 - p1) = p2 - x1
  203. outR2 = Vec3(p2 - mBody2->GetCenterOfMassPosition());
  204. outU = Vec3(p2 - p1);
  205. }
  206. Quat SixDOFConstraint::GetRotationInConstraintSpace() const
  207. {
  208. // Let b1, b2 be the center of mass transform of body1 and body2 (For body1 this is mBody1->GetCenterOfMassTransform())
  209. // Let c1, c2 be the transform that takes a vector from constraint space to local space of body1 and body2 (For body1 this is Mat44::sRotationTranslation(mConstraintToBody1, mLocalSpacePosition1))
  210. // Let q be the rotation of the constraint in constraint space
  211. // b2 takes a vector from the local space of body2 to world space
  212. // To express this in terms of b1: b2 = b1 * c1 * q * c2^-1
  213. // c2^-1 goes from local body 2 space to constraint space
  214. // q rotates the constraint
  215. // c1 goes from constraint space to body 1 local space
  216. // b1 goes from body 1 local space to world space
  217. // So when the body rotations are given, q = (b1 * c1)^-1 * b2 c2
  218. // Or: q = (q1 * c1)^-1 * (q2 * c2) if we're only interested in rotations
  219. return (mBody1->GetRotation() * mConstraintToBody1).Conjugated() * mBody2->GetRotation() * mConstraintToBody2;
  220. }
  221. void SixDOFConstraint::CacheTranslationMotorActive()
  222. {
  223. mTranslationMotorActive = mMotorState[EAxis::TranslationX] != EMotorState::Off
  224. || mMotorState[EAxis::TranslationY] != EMotorState::Off
  225. || mMotorState[EAxis::TranslationZ] != EMotorState::Off
  226. || HasFriction(EAxis::TranslationX)
  227. || HasFriction(EAxis::TranslationY)
  228. || HasFriction(EAxis::TranslationZ);
  229. }
  230. void SixDOFConstraint::CacheRotationMotorActive()
  231. {
  232. mRotationMotorActive = mMotorState[EAxis::RotationX] != EMotorState::Off
  233. || mMotorState[EAxis::RotationY] != EMotorState::Off
  234. || mMotorState[EAxis::RotationZ] != EMotorState::Off
  235. || HasFriction(EAxis::RotationX)
  236. || HasFriction(EAxis::RotationY)
  237. || HasFriction(EAxis::RotationZ);
  238. }
  239. void SixDOFConstraint::CacheRotationPositionMotorActive()
  240. {
  241. mRotationPositionMotorActive = 0;
  242. for (int i = 0; i < 3; ++i)
  243. if (mMotorState[EAxis::RotationX + i] == EMotorState::Position)
  244. mRotationPositionMotorActive |= 1 << i;
  245. }
  246. void SixDOFConstraint::CacheHasSpringLimits()
  247. {
  248. mHasSpringLimits = mLimitsSpringSettings[EAxis::TranslationX].mFrequency > 0.0f
  249. || mLimitsSpringSettings[EAxis::TranslationY].mFrequency > 0.0f
  250. || mLimitsSpringSettings[EAxis::TranslationZ].mFrequency > 0.0f;
  251. }
  252. void SixDOFConstraint::SetMotorState(EAxis inAxis, EMotorState inState)
  253. {
  254. JPH_ASSERT(inState == EMotorState::Off || mMotorSettings[inAxis].IsValid());
  255. if (mMotorState[inAxis] != inState)
  256. {
  257. mMotorState[inAxis] = inState;
  258. // Ensure that warm starting next frame doesn't apply any impulses (motor parts are repurposed for different modes)
  259. if (inAxis >= EAxis::TranslationX && inAxis <= EAxis::TranslationZ)
  260. {
  261. mMotorTranslationConstraintPart[inAxis - EAxis::TranslationX].Deactivate();
  262. CacheTranslationMotorActive();
  263. }
  264. else
  265. {
  266. JPH_ASSERT(inAxis >= EAxis::RotationX && inAxis <= EAxis::RotationZ);
  267. mMotorRotationConstraintPart[inAxis - EAxis::RotationX].Deactivate();
  268. CacheRotationMotorActive();
  269. CacheRotationPositionMotorActive();
  270. }
  271. }
  272. }
  273. void SixDOFConstraint::SetTargetOrientationCS(QuatArg inOrientation)
  274. {
  275. Quat q_swing, q_twist;
  276. inOrientation.GetSwingTwist(q_swing, q_twist);
  277. uint clamped_axis;
  278. mSwingTwistConstraintPart.ClampSwingTwist(q_swing, q_twist, clamped_axis);
  279. if (clamped_axis != 0)
  280. mTargetOrientation = q_swing * q_twist;
  281. else
  282. mTargetOrientation = inOrientation;
  283. }
  284. void SixDOFConstraint::SetupVelocityConstraint(float inDeltaTime)
  285. {
  286. // Get body rotations
  287. Quat rotation1 = mBody1->GetRotation();
  288. Quat rotation2 = mBody2->GetRotation();
  289. // Quaternion that rotates from body1's constraint space to world space
  290. Quat constraint_body1_to_world = rotation1 * mConstraintToBody1;
  291. // Store world space axis of constraint space
  292. Mat44 translation_axis_mat = Mat44::sRotation(constraint_body1_to_world);
  293. for (int i = 0; i < 3; ++i)
  294. mTranslationAxis[i] = translation_axis_mat.GetColumn3(i);
  295. if (IsTranslationFullyConstrained())
  296. {
  297. // All translation locked: Setup point constraint
  298. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(rotation1), mLocalSpacePosition1, *mBody2, Mat44::sRotation(rotation2), mLocalSpacePosition2);
  299. }
  300. else if (IsTranslationConstrained() || mTranslationMotorActive)
  301. {
  302. // Update world space positions (the bodies may have moved)
  303. Vec3 r1_plus_u, r2, u;
  304. GetPositionConstraintProperties(r1_plus_u, r2, u);
  305. // Setup axis constraint parts
  306. for (int i = 0; i < 3; ++i)
  307. {
  308. EAxis axis = EAxis(EAxis::TranslationX + i);
  309. Vec3 translation_axis = mTranslationAxis[i];
  310. // Calculate displacement along this axis
  311. float d = translation_axis.Dot(u);
  312. mDisplacement[i] = d; // Store for SolveVelocityConstraint
  313. // Setup limit constraint
  314. bool constraint_active = false;
  315. float constraint_value = 0.0f;
  316. if (IsFixedAxis(axis))
  317. {
  318. // When constraint is fixed it is always active
  319. constraint_value = d - mLimitMin[i];
  320. constraint_active = true;
  321. }
  322. else if (!IsFreeAxis(axis))
  323. {
  324. // When constraint is limited, it is only active when outside of the allowed range
  325. if (d <= mLimitMin[i])
  326. {
  327. constraint_value = d - mLimitMin[i];
  328. constraint_active = true;
  329. }
  330. else if (d >= mLimitMax[i])
  331. {
  332. constraint_value = d - mLimitMax[i];
  333. constraint_active = true;
  334. }
  335. }
  336. if (constraint_active)
  337. mTranslationConstraintPart[i].CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis, 0.0f, constraint_value, mLimitsSpringSettings[i]);
  338. else
  339. mTranslationConstraintPart[i].Deactivate();
  340. // Setup motor constraint
  341. switch (mMotorState[i])
  342. {
  343. case EMotorState::Off:
  344. if (HasFriction(axis))
  345. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(*mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  346. else
  347. mMotorTranslationConstraintPart[i].Deactivate();
  348. break;
  349. case EMotorState::Velocity:
  350. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(*mBody1, r1_plus_u, *mBody2, r2, translation_axis, -mTargetVelocity[i]);
  351. break;
  352. case EMotorState::Position:
  353. {
  354. const SpringSettings &spring_settings = mMotorSettings[i].mSpringSettings;
  355. if (spring_settings.HasStiffness())
  356. mMotorTranslationConstraintPart[i].CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis, 0.0f, translation_axis.Dot(u) - mTargetPosition[i], spring_settings);
  357. else
  358. mMotorTranslationConstraintPart[i].Deactivate();
  359. break;
  360. }
  361. }
  362. }
  363. }
  364. // Setup rotation constraints
  365. if (IsRotationFullyConstrained())
  366. {
  367. // All rotation locked: Setup rotation contraint
  368. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  369. }
  370. else if (IsRotationConstrained() || mRotationMotorActive)
  371. {
  372. // GetRotationInConstraintSpace without redoing the calculation of constraint_body1_to_world
  373. Quat constraint_body2_to_world = mBody2->GetRotation() * mConstraintToBody2;
  374. Quat q = constraint_body1_to_world.Conjugated() * constraint_body2_to_world;
  375. // Use swing twist constraint part
  376. if (IsRotationConstrained())
  377. mSwingTwistConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, q, constraint_body1_to_world);
  378. else
  379. mSwingTwistConstraintPart.Deactivate();
  380. if (mRotationMotorActive)
  381. {
  382. // Calculate rotation motor axis
  383. Mat44 ws_axis = Mat44::sRotation(constraint_body2_to_world);
  384. for (int i = 0; i < 3; ++i)
  385. mRotationAxis[i] = ws_axis.GetColumn3(i);
  386. // Get target orientation along the shortest path from q
  387. Quat target_orientation = q.Dot(mTargetOrientation) > 0.0f? mTargetOrientation : -mTargetOrientation;
  388. // The definition of the constraint rotation q:
  389. // R2 * ConstraintToBody2 = R1 * ConstraintToBody1 * q (1)
  390. //
  391. // R2' is the rotation of body 2 when reaching the target_orientation:
  392. // R2' * ConstraintToBody2 = R1 * ConstraintToBody1 * target_orientation (2)
  393. //
  394. // The difference in body 2 space:
  395. // R2' = R2 * diff_body2 (3)
  396. //
  397. // We want to specify the difference in the constraint space of body 2:
  398. // diff_body2 = ConstraintToBody2 * diff * ConstraintToBody2^* (4)
  399. //
  400. // Extracting R2' from 2: R2' = R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* (5)
  401. // Combining 3 & 4: R2' = R2 * ConstraintToBody2 * diff * ConstraintToBody2^* (6)
  402. // Combining 1 & 6: R2' = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^* (7)
  403. // Combining 5 & 7: R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^*
  404. // <=> target_orientation = q * diff
  405. // <=> diff = q^* * target_orientation
  406. Quat diff = q.Conjugated() * target_orientation;
  407. // Project diff so that only rotation around axis that have a position motor are remaining
  408. Quat projected_diff;
  409. switch (mRotationPositionMotorActive)
  410. {
  411. case 0b001:
  412. // Keep only rotation around X
  413. projected_diff = diff.GetTwist(Vec3::sAxisX());
  414. break;
  415. case 0b010:
  416. // Keep only rotation around Y
  417. projected_diff = diff.GetTwist(Vec3::sAxisY());
  418. break;
  419. case 0b100:
  420. // Keep only rotation around Z
  421. projected_diff = diff.GetTwist(Vec3::sAxisZ());
  422. break;
  423. case 0b011:
  424. // Remove rotation around Z
  425. // q = swing_xy * twist_z <=> swing_xy = q * twist_z^*
  426. projected_diff = diff * diff.GetTwist(Vec3::sAxisZ()).Conjugated();
  427. break;
  428. case 0b101:
  429. // Remove rotation around Y
  430. // q = swing_xz * twist_y <=> swing_xz = q * twist_y^*
  431. projected_diff = diff * diff.GetTwist(Vec3::sAxisY()).Conjugated();
  432. break;
  433. case 0b110:
  434. // Remove rotation around X
  435. // q = swing_yz * twist_x <=> swing_yz = q * twist_x^*
  436. projected_diff = diff * diff.GetTwist(Vec3::sAxisX()).Conjugated();
  437. break;
  438. case 0b111:
  439. default: // All motors off is handled here but the results are unused
  440. // Keep entire rotation
  441. projected_diff = diff;
  442. break;
  443. }
  444. // Approximate error angles
  445. // The imaginary part of a quaternion is rotation_axis * sin(angle / 2)
  446. // If angle is small, sin(x) = x so angle[i] ~ 2.0f * rotation_axis[i]
  447. // We'll be making small time steps, so if the angle is not small at least the sign will be correct and we'll move in the right direction
  448. Vec3 rotation_error = -2.0f * projected_diff.GetXYZ();
  449. // Setup motors
  450. for (int i = 0; i < 3; ++i)
  451. {
  452. EAxis axis = EAxis(EAxis::RotationX + i);
  453. Vec3 rotation_axis = mRotationAxis[i];
  454. switch (mMotorState[axis])
  455. {
  456. case EMotorState::Off:
  457. if (HasFriction(axis))
  458. mMotorRotationConstraintPart[i].CalculateConstraintProperties(*mBody1, *mBody2, rotation_axis);
  459. else
  460. mMotorRotationConstraintPart[i].Deactivate();
  461. break;
  462. case EMotorState::Velocity:
  463. mMotorRotationConstraintPart[i].CalculateConstraintProperties(*mBody1, *mBody2, rotation_axis, -mTargetAngularVelocity[i]);
  464. break;
  465. case EMotorState::Position:
  466. {
  467. const SpringSettings &spring_settings = mMotorSettings[axis].mSpringSettings;
  468. if (spring_settings.HasStiffness())
  469. mMotorRotationConstraintPart[i].CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, rotation_axis, 0.0f, rotation_error[i], spring_settings);
  470. else
  471. mMotorRotationConstraintPart[i].Deactivate();
  472. break;
  473. }
  474. }
  475. }
  476. }
  477. }
  478. }
  479. void SixDOFConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  480. {
  481. // Warm start translation motors
  482. if (mTranslationMotorActive)
  483. for (int i = 0; i < 3; ++i)
  484. if (mMotorTranslationConstraintPart[i].IsActive())
  485. mMotorTranslationConstraintPart[i].WarmStart(*mBody1, *mBody2, mTranslationAxis[i], inWarmStartImpulseRatio);
  486. // Warm start rotation motors
  487. if (mRotationMotorActive)
  488. for (AngleConstraintPart &c : mMotorRotationConstraintPart)
  489. if (c.IsActive())
  490. c.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  491. // Warm start rotation constraints
  492. if (IsRotationFullyConstrained())
  493. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  494. else if (IsRotationConstrained())
  495. mSwingTwistConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  496. // Warm start translation constraints
  497. if (IsTranslationFullyConstrained())
  498. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  499. else if (IsTranslationConstrained())
  500. for (int i = 0; i < 3; ++i)
  501. if (mTranslationConstraintPart[i].IsActive())
  502. mTranslationConstraintPart[i].WarmStart(*mBody1, *mBody2, mTranslationAxis[i], inWarmStartImpulseRatio);
  503. }
  504. bool SixDOFConstraint::SolveVelocityConstraint(float inDeltaTime)
  505. {
  506. bool impulse = false;
  507. // Solve translation motor
  508. if (mTranslationMotorActive)
  509. for (int i = 0; i < 3; ++i)
  510. if (mMotorTranslationConstraintPart[i].IsActive())
  511. switch (mMotorState[i])
  512. {
  513. case EMotorState::Off:
  514. {
  515. // Apply friction only
  516. float max_lambda = mMaxFriction[i] * inDeltaTime;
  517. impulse |= mMotorTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], -max_lambda, max_lambda);
  518. break;
  519. }
  520. case EMotorState::Velocity:
  521. case EMotorState::Position:
  522. // Drive motor
  523. impulse |= mMotorTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], inDeltaTime * mMotorSettings[i].mMinForceLimit, inDeltaTime * mMotorSettings[i].mMaxForceLimit);
  524. break;
  525. }
  526. // Solve rotation motor
  527. if (mRotationMotorActive)
  528. for (int i = 0; i < 3; ++i)
  529. {
  530. EAxis axis = EAxis(EAxis::RotationX + i);
  531. if (mMotorRotationConstraintPart[i].IsActive())
  532. switch (mMotorState[axis])
  533. {
  534. case EMotorState::Off:
  535. {
  536. // Apply friction only
  537. float max_lambda = mMaxFriction[axis] * inDeltaTime;
  538. impulse |= mMotorRotationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mRotationAxis[i], -max_lambda, max_lambda);
  539. break;
  540. }
  541. case EMotorState::Velocity:
  542. case EMotorState::Position:
  543. // Drive motor
  544. impulse |= mMotorRotationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mRotationAxis[i], inDeltaTime * mMotorSettings[axis].mMinTorqueLimit, inDeltaTime * mMotorSettings[axis].mMaxTorqueLimit);
  545. break;
  546. }
  547. }
  548. // Solve rotation constraint
  549. if (IsRotationFullyConstrained())
  550. impulse |= mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  551. else if (IsRotationConstrained())
  552. impulse |= mSwingTwistConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  553. // Solve position constraint
  554. if (IsTranslationFullyConstrained())
  555. impulse |= mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  556. else if (IsTranslationConstrained())
  557. for (int i = 0; i < 3; ++i)
  558. if (mTranslationConstraintPart[i].IsActive())
  559. {
  560. // If the axis is not fixed it must be limited (or else the constraint would not be active)
  561. // Calculate the min and max constraint force based on on which side we're limited
  562. float limit_min = -FLT_MAX, limit_max = FLT_MAX;
  563. if (!IsFixedAxis(EAxis(EAxis::TranslationX + i)))
  564. {
  565. JPH_ASSERT(!IsFreeAxis(EAxis(EAxis::TranslationX + i)));
  566. if (mDisplacement[i] <= mLimitMin[i])
  567. limit_min = 0;
  568. else if (mDisplacement[i] >= mLimitMax[i])
  569. limit_max = 0;
  570. }
  571. impulse |= mTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], limit_min, limit_max);
  572. }
  573. return impulse;
  574. }
  575. bool SixDOFConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  576. {
  577. bool impulse = false;
  578. if (IsRotationFullyConstrained())
  579. {
  580. // Rotation locked: Solve rotation constraint
  581. // Inverse of initial rotation from body 1 to body 2 in body 1 space
  582. // Definition of initial orientation r0: q2 = q1 r0
  583. // Initial rotation (see: GetRotationInConstraintSpace): q2 = q1 c1 c2^-1
  584. // So: r0^-1 = (c1 c2^-1)^-1 = c2 * c1^-1
  585. Quat constraint_to_body1 = mConstraintToBody1 * Quat::sEulerAngles(GetRotationLimitsMin());
  586. Quat inv_initial_orientation = mConstraintToBody2 * constraint_to_body1.Conjugated();
  587. // Solve rotation violations
  588. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  589. impulse |= mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inv_initial_orientation, inBaumgarte);
  590. }
  591. else if (IsRotationConstrained())
  592. {
  593. // Rotation partially constraint
  594. // Solve rotation violations
  595. Quat q = GetRotationInConstraintSpace();
  596. impulse |= mSwingTwistConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, q, mConstraintToBody1, mConstraintToBody2, inBaumgarte);
  597. }
  598. // Solve position violations
  599. if (IsTranslationFullyConstrained())
  600. {
  601. // Translation locked: Solve point constraint
  602. Vec3 local_space_position1 = mLocalSpacePosition1 + mConstraintToBody1 * GetTranslationLimitsMin();
  603. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), local_space_position1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  604. impulse |= mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  605. }
  606. else if (IsTranslationConstrained())
  607. {
  608. // Translation partially locked: Solve per axis
  609. for (int i = 0; i < 3; ++i)
  610. if (mLimitsSpringSettings[i].mFrequency <= 0.0f) // If not soft limit
  611. {
  612. // Update world space positions (the bodies may have moved)
  613. Vec3 r1_plus_u, r2, u;
  614. GetPositionConstraintProperties(r1_plus_u, r2, u);
  615. // Quaternion that rotates from body1's constraint space to world space
  616. Quat constraint_body1_to_world = mBody1->GetRotation() * mConstraintToBody1;
  617. // Calculate axis
  618. Vec3 translation_axis;
  619. switch (i)
  620. {
  621. case 0: translation_axis = constraint_body1_to_world.RotateAxisX(); break;
  622. case 1: translation_axis = constraint_body1_to_world.RotateAxisY(); break;
  623. default: JPH_ASSERT(i == 2); translation_axis = constraint_body1_to_world.RotateAxisZ(); break;
  624. }
  625. // Determine position error
  626. float error = 0.0f;
  627. EAxis axis(EAxis(EAxis::TranslationX + i));
  628. if (IsFixedAxis(axis))
  629. error = u.Dot(translation_axis) - mLimitMin[axis];
  630. else if (!IsFreeAxis(axis))
  631. {
  632. float displacement = u.Dot(translation_axis);
  633. if (displacement <= mLimitMin[axis])
  634. error = displacement - mLimitMin[axis];
  635. else if (displacement >= mLimitMax[axis])
  636. error = displacement - mLimitMax[axis];
  637. }
  638. if (error != 0.0f)
  639. {
  640. // Setup axis constraint part and solve it
  641. mTranslationConstraintPart[i].CalculateConstraintProperties(*mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  642. impulse |= mTranslationConstraintPart[i].SolvePositionConstraint(*mBody1, *mBody2, translation_axis, error, inBaumgarte);
  643. }
  644. }
  645. }
  646. return impulse;
  647. }
  648. #ifdef JPH_DEBUG_RENDERER
  649. void SixDOFConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  650. {
  651. // Get constraint properties in world space
  652. RVec3 position1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
  653. Quat rotation1 = mBody1->GetRotation() * mConstraintToBody1;
  654. Quat rotation2 = mBody2->GetRotation() * mConstraintToBody2;
  655. // Draw constraint orientation
  656. inRenderer->DrawCoordinateSystem(RMat44::sRotationTranslation(rotation1, position1), mDrawConstraintSize);
  657. if ((IsRotationConstrained() || mRotationPositionMotorActive != 0) && !IsRotationFullyConstrained())
  658. {
  659. // Draw current swing and twist
  660. Quat q = GetRotationInConstraintSpace();
  661. Quat q_swing, q_twist;
  662. q.GetSwingTwist(q_swing, q_twist);
  663. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_twist).RotateAxisY(), Color::sWhite);
  664. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_swing).RotateAxisX(), Color::sWhite);
  665. }
  666. // Draw target rotation
  667. Quat m_swing, m_twist;
  668. mTargetOrientation.GetSwingTwist(m_swing, m_twist);
  669. if (mMotorState[EAxis::RotationX] == EMotorState::Position)
  670. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * m_twist).RotateAxisY(), Color::sYellow);
  671. if (mMotorState[EAxis::RotationY] == EMotorState::Position || mMotorState[EAxis::RotationZ] == EMotorState::Position)
  672. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * m_swing).RotateAxisX(), Color::sYellow);
  673. // Draw target angular velocity
  674. Vec3 target_angular_velocity = Vec3::sZero();
  675. for (int i = 0; i < 3; ++i)
  676. if (mMotorState[EAxis::RotationX + i] == EMotorState::Velocity)
  677. target_angular_velocity.SetComponent(i, mTargetAngularVelocity[i]);
  678. if (target_angular_velocity != Vec3::sZero())
  679. inRenderer->DrawArrow(position1, position1 + rotation2 * target_angular_velocity, Color::sRed, 0.1f);
  680. }
  681. void SixDOFConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  682. {
  683. // Get matrix that transforms from constraint space to world space
  684. RMat44 constraint_body1_to_world = RMat44::sRotationTranslation(mBody1->GetRotation() * mConstraintToBody1, mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1);
  685. // Draw limits
  686. if (mSwingTwistConstraintPart.GetSwingType() == ESwingType::Pyramid)
  687. inRenderer->DrawSwingPyramidLimits(constraint_body1_to_world, mLimitMin[EAxis::RotationY], mLimitMax[EAxis::RotationY], mLimitMin[EAxis::RotationZ], mLimitMax[EAxis::RotationZ], mDrawConstraintSize, Color::sGreen, DebugRenderer::ECastShadow::Off);
  688. else
  689. inRenderer->DrawSwingConeLimits(constraint_body1_to_world, mLimitMax[EAxis::RotationY], mLimitMax[EAxis::RotationZ], mDrawConstraintSize, Color::sGreen, DebugRenderer::ECastShadow::Off);
  690. inRenderer->DrawPie(constraint_body1_to_world.GetTranslation(), mDrawConstraintSize, constraint_body1_to_world.GetAxisX(), constraint_body1_to_world.GetAxisY(), mLimitMin[EAxis::RotationX], mLimitMax[EAxis::RotationX], Color::sPurple, DebugRenderer::ECastShadow::Off);
  691. }
  692. #endif // JPH_DEBUG_RENDERER
  693. void SixDOFConstraint::SaveState(StateRecorder &inStream) const
  694. {
  695. TwoBodyConstraint::SaveState(inStream);
  696. for (const AxisConstraintPart &c : mTranslationConstraintPart)
  697. c.SaveState(inStream);
  698. mPointConstraintPart.SaveState(inStream);
  699. mSwingTwistConstraintPart.SaveState(inStream);
  700. mRotationConstraintPart.SaveState(inStream);
  701. for (const AxisConstraintPart &c : mMotorTranslationConstraintPart)
  702. c.SaveState(inStream);
  703. for (const AngleConstraintPart &c : mMotorRotationConstraintPart)
  704. c.SaveState(inStream);
  705. inStream.Write(mMotorState);
  706. inStream.Write(mTargetVelocity);
  707. inStream.Write(mTargetAngularVelocity);
  708. inStream.Write(mTargetPosition);
  709. inStream.Write(mTargetOrientation);
  710. }
  711. void SixDOFConstraint::RestoreState(StateRecorder &inStream)
  712. {
  713. TwoBodyConstraint::RestoreState(inStream);
  714. for (AxisConstraintPart &c : mTranslationConstraintPart)
  715. c.RestoreState(inStream);
  716. mPointConstraintPart.RestoreState(inStream);
  717. mSwingTwistConstraintPart.RestoreState(inStream);
  718. mRotationConstraintPart.RestoreState(inStream);
  719. for (AxisConstraintPart &c : mMotorTranslationConstraintPart)
  720. c.RestoreState(inStream);
  721. for (AngleConstraintPart &c : mMotorRotationConstraintPart)
  722. c.RestoreState(inStream);
  723. inStream.Read(mMotorState);
  724. inStream.Read(mTargetVelocity);
  725. inStream.Read(mTargetAngularVelocity);
  726. inStream.Read(mTargetPosition);
  727. inStream.Read(mTargetOrientation);
  728. CacheTranslationMotorActive();
  729. CacheRotationMotorActive();
  730. CacheRotationPositionMotorActive();
  731. }
  732. Ref<ConstraintSettings> SixDOFConstraint::GetConstraintSettings() const
  733. {
  734. SixDOFConstraintSettings *settings = new SixDOFConstraintSettings;
  735. ToConstraintSettings(*settings);
  736. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  737. settings->mPosition1 = RVec3(mLocalSpacePosition1);
  738. settings->mAxisX1 = mConstraintToBody1.RotateAxisX();
  739. settings->mAxisY1 = mConstraintToBody1.RotateAxisY();
  740. settings->mPosition2 = RVec3(mLocalSpacePosition2);
  741. settings->mAxisX2 = mConstraintToBody2.RotateAxisX();
  742. settings->mAxisY2 = mConstraintToBody2.RotateAxisY();
  743. settings->mSwingType = mSwingTwistConstraintPart.GetSwingType();
  744. memcpy(settings->mLimitMin, mLimitMin, sizeof(mLimitMin));
  745. memcpy(settings->mLimitMax, mLimitMax, sizeof(mLimitMax));
  746. memcpy(settings->mMaxFriction, mMaxFriction, sizeof(mMaxFriction));
  747. for (int i = 0; i < EAxis::Num; ++i)
  748. settings->mMotorSettings[i] = mMotorSettings[i];
  749. return settings;
  750. }
  751. JPH_NAMESPACE_END