2
0

DVec3.inl 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #pragma once
  5. #include <Jolt/Core/HashCombine.h>
  6. // Create a std::hash for DVec3
  7. JPH_MAKE_HASHABLE(JPH::DVec3, t.GetX(), t.GetY(), t.GetZ())
  8. JPH_NAMESPACE_BEGIN
  9. DVec3::DVec3(Vec3Arg inRHS)
  10. {
  11. #if defined(JPH_USE_AVX)
  12. mValue = _mm256_cvtps_pd(inRHS.mValue);
  13. #elif defined(JPH_USE_SSE)
  14. mValue.mLow = _mm_cvtps_pd(inRHS.mValue);
  15. mValue.mHigh = _mm_cvtps_pd(_mm_shuffle_ps(inRHS.mValue, inRHS.mValue, _MM_SHUFFLE(2, 2, 2, 2)));
  16. #elif defined(JPH_USE_NEON)
  17. mValue.val[0] = vcvt_f64_f32(vget_low_f32(inRHS.mValue));
  18. mValue.val[1] = vcvt_high_f64_f32(inRHS.mValue);
  19. #else
  20. mF64[0] = (double)inRHS.GetX();
  21. mF64[1] = (double)inRHS.GetY();
  22. mF64[2] = (double)inRHS.GetZ();
  23. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  24. mF64[3] = mF64[2];
  25. #endif
  26. #endif
  27. }
  28. DVec3::DVec3(Vec4Arg inRHS) :
  29. DVec3(Vec3(inRHS))
  30. {
  31. }
  32. DVec3::DVec3(double inX, double inY, double inZ)
  33. {
  34. #if defined(JPH_USE_AVX)
  35. mValue = _mm256_set_pd(inZ, inZ, inY, inX); // Assure Z and W are the same
  36. #elif defined(JPH_USE_SSE)
  37. mValue.mLow = _mm_set_pd(inY, inX);
  38. mValue.mHigh = _mm_set_pd1(inZ);
  39. #elif defined(JPH_USE_NEON)
  40. mValue.val[0] = vcombine_f64(vcreate_f64(*reinterpret_cast<uint64 *>(&inX)), vcreate_f64(*reinterpret_cast<uint64 *>(&inY)));
  41. mValue.val[1] = vdupq_n_f64(inZ);
  42. #else
  43. mF64[0] = inX;
  44. mF64[1] = inY;
  45. mF64[2] = inZ;
  46. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  47. mF64[3] = mF64[2];
  48. #endif
  49. #endif
  50. }
  51. DVec3::DVec3(const Double3 &inV)
  52. {
  53. #if defined(JPH_USE_AVX)
  54. Type x = _mm256_castpd128_pd256(_mm_load_sd(&inV.x));
  55. Type y = _mm256_castpd128_pd256(_mm_load_sd(&inV.y));
  56. Type z = _mm256_broadcast_sd(&inV.z);
  57. Type xy = _mm256_unpacklo_pd(x, y);
  58. mValue = _mm256_blend_pd(xy, z, 0b1100); // Assure Z and W are the same
  59. #elif defined(JPH_USE_SSE)
  60. mValue.mLow = _mm_load_pd(&inV.x);
  61. mValue.mHigh = _mm_set_pd1(inV.z);
  62. #elif defined(JPH_USE_NEON)
  63. mValue.val[0] = vld1q_f64(&inV.x);
  64. mValue.val[1] = vdupq_n_f64(inV.z);
  65. #else
  66. mF64[0] = inV.x;
  67. mF64[1] = inV.y;
  68. mF64[2] = inV.z;
  69. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  70. mF64[3] = mF64[2];
  71. #endif
  72. #endif
  73. }
  74. void DVec3::CheckW() const
  75. {
  76. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  77. // Avoid asserts when both components are NaN
  78. JPH_ASSERT(reinterpret_cast<const uint64 *>(mF64)[2] == reinterpret_cast<const uint64 *>(mF64)[3]);
  79. #endif // JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  80. }
  81. /// Internal helper function that ensures that the Z component is replicated to the W component to prevent divisions by zero
  82. DVec3::Type DVec3::sFixW(TypeArg inValue)
  83. {
  84. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  85. #if defined(JPH_USE_AVX)
  86. return _mm256_shuffle_pd(inValue, inValue, 2);
  87. #elif defined(JPH_USE_SSE)
  88. Type value;
  89. value.mLow = inValue.mLow;
  90. value.mHigh = _mm_shuffle_pd(inValue.mHigh, inValue.mHigh, 0);
  91. return value;
  92. #elif defined(JPH_USE_NEON)
  93. Type value;
  94. value.val[0] = inValue.val[0];
  95. value.val[1] = vdupq_laneq_f64(inValue.val[1], 0);
  96. return value;
  97. #else
  98. Type value;
  99. value.mData[0] = inValue.mData[0];
  100. value.mData[1] = inValue.mData[1];
  101. value.mData[2] = inValue.mData[2];
  102. value.mData[3] = inValue.mData[2];
  103. return value;
  104. #endif
  105. #else
  106. return inValue;
  107. #endif // JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  108. }
  109. DVec3 DVec3::sZero()
  110. {
  111. #if defined(JPH_USE_AVX)
  112. return _mm256_setzero_pd();
  113. #elif defined(JPH_USE_SSE)
  114. __m128d zero = _mm_setzero_pd();
  115. return DVec3({ zero, zero });
  116. #elif defined(JPH_USE_NEON)
  117. float64x2_t zero = vdupq_n_f64(0.0);
  118. return DVec3({ zero, zero });
  119. #else
  120. return DVec3(0, 0, 0);
  121. #endif
  122. }
  123. DVec3 DVec3::sReplicate(double inV)
  124. {
  125. #if defined(JPH_USE_AVX)
  126. return _mm256_set1_pd(inV);
  127. #elif defined(JPH_USE_SSE)
  128. __m128d value = _mm_set1_pd(inV);
  129. return DVec3({ value, value });
  130. #elif defined(JPH_USE_NEON)
  131. float64x2_t value = vdupq_n_f64(inV);
  132. return DVec3({ value, value });
  133. #else
  134. return DVec3(inV, inV, inV);
  135. #endif
  136. }
  137. DVec3 DVec3::sNaN()
  138. {
  139. return sReplicate(numeric_limits<double>::quiet_NaN());
  140. }
  141. DVec3 DVec3::sLoadDouble3Unsafe(const Double3 &inV)
  142. {
  143. #if defined(JPH_USE_AVX)
  144. Type v = _mm256_loadu_pd(&inV.x);
  145. #elif defined(JPH_USE_SSE)
  146. Type v;
  147. v.mLow = _mm_loadu_pd(&inV.x);
  148. v.mHigh = _mm_set1_pd(inV.z);
  149. #elif defined(JPH_USE_NEON)
  150. Type v = vld1q_f64_x2(&inV.x);
  151. #else
  152. Type v = { inV.x, inV.y, inV.z };
  153. #endif
  154. return sFixW(v);
  155. }
  156. void DVec3::StoreDouble3(Double3 *outV) const
  157. {
  158. outV->x = mF64[0];
  159. outV->y = mF64[1];
  160. outV->z = mF64[2];
  161. }
  162. DVec3::operator Vec3() const
  163. {
  164. #if defined(JPH_USE_AVX)
  165. return _mm256_cvtpd_ps(mValue);
  166. #elif defined(JPH_USE_SSE)
  167. __m128 low = _mm_cvtpd_ps(mValue.mLow);
  168. __m128 high = _mm_cvtpd_ps(mValue.mHigh);
  169. return _mm_shuffle_ps(low, high, _MM_SHUFFLE(1, 0, 1, 0));
  170. #elif defined(JPH_USE_NEON)
  171. return vcvt_high_f32_f64(vcvtx_f32_f64(mValue.val[0]), mValue.val[1]);
  172. #else
  173. return Vec3((float)GetX(), (float)GetY(), (float)GetZ());
  174. #endif
  175. }
  176. DVec3 DVec3::sMin(DVec3Arg inV1, DVec3Arg inV2)
  177. {
  178. #if defined(JPH_USE_AVX)
  179. return _mm256_min_pd(inV1.mValue, inV2.mValue);
  180. #elif defined(JPH_USE_SSE)
  181. return DVec3({ _mm_min_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_min_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  182. #elif defined(JPH_USE_NEON)
  183. return DVec3({ vminq_f64(inV1.mValue.val[0], inV2.mValue.val[0]), vminq_f64(inV1.mValue.val[1], inV2.mValue.val[1]) });
  184. #else
  185. return DVec3(min(inV1.mF64[0], inV2.mF64[0]),
  186. min(inV1.mF64[1], inV2.mF64[1]),
  187. min(inV1.mF64[2], inV2.mF64[2]));
  188. #endif
  189. }
  190. DVec3 DVec3::sMax(DVec3Arg inV1, DVec3Arg inV2)
  191. {
  192. #if defined(JPH_USE_AVX)
  193. return _mm256_max_pd(inV1.mValue, inV2.mValue);
  194. #elif defined(JPH_USE_SSE)
  195. return DVec3({ _mm_max_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_max_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  196. #elif defined(JPH_USE_NEON)
  197. return DVec3({ vmaxq_f64(inV1.mValue.val[0], inV2.mValue.val[0]), vmaxq_f64(inV1.mValue.val[1], inV2.mValue.val[1]) });
  198. #else
  199. return DVec3(max(inV1.mF64[0], inV2.mF64[0]),
  200. max(inV1.mF64[1], inV2.mF64[1]),
  201. max(inV1.mF64[2], inV2.mF64[2]));
  202. #endif
  203. }
  204. DVec3 DVec3::sClamp(DVec3Arg inV, DVec3Arg inMin, DVec3Arg inMax)
  205. {
  206. return sMax(sMin(inV, inMax), inMin);
  207. }
  208. DVec3 DVec3::sEquals(DVec3Arg inV1, DVec3Arg inV2)
  209. {
  210. #if defined(JPH_USE_AVX)
  211. return _mm256_cmp_pd(inV1.mValue, inV2.mValue, _CMP_EQ_OQ);
  212. #elif defined(JPH_USE_SSE)
  213. return DVec3({ _mm_cmpeq_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_cmpeq_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  214. #elif defined(JPH_USE_NEON)
  215. return DVec3({ vreinterpretq_u64_f64(vceqq_f64(inV1.mValue.val[0], inV2.mValue.val[0])), vreinterpretq_u64_f64(vceqq_f64(inV1.mValue.val[1], inV2.mValue.val[1])) });
  216. #else
  217. return DVec3(inV1.mF64[0] == inV2.mF64[0]? cTrue : cFalse,
  218. inV1.mF64[1] == inV2.mF64[1]? cTrue : cFalse,
  219. inV1.mF64[2] == inV2.mF64[2]? cTrue : cFalse);
  220. #endif
  221. }
  222. DVec3 DVec3::sLess(DVec3Arg inV1, DVec3Arg inV2)
  223. {
  224. #if defined(JPH_USE_AVX)
  225. return _mm256_cmp_pd(inV1.mValue, inV2.mValue, _CMP_LT_OQ);
  226. #elif defined(JPH_USE_SSE)
  227. return DVec3({ _mm_cmplt_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_cmplt_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  228. #elif defined(JPH_USE_NEON)
  229. return DVec3({ vreinterpretq_u64_f64(vcltq_f64(inV1.mValue.val[0], inV2.mValue.val[0])), vreinterpretq_u64_f64(vcltq_f64(inV1.mValue.val[1], inV2.mValue.val[1])) });
  230. #else
  231. return DVec3(inV1.mF64[0] < inV2.mF64[0]? cTrue : cFalse,
  232. inV1.mF64[1] < inV2.mF64[1]? cTrue : cFalse,
  233. inV1.mF64[2] < inV2.mF64[2]? cTrue : cFalse);
  234. #endif
  235. }
  236. DVec3 DVec3::sLessOrEqual(DVec3Arg inV1, DVec3Arg inV2)
  237. {
  238. #if defined(JPH_USE_AVX)
  239. return _mm256_cmp_pd(inV1.mValue, inV2.mValue, _CMP_LE_OQ);
  240. #elif defined(JPH_USE_SSE)
  241. return DVec3({ _mm_cmple_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_cmple_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  242. #elif defined(JPH_USE_NEON)
  243. return DVec3({ vreinterpretq_u64_f64(vcleq_f64(inV1.mValue.val[0], inV2.mValue.val[0])), vreinterpretq_u64_f64(vcleq_f64(inV1.mValue.val[1], inV2.mValue.val[1])) });
  244. #else
  245. return DVec3(inV1.mF64[0] <= inV2.mF64[0]? cTrue : cFalse,
  246. inV1.mF64[1] <= inV2.mF64[1]? cTrue : cFalse,
  247. inV1.mF64[2] <= inV2.mF64[2]? cTrue : cFalse);
  248. #endif
  249. }
  250. DVec3 DVec3::sGreater(DVec3Arg inV1, DVec3Arg inV2)
  251. {
  252. #if defined(JPH_USE_AVX)
  253. return _mm256_cmp_pd(inV1.mValue, inV2.mValue, _CMP_GT_OQ);
  254. #elif defined(JPH_USE_SSE)
  255. return DVec3({ _mm_cmpgt_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_cmpgt_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  256. #elif defined(JPH_USE_NEON)
  257. return DVec3({ vreinterpretq_u64_f64(vcgtq_f64(inV1.mValue.val[0], inV2.mValue.val[0])), vreinterpretq_u64_f64(vcgtq_f64(inV1.mValue.val[1], inV2.mValue.val[1])) });
  258. #else
  259. return DVec3(inV1.mF64[0] > inV2.mF64[0]? cTrue : cFalse,
  260. inV1.mF64[1] > inV2.mF64[1]? cTrue : cFalse,
  261. inV1.mF64[2] > inV2.mF64[2]? cTrue : cFalse);
  262. #endif
  263. }
  264. DVec3 DVec3::sGreaterOrEqual(DVec3Arg inV1, DVec3Arg inV2)
  265. {
  266. #if defined(JPH_USE_AVX)
  267. return _mm256_cmp_pd(inV1.mValue, inV2.mValue, _CMP_GE_OQ);
  268. #elif defined(JPH_USE_SSE)
  269. return DVec3({ _mm_cmpge_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_cmpge_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  270. #elif defined(JPH_USE_NEON)
  271. return DVec3({ vreinterpretq_u64_f64(vcgeq_f64(inV1.mValue.val[0], inV2.mValue.val[0])), vreinterpretq_u64_f64(vcgeq_f64(inV1.mValue.val[1], inV2.mValue.val[1])) });
  272. #else
  273. return DVec3(inV1.mF64[0] >= inV2.mF64[0]? cTrue : cFalse,
  274. inV1.mF64[1] >= inV2.mF64[1]? cTrue : cFalse,
  275. inV1.mF64[2] >= inV2.mF64[2]? cTrue : cFalse);
  276. #endif
  277. }
  278. DVec3 DVec3::sFusedMultiplyAdd(DVec3Arg inMul1, DVec3Arg inMul2, DVec3Arg inAdd)
  279. {
  280. #if defined(JPH_USE_AVX)
  281. #ifdef JPH_USE_FMADD
  282. return _mm256_fmadd_pd(inMul1.mValue, inMul2.mValue, inAdd.mValue);
  283. #else
  284. return _mm256_add_pd(_mm256_mul_pd(inMul1.mValue, inMul2.mValue), inAdd.mValue);
  285. #endif
  286. #elif defined(JPH_USE_NEON)
  287. return DVec3({ vmlaq_f64(inAdd.mValue.val[0], inMul1.mValue.val[0], inMul2.mValue.val[0]), vmlaq_f64(inAdd.mValue.val[1], inMul1.mValue.val[1], inMul2.mValue.val[1]) });
  288. #else
  289. return inMul1 * inMul2 + inAdd;
  290. #endif
  291. }
  292. DVec3 DVec3::sSelect(DVec3Arg inV1, DVec3Arg inV2, DVec3Arg inControl)
  293. {
  294. #if defined(JPH_USE_AVX)
  295. return _mm256_blendv_pd(inV1.mValue, inV2.mValue, inControl.mValue);
  296. #elif defined(JPH_USE_SSE4_1)
  297. Type v = { _mm_blendv_pd(inV1.mValue.mLow, inV2.mValue.mLow, inControl.mValue.mLow), _mm_blendv_pd(inV1.mValue.mHigh, inV2.mValue.mHigh, inControl.mValue.mHigh) };
  298. return sFixW(v);
  299. #elif defined(JPH_USE_NEON)
  300. Type v = { vbslq_f64(vshrq_n_s64(inControl.mValue.val[0], 63), inV2.mValue.val[0], inV1.mValue.val[0]), vbslq_f64(vshrq_n_s64(inControl.mValue.val[1], 63), inV2.mValue.val[1], inV1.mValue.val[1]) };
  301. return sFixW(v);
  302. #else
  303. DVec3 result;
  304. for (int i = 0; i < 3; i++)
  305. result.mF64[i] = BitCast<uint64>(inControl.mF64[i])? inV2.mF64[i] : inV1.mF64[i];
  306. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  307. result.mF64[3] = result.mF64[2];
  308. #endif // JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  309. return result;
  310. #endif
  311. }
  312. DVec3 DVec3::sOr(DVec3Arg inV1, DVec3Arg inV2)
  313. {
  314. #if defined(JPH_USE_AVX)
  315. return _mm256_or_pd(inV1.mValue, inV2.mValue);
  316. #elif defined(JPH_USE_SSE)
  317. return DVec3({ _mm_or_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_or_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  318. #elif defined(JPH_USE_NEON)
  319. return DVec3({ vorrq_s64(inV1.mValue.val[0], inV2.mValue.val[0]), vorrq_s64(inV1.mValue.val[1], inV2.mValue.val[1]) });
  320. #else
  321. return DVec3(BitCast<double>(BitCast<uint64>(inV1.mF64[0]) | BitCast<uint64>(inV2.mF64[0])),
  322. BitCast<double>(BitCast<uint64>(inV1.mF64[1]) | BitCast<uint64>(inV2.mF64[1])),
  323. BitCast<double>(BitCast<uint64>(inV1.mF64[2]) | BitCast<uint64>(inV2.mF64[2])));
  324. #endif
  325. }
  326. DVec3 DVec3::sXor(DVec3Arg inV1, DVec3Arg inV2)
  327. {
  328. #if defined(JPH_USE_AVX)
  329. return _mm256_xor_pd(inV1.mValue, inV2.mValue);
  330. #elif defined(JPH_USE_SSE)
  331. return DVec3({ _mm_xor_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_xor_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  332. #elif defined(JPH_USE_NEON)
  333. return DVec3({ veorq_s64(inV1.mValue.val[0], inV2.mValue.val[0]), veorq_s64(inV1.mValue.val[1], inV2.mValue.val[1]) });
  334. #else
  335. return DVec3(BitCast<double>(BitCast<uint64>(inV1.mF64[0]) ^ BitCast<uint64>(inV2.mF64[0])),
  336. BitCast<double>(BitCast<uint64>(inV1.mF64[1]) ^ BitCast<uint64>(inV2.mF64[1])),
  337. BitCast<double>(BitCast<uint64>(inV1.mF64[2]) ^ BitCast<uint64>(inV2.mF64[2])));
  338. #endif
  339. }
  340. DVec3 DVec3::sAnd(DVec3Arg inV1, DVec3Arg inV2)
  341. {
  342. #if defined(JPH_USE_AVX)
  343. return _mm256_and_pd(inV1.mValue, inV2.mValue);
  344. #elif defined(JPH_USE_SSE)
  345. return DVec3({ _mm_and_pd(inV1.mValue.mLow, inV2.mValue.mLow), _mm_and_pd(inV1.mValue.mHigh, inV2.mValue.mHigh) });
  346. #elif defined(JPH_USE_NEON)
  347. return DVec3({ vandq_s64(inV1.mValue.val[0], inV2.mValue.val[0]), vandq_s64(inV1.mValue.val[1], inV2.mValue.val[1]) });
  348. #else
  349. return DVec3(BitCast<double>(BitCast<uint64>(inV1.mF64[0]) & BitCast<uint64>(inV2.mF64[0])),
  350. BitCast<double>(BitCast<uint64>(inV1.mF64[1]) & BitCast<uint64>(inV2.mF64[1])),
  351. BitCast<double>(BitCast<uint64>(inV1.mF64[2]) & BitCast<uint64>(inV2.mF64[2])));
  352. #endif
  353. }
  354. int DVec3::GetTrues() const
  355. {
  356. #if defined(JPH_USE_AVX)
  357. return _mm256_movemask_pd(mValue) & 0x7;
  358. #elif defined(JPH_USE_SSE)
  359. return (_mm_movemask_pd(mValue.mLow) + (_mm_movemask_pd(mValue.mHigh) << 2)) & 0x7;
  360. #else
  361. return int((BitCast<uint64>(mF64[0]) >> 63) | ((BitCast<uint64>(mF64[1]) >> 63) << 1) | ((BitCast<uint64>(mF64[2]) >> 63) << 2));
  362. #endif
  363. }
  364. bool DVec3::TestAnyTrue() const
  365. {
  366. return GetTrues() != 0;
  367. }
  368. bool DVec3::TestAllTrue() const
  369. {
  370. return GetTrues() == 0x7;
  371. }
  372. bool DVec3::operator == (DVec3Arg inV2) const
  373. {
  374. return sEquals(*this, inV2).TestAllTrue();
  375. }
  376. bool DVec3::IsClose(DVec3Arg inV2, double inMaxDistSq) const
  377. {
  378. return (inV2 - *this).LengthSq() <= inMaxDistSq;
  379. }
  380. bool DVec3::IsNearZero(double inMaxDistSq) const
  381. {
  382. return LengthSq() <= inMaxDistSq;
  383. }
  384. DVec3 DVec3::operator * (DVec3Arg inV2) const
  385. {
  386. #if defined(JPH_USE_AVX)
  387. return _mm256_mul_pd(mValue, inV2.mValue);
  388. #elif defined(JPH_USE_SSE)
  389. return DVec3({ _mm_mul_pd(mValue.mLow, inV2.mValue.mLow), _mm_mul_pd(mValue.mHigh, inV2.mValue.mHigh) });
  390. #elif defined(JPH_USE_NEON)
  391. return DVec3({ vmulq_f64(mValue.val[0], inV2.mValue.val[0]), vmulq_f64(mValue.val[1], inV2.mValue.val[1]) });
  392. #else
  393. return DVec3(mF64[0] * inV2.mF64[0], mF64[1] * inV2.mF64[1], mF64[2] * inV2.mF64[2]);
  394. #endif
  395. }
  396. DVec3 DVec3::operator * (double inV2) const
  397. {
  398. #if defined(JPH_USE_AVX)
  399. return _mm256_mul_pd(mValue, _mm256_set1_pd(inV2));
  400. #elif defined(JPH_USE_SSE)
  401. __m128d v = _mm_set1_pd(inV2);
  402. return DVec3({ _mm_mul_pd(mValue.mLow, v), _mm_mul_pd(mValue.mHigh, v) });
  403. #elif defined(JPH_USE_NEON)
  404. return DVec3({ vmulq_n_f64(mValue.val[0], inV2), vmulq_n_f64(mValue.val[1], inV2) });
  405. #else
  406. return DVec3(mF64[0] * inV2, mF64[1] * inV2, mF64[2] * inV2);
  407. #endif
  408. }
  409. DVec3 operator * (double inV1, DVec3Arg inV2)
  410. {
  411. #if defined(JPH_USE_AVX)
  412. return _mm256_mul_pd(_mm256_set1_pd(inV1), inV2.mValue);
  413. #elif defined(JPH_USE_SSE)
  414. __m128d v = _mm_set1_pd(inV1);
  415. return DVec3({ _mm_mul_pd(v, inV2.mValue.mLow), _mm_mul_pd(v, inV2.mValue.mHigh) });
  416. #elif defined(JPH_USE_NEON)
  417. return DVec3({ vmulq_n_f64(inV2.mValue.val[0], inV1), vmulq_n_f64(inV2.mValue.val[1], inV1) });
  418. #else
  419. return DVec3(inV1 * inV2.mF64[0], inV1 * inV2.mF64[1], inV1 * inV2.mF64[2]);
  420. #endif
  421. }
  422. DVec3 DVec3::operator / (double inV2) const
  423. {
  424. #if defined(JPH_USE_AVX)
  425. return _mm256_div_pd(mValue, _mm256_set1_pd(inV2));
  426. #elif defined(JPH_USE_SSE)
  427. __m128d v = _mm_set1_pd(inV2);
  428. return DVec3({ _mm_div_pd(mValue.mLow, v), _mm_div_pd(mValue.mHigh, v) });
  429. #elif defined(JPH_USE_NEON)
  430. float64x2_t v = vdupq_n_f64(inV2);
  431. return DVec3({ vdivq_f64(mValue.val[0], v), vdivq_f64(mValue.val[1], v) });
  432. #else
  433. return DVec3(mF64[0] / inV2, mF64[1] / inV2, mF64[2] / inV2);
  434. #endif
  435. }
  436. DVec3 &DVec3::operator *= (double inV2)
  437. {
  438. #if defined(JPH_USE_AVX)
  439. mValue = _mm256_mul_pd(mValue, _mm256_set1_pd(inV2));
  440. #elif defined(JPH_USE_SSE)
  441. __m128d v = _mm_set1_pd(inV2);
  442. mValue.mLow = _mm_mul_pd(mValue.mLow, v);
  443. mValue.mHigh = _mm_mul_pd(mValue.mHigh, v);
  444. #elif defined(JPH_USE_NEON)
  445. mValue.val[0] = vmulq_n_f64(mValue.val[0], inV2);
  446. mValue.val[1] = vmulq_n_f64(mValue.val[1], inV2);
  447. #else
  448. for (int i = 0; i < 3; ++i)
  449. mF64[i] *= inV2;
  450. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  451. mF64[3] = mF64[2];
  452. #endif
  453. #endif
  454. return *this;
  455. }
  456. DVec3 &DVec3::operator *= (DVec3Arg inV2)
  457. {
  458. #if defined(JPH_USE_AVX)
  459. mValue = _mm256_mul_pd(mValue, inV2.mValue);
  460. #elif defined(JPH_USE_SSE)
  461. mValue.mLow = _mm_mul_pd(mValue.mLow, inV2.mValue.mLow);
  462. mValue.mHigh = _mm_mul_pd(mValue.mHigh, inV2.mValue.mHigh);
  463. #elif defined(JPH_USE_NEON)
  464. mValue.val[0] = vmulq_f64(mValue.val[0], inV2.mValue.val[0]);
  465. mValue.val[1] = vmulq_f64(mValue.val[1], inV2.mValue.val[1]);
  466. #else
  467. for (int i = 0; i < 3; ++i)
  468. mF64[i] *= inV2.mF64[i];
  469. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  470. mF64[3] = mF64[2];
  471. #endif
  472. #endif
  473. return *this;
  474. }
  475. DVec3 &DVec3::operator /= (double inV2)
  476. {
  477. #if defined(JPH_USE_AVX)
  478. mValue = _mm256_div_pd(mValue, _mm256_set1_pd(inV2));
  479. #elif defined(JPH_USE_SSE)
  480. __m128d v = _mm_set1_pd(inV2);
  481. mValue.mLow = _mm_div_pd(mValue.mLow, v);
  482. mValue.mHigh = _mm_div_pd(mValue.mHigh, v);
  483. #elif defined(JPH_USE_NEON)
  484. float64x2_t v = vdupq_n_f64(inV2);
  485. mValue.val[0] = vdivq_f64(mValue.val[0], v);
  486. mValue.val[1] = vdivq_f64(mValue.val[1], v);
  487. #else
  488. for (int i = 0; i < 3; ++i)
  489. mF64[i] /= inV2;
  490. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  491. mF64[3] = mF64[2];
  492. #endif
  493. #endif
  494. return *this;
  495. }
  496. DVec3 DVec3::operator + (Vec3Arg inV2) const
  497. {
  498. #if defined(JPH_USE_AVX)
  499. return _mm256_add_pd(mValue, _mm256_cvtps_pd(inV2.mValue));
  500. #elif defined(JPH_USE_SSE)
  501. return DVec3({ _mm_add_pd(mValue.mLow, _mm_cvtps_pd(inV2.mValue)), _mm_add_pd(mValue.mHigh, _mm_cvtps_pd(_mm_shuffle_ps(inV2.mValue, inV2.mValue, _MM_SHUFFLE(2, 2, 2, 2)))) });
  502. #elif defined(JPH_USE_NEON)
  503. return DVec3({ vaddq_f64(mValue.val[0], vcvt_f64_f32(vget_low_f32(inV2.mValue))), vaddq_f64(mValue.val[1], vcvt_high_f64_f32(inV2.mValue)) });
  504. #else
  505. return DVec3(mF64[0] + inV2.mF32[0], mF64[1] + inV2.mF32[1], mF64[2] + inV2.mF32[2]);
  506. #endif
  507. }
  508. DVec3 DVec3::operator + (DVec3Arg inV2) const
  509. {
  510. #if defined(JPH_USE_AVX)
  511. return _mm256_add_pd(mValue, inV2.mValue);
  512. #elif defined(JPH_USE_SSE)
  513. return DVec3({ _mm_add_pd(mValue.mLow, inV2.mValue.mLow), _mm_add_pd(mValue.mHigh, inV2.mValue.mHigh) });
  514. #elif defined(JPH_USE_NEON)
  515. return DVec3({ vaddq_f64(mValue.val[0], inV2.mValue.val[0]), vaddq_f64(mValue.val[1], inV2.mValue.val[1]) });
  516. #else
  517. return DVec3(mF64[0] + inV2.mF64[0], mF64[1] + inV2.mF64[1], mF64[2] + inV2.mF64[2]);
  518. #endif
  519. }
  520. DVec3 &DVec3::operator += (Vec3Arg inV2)
  521. {
  522. #if defined(JPH_USE_AVX)
  523. mValue = _mm256_add_pd(mValue, _mm256_cvtps_pd(inV2.mValue));
  524. #elif defined(JPH_USE_SSE)
  525. mValue.mLow = _mm_add_pd(mValue.mLow, _mm_cvtps_pd(inV2.mValue));
  526. mValue.mHigh = _mm_add_pd(mValue.mHigh, _mm_cvtps_pd(_mm_shuffle_ps(inV2.mValue, inV2.mValue, _MM_SHUFFLE(2, 2, 2, 2))));
  527. #elif defined(JPH_USE_NEON)
  528. mValue.val[0] = vaddq_f64(mValue.val[0], vcvt_f64_f32(vget_low_f32(inV2.mValue)));
  529. mValue.val[1] = vaddq_f64(mValue.val[1], vcvt_high_f64_f32(inV2.mValue));
  530. #else
  531. for (int i = 0; i < 3; ++i)
  532. mF64[i] += inV2.mF32[i];
  533. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  534. mF64[3] = mF64[2];
  535. #endif
  536. #endif
  537. return *this;
  538. }
  539. DVec3 &DVec3::operator += (DVec3Arg inV2)
  540. {
  541. #if defined(JPH_USE_AVX)
  542. mValue = _mm256_add_pd(mValue, inV2.mValue);
  543. #elif defined(JPH_USE_SSE)
  544. mValue.mLow = _mm_add_pd(mValue.mLow, inV2.mValue.mLow);
  545. mValue.mHigh = _mm_add_pd(mValue.mHigh, inV2.mValue.mHigh);
  546. #elif defined(JPH_USE_NEON)
  547. mValue.val[0] = vaddq_f64(mValue.val[0], inV2.mValue.val[0]);
  548. mValue.val[1] = vaddq_f64(mValue.val[1], inV2.mValue.val[1]);
  549. #else
  550. for (int i = 0; i < 3; ++i)
  551. mF64[i] += inV2.mF64[i];
  552. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  553. mF64[3] = mF64[2];
  554. #endif
  555. #endif
  556. return *this;
  557. }
  558. DVec3 DVec3::operator - () const
  559. {
  560. #if defined(JPH_USE_AVX)
  561. return _mm256_sub_pd(_mm256_setzero_pd(), mValue);
  562. #elif defined(JPH_USE_SSE)
  563. __m128d zero = _mm_setzero_pd();
  564. return DVec3({ _mm_sub_pd(zero, mValue.mLow), _mm_sub_pd(zero, mValue.mHigh) });
  565. #elif defined(JPH_USE_NEON)
  566. return DVec3({ vnegq_f64(mValue.val[0]), vnegq_f64(mValue.val[1]) });
  567. #else
  568. return DVec3(-mF64[0], -mF64[1], -mF64[2]);
  569. #endif
  570. }
  571. DVec3 DVec3::operator - (Vec3Arg inV2) const
  572. {
  573. #if defined(JPH_USE_AVX)
  574. return _mm256_sub_pd(mValue, _mm256_cvtps_pd(inV2.mValue));
  575. #elif defined(JPH_USE_SSE)
  576. return DVec3({ _mm_sub_pd(mValue.mLow, _mm_cvtps_pd(inV2.mValue)), _mm_sub_pd(mValue.mHigh, _mm_cvtps_pd(_mm_shuffle_ps(inV2.mValue, inV2.mValue, _MM_SHUFFLE(2, 2, 2, 2)))) });
  577. #elif defined(JPH_USE_NEON)
  578. return DVec3({ vsubq_f64(mValue.val[0], vcvt_f64_f32(vget_low_f32(inV2.mValue))), vsubq_f64(mValue.val[1], vcvt_high_f64_f32(inV2.mValue)) });
  579. #else
  580. return DVec3(mF64[0] - inV2.mF32[0], mF64[1] - inV2.mF32[1], mF64[2] - inV2.mF32[2]);
  581. #endif
  582. }
  583. DVec3 DVec3::operator - (DVec3Arg inV2) const
  584. {
  585. #if defined(JPH_USE_AVX)
  586. return _mm256_sub_pd(mValue, inV2.mValue);
  587. #elif defined(JPH_USE_SSE)
  588. return DVec3({ _mm_sub_pd(mValue.mLow, inV2.mValue.mLow), _mm_sub_pd(mValue.mHigh, inV2.mValue.mHigh) });
  589. #elif defined(JPH_USE_NEON)
  590. return DVec3({ vsubq_f64(mValue.val[0], inV2.mValue.val[0]), vsubq_f64(mValue.val[1], inV2.mValue.val[1]) });
  591. #else
  592. return DVec3(mF64[0] - inV2.mF64[0], mF64[1] - inV2.mF64[1], mF64[2] - inV2.mF64[2]);
  593. #endif
  594. }
  595. DVec3 &DVec3::operator -= (Vec3Arg inV2)
  596. {
  597. #if defined(JPH_USE_AVX)
  598. mValue = _mm256_sub_pd(mValue, _mm256_cvtps_pd(inV2.mValue));
  599. #elif defined(JPH_USE_SSE)
  600. mValue.mLow = _mm_sub_pd(mValue.mLow, _mm_cvtps_pd(inV2.mValue));
  601. mValue.mHigh = _mm_sub_pd(mValue.mHigh, _mm_cvtps_pd(_mm_shuffle_ps(inV2.mValue, inV2.mValue, _MM_SHUFFLE(2, 2, 2, 2))));
  602. #elif defined(JPH_USE_NEON)
  603. mValue.val[0] = vsubq_f64(mValue.val[0], vcvt_f64_f32(vget_low_f32(inV2.mValue)));
  604. mValue.val[1] = vsubq_f64(mValue.val[1], vcvt_high_f64_f32(inV2.mValue));
  605. #else
  606. for (int i = 0; i < 3; ++i)
  607. mF64[i] -= inV2.mF32[i];
  608. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  609. mF64[3] = mF64[2];
  610. #endif
  611. #endif
  612. return *this;
  613. }
  614. DVec3 &DVec3::operator -= (DVec3Arg inV2)
  615. {
  616. #if defined(JPH_USE_AVX)
  617. mValue = _mm256_sub_pd(mValue, inV2.mValue);
  618. #elif defined(JPH_USE_SSE)
  619. mValue.mLow = _mm_sub_pd(mValue.mLow, inV2.mValue.mLow);
  620. mValue.mHigh = _mm_sub_pd(mValue.mHigh, inV2.mValue.mHigh);
  621. #elif defined(JPH_USE_NEON)
  622. mValue.val[0] = vsubq_f64(mValue.val[0], inV2.mValue.val[0]);
  623. mValue.val[1] = vsubq_f64(mValue.val[1], inV2.mValue.val[1]);
  624. #else
  625. for (int i = 0; i < 3; ++i)
  626. mF64[i] -= inV2.mF64[i];
  627. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  628. mF64[3] = mF64[2];
  629. #endif
  630. #endif
  631. return *this;
  632. }
  633. DVec3 DVec3::operator / (DVec3Arg inV2) const
  634. {
  635. inV2.CheckW();
  636. #if defined(JPH_USE_AVX)
  637. return _mm256_div_pd(mValue, inV2.mValue);
  638. #elif defined(JPH_USE_SSE)
  639. return DVec3({ _mm_div_pd(mValue.mLow, inV2.mValue.mLow), _mm_div_pd(mValue.mHigh, inV2.mValue.mHigh) });
  640. #elif defined(JPH_USE_NEON)
  641. return DVec3({ vdivq_f64(mValue.val[0], inV2.mValue.val[0]), vdivq_f64(mValue.val[1], inV2.mValue.val[1]) });
  642. #else
  643. return DVec3(mF64[0] / inV2.mF64[0], mF64[1] / inV2.mF64[1], mF64[2] / inV2.mF64[2]);
  644. #endif
  645. }
  646. DVec3 DVec3::Abs() const
  647. {
  648. #if defined(JPH_USE_AVX512)
  649. return _mm256_range_pd(mValue, mValue, 0b1000);
  650. #elif defined(JPH_USE_AVX)
  651. return _mm256_max_pd(_mm256_sub_pd(_mm256_setzero_pd(), mValue), mValue);
  652. #elif defined(JPH_USE_SSE)
  653. __m128d zero = _mm_setzero_pd();
  654. return DVec3({ _mm_max_pd(_mm_sub_pd(zero, mValue.mLow), mValue.mLow), _mm_max_pd(_mm_sub_pd(zero, mValue.mHigh), mValue.mHigh) });
  655. #elif defined(JPH_USE_NEON)
  656. return DVec3({ vabsq_f64(mValue.val[0]), vabsq_f64(mValue.val[1]) });
  657. #else
  658. return DVec3(abs(mF64[0]), abs(mF64[1]), abs(mF64[2]));
  659. #endif
  660. }
  661. DVec3 DVec3::Reciprocal() const
  662. {
  663. return sReplicate(1.0) / mValue;
  664. }
  665. DVec3 DVec3::Cross(DVec3Arg inV2) const
  666. {
  667. #if defined(JPH_USE_AVX2)
  668. __m256d t1 = _mm256_permute4x64_pd(inV2.mValue, _MM_SHUFFLE(0, 0, 2, 1)); // Assure Z and W are the same
  669. t1 = _mm256_mul_pd(t1, mValue);
  670. __m256d t2 = _mm256_permute4x64_pd(mValue, _MM_SHUFFLE(0, 0, 2, 1)); // Assure Z and W are the same
  671. t2 = _mm256_mul_pd(t2, inV2.mValue);
  672. __m256d t3 = _mm256_sub_pd(t1, t2);
  673. return _mm256_permute4x64_pd(t3, _MM_SHUFFLE(0, 0, 2, 1)); // Assure Z and W are the same
  674. #else
  675. return DVec3(mF64[1] * inV2.mF64[2] - mF64[2] * inV2.mF64[1],
  676. mF64[2] * inV2.mF64[0] - mF64[0] * inV2.mF64[2],
  677. mF64[0] * inV2.mF64[1] - mF64[1] * inV2.mF64[0]);
  678. #endif
  679. }
  680. double DVec3::Dot(DVec3Arg inV2) const
  681. {
  682. #if defined(JPH_USE_AVX)
  683. __m256d mul = _mm256_mul_pd(mValue, inV2.mValue);
  684. __m128d xy = _mm256_castpd256_pd128(mul);
  685. __m128d yx = _mm_shuffle_pd(xy, xy, 1);
  686. __m128d sum = _mm_add_pd(xy, yx);
  687. __m128d zw = _mm256_extractf128_pd(mul, 1);
  688. sum = _mm_add_pd(sum, zw);
  689. return _mm_cvtsd_f64(sum);
  690. #elif defined(JPH_USE_SSE)
  691. __m128d xy = _mm_mul_pd(mValue.mLow, inV2.mValue.mLow);
  692. __m128d yx = _mm_shuffle_pd(xy, xy, 1);
  693. __m128d sum = _mm_add_pd(xy, yx);
  694. __m128d z = _mm_mul_sd(mValue.mHigh, inV2.mValue.mHigh);
  695. sum = _mm_add_pd(sum, z);
  696. return _mm_cvtsd_f64(sum);
  697. #elif defined(JPH_USE_NEON)
  698. float64x2_t mul_low = vmulq_f64(mValue.val[0], inV2.mValue.val[0]);
  699. float64x2_t mul_high = vmulq_f64(mValue.val[1], inV2.mValue.val[1]);
  700. return vaddvq_f64(mul_low) + vgetq_lane_f64(mul_high, 0);
  701. #else
  702. double dot = 0.0;
  703. for (int i = 0; i < 3; i++)
  704. dot += mF64[i] * inV2.mF64[i];
  705. return dot;
  706. #endif
  707. }
  708. double DVec3::LengthSq() const
  709. {
  710. return Dot(*this);
  711. }
  712. DVec3 DVec3::Sqrt() const
  713. {
  714. #if defined(JPH_USE_AVX)
  715. return _mm256_sqrt_pd(mValue);
  716. #elif defined(JPH_USE_SSE)
  717. return DVec3({ _mm_sqrt_pd(mValue.mLow), _mm_sqrt_pd(mValue.mHigh) });
  718. #elif defined(JPH_USE_NEON)
  719. return DVec3({ vsqrtq_f64(mValue.val[0]), vsqrtq_f64(mValue.val[1]) });
  720. #else
  721. return DVec3(sqrt(mF64[0]), sqrt(mF64[1]), sqrt(mF64[2]));
  722. #endif
  723. }
  724. double DVec3::Length() const
  725. {
  726. return sqrt(Dot(*this));
  727. }
  728. DVec3 DVec3::Normalized() const
  729. {
  730. return *this / Length();
  731. }
  732. bool DVec3::IsNormalized(double inTolerance) const
  733. {
  734. return abs(LengthSq() - 1.0) <= inTolerance;
  735. }
  736. bool DVec3::IsNaN() const
  737. {
  738. #if defined(JPH_USE_AVX512)
  739. return (_mm256_fpclass_pd_mask(mValue, 0b10000001) & 0x7) != 0;
  740. #elif defined(JPH_USE_AVX)
  741. return (_mm256_movemask_pd(_mm256_cmp_pd(mValue, mValue, _CMP_UNORD_Q)) & 0x7) != 0;
  742. #elif defined(JPH_USE_SSE)
  743. return ((_mm_movemask_pd(_mm_cmpunord_pd(mValue.mLow, mValue.mLow)) + (_mm_movemask_pd(_mm_cmpunord_pd(mValue.mHigh, mValue.mHigh)) << 2)) & 0x7) != 0;
  744. #else
  745. return isnan(mF64[0]) || isnan(mF64[1]) || isnan(mF64[2]);
  746. #endif
  747. }
  748. DVec3 DVec3::GetSign() const
  749. {
  750. #if defined(JPH_USE_AVX512)
  751. return _mm256_fixupimm_pd(mValue, mValue, _mm256_set1_epi32(0xA9A90A00), 0);
  752. #elif defined(JPH_USE_AVX)
  753. __m256d minus_one = _mm256_set1_pd(-1.0);
  754. __m256d one = _mm256_set1_pd(1.0);
  755. return _mm256_or_pd(_mm256_and_pd(mValue, minus_one), one);
  756. #elif defined(JPH_USE_SSE)
  757. __m128d minus_one = _mm_set1_pd(-1.0);
  758. __m128d one = _mm_set1_pd(1.0);
  759. return DVec3({ _mm_or_pd(_mm_and_pd(mValue.mLow, minus_one), one), _mm_or_pd(_mm_and_pd(mValue.mHigh, minus_one), one) });
  760. #elif defined(JPH_USE_NEON)
  761. float64x2_t minus_one = vdupq_n_f64(-1.0f);
  762. float64x2_t one = vdupq_n_f64(1.0f);
  763. return DVec3({ vorrq_s64(vandq_s64(mValue.val[0], minus_one), one), vorrq_s64(vandq_s64(mValue.val[1], minus_one), one) });
  764. #else
  765. return DVec3(std::signbit(mF64[0])? -1.0 : 1.0,
  766. std::signbit(mF64[1])? -1.0 : 1.0,
  767. std::signbit(mF64[2])? -1.0 : 1.0);
  768. #endif
  769. }
  770. DVec3 DVec3::PrepareRoundToZero() const
  771. {
  772. // Float has 23 bit mantissa, double 52 bit mantissa => we lose 29 bits when converting from double to float
  773. constexpr uint64 cDoubleToFloatMantissaLoss = (1U << 29) - 1;
  774. #if defined(JPH_USE_AVX)
  775. return _mm256_and_pd(mValue, _mm256_castsi256_pd(_mm256_set1_epi64x(int64_t(~cDoubleToFloatMantissaLoss))));
  776. #elif defined(JPH_USE_SSE)
  777. __m128d mask = _mm_castsi128_pd(_mm_set1_epi64x(int64_t(~cDoubleToFloatMantissaLoss)));
  778. return DVec3({ _mm_and_pd(mValue.mLow, mask), _mm_and_pd(mValue.mHigh, mask) });
  779. #elif defined(JPH_USE_NEON)
  780. float64x2_t mask = vreinterpretq_f64_u64(vdupq_n_u64(~cDoubleToFloatMantissaLoss));
  781. return DVec3({ vandq_s64(mValue.val[0], mask), vandq_s64(mValue.val[1], mask) });
  782. #else
  783. double x = BitCast<double>(BitCast<uint64>(mF64[0]) & ~cDoubleToFloatMantissaLoss);
  784. double y = BitCast<double>(BitCast<uint64>(mF64[1]) & ~cDoubleToFloatMantissaLoss);
  785. double z = BitCast<double>(BitCast<uint64>(mF64[2]) & ~cDoubleToFloatMantissaLoss);
  786. return DVec3(x, y, z);
  787. #endif
  788. }
  789. DVec3 DVec3::PrepareRoundToInf() const
  790. {
  791. // Float has 23 bit mantissa, double 52 bit mantissa => we lose 29 bits when converting from double to float
  792. constexpr uint64 cDoubleToFloatMantissaLoss = (1U << 29) - 1;
  793. #if defined(JPH_USE_AVX512)
  794. __m256i mantissa_loss = _mm256_set1_epi64x(cDoubleToFloatMantissaLoss);
  795. __mmask8 is_zero = _mm256_testn_epi64_mask(_mm256_castpd_si256(mValue), mantissa_loss);
  796. __m256d value_or_mantissa_loss = _mm256_or_pd(mValue, _mm256_castsi256_pd(mantissa_loss));
  797. return _mm256_mask_blend_pd(is_zero, value_or_mantissa_loss, mValue);
  798. #elif defined(JPH_USE_AVX)
  799. __m256i mantissa_loss = _mm256_set1_epi64x(cDoubleToFloatMantissaLoss);
  800. __m256d value_and_mantissa_loss = _mm256_and_pd(mValue, _mm256_castsi256_pd(mantissa_loss));
  801. __m256d is_zero = _mm256_cmp_pd(value_and_mantissa_loss, _mm256_setzero_pd(), _CMP_EQ_OQ);
  802. __m256d value_or_mantissa_loss = _mm256_or_pd(mValue, _mm256_castsi256_pd(mantissa_loss));
  803. return _mm256_blendv_pd(value_or_mantissa_loss, mValue, is_zero);
  804. #elif defined(JPH_USE_SSE4_1)
  805. __m128i mantissa_loss = _mm_set1_epi64x(cDoubleToFloatMantissaLoss);
  806. __m128d zero = _mm_setzero_pd();
  807. __m128d value_and_mantissa_loss_low = _mm_and_pd(mValue.mLow, _mm_castsi128_pd(mantissa_loss));
  808. __m128d is_zero_low = _mm_cmpeq_pd(value_and_mantissa_loss_low, zero);
  809. __m128d value_or_mantissa_loss_low = _mm_or_pd(mValue.mLow, _mm_castsi128_pd(mantissa_loss));
  810. __m128d value_and_mantissa_loss_high = _mm_and_pd(mValue.mHigh, _mm_castsi128_pd(mantissa_loss));
  811. __m128d is_zero_high = _mm_cmpeq_pd(value_and_mantissa_loss_high, zero);
  812. __m128d value_or_mantissa_loss_high = _mm_or_pd(mValue.mHigh, _mm_castsi128_pd(mantissa_loss));
  813. return DVec3({ _mm_blendv_pd(value_or_mantissa_loss_low, mValue.mLow, is_zero_low), _mm_blendv_pd(value_or_mantissa_loss_high, mValue.mHigh, is_zero_high) });
  814. #elif defined(JPH_USE_NEON)
  815. float64x2_t mantissa_loss = vreinterpretq_f64_u64(vdupq_n_u64(cDoubleToFloatMantissaLoss));
  816. float64x2_t zero = vdupq_n_f64(0.0);
  817. float64x2_t value_and_mantissa_loss_low = vandq_s64(mValue.val[0], mantissa_loss);
  818. float64x2_t is_zero_low = vceqq_f64(value_and_mantissa_loss_low, zero);
  819. float64x2_t value_or_mantissa_loss_low = vorrq_s64(mValue.val[0], mantissa_loss);
  820. float64x2_t value_and_mantissa_loss_high = vandq_s64(mValue.val[1], mantissa_loss);
  821. float64x2_t value_low = vbslq_f64(is_zero_low, mValue.val[0], value_or_mantissa_loss_low);
  822. float64x2_t is_zero_high = vceqq_f64(value_and_mantissa_loss_high, zero);
  823. float64x2_t value_or_mantissa_loss_high = vorrq_s64(mValue.val[1], mantissa_loss);
  824. float64x2_t value_high = vbslq_f64(is_zero_high, mValue.val[1], value_or_mantissa_loss_high);
  825. return DVec3({ value_low, value_high });
  826. #else
  827. uint64 ux = BitCast<uint64>(mF64[0]);
  828. uint64 uy = BitCast<uint64>(mF64[1]);
  829. uint64 uz = BitCast<uint64>(mF64[2]);
  830. double x = BitCast<double>((ux & cDoubleToFloatMantissaLoss) == 0? ux : (ux | cDoubleToFloatMantissaLoss));
  831. double y = BitCast<double>((uy & cDoubleToFloatMantissaLoss) == 0? uy : (uy | cDoubleToFloatMantissaLoss));
  832. double z = BitCast<double>((uz & cDoubleToFloatMantissaLoss) == 0? uz : (uz | cDoubleToFloatMantissaLoss));
  833. return DVec3(x, y, z);
  834. #endif
  835. }
  836. Vec3 DVec3::ToVec3RoundDown() const
  837. {
  838. DVec3 to_zero = PrepareRoundToZero();
  839. DVec3 to_inf = PrepareRoundToInf();
  840. return Vec3(DVec3::sSelect(to_zero, to_inf, DVec3::sLess(*this, DVec3::sZero())));
  841. }
  842. Vec3 DVec3::ToVec3RoundUp() const
  843. {
  844. DVec3 to_zero = PrepareRoundToZero();
  845. DVec3 to_inf = PrepareRoundToInf();
  846. return Vec3(DVec3::sSelect(to_inf, to_zero, DVec3::sLess(*this, DVec3::sZero())));
  847. }
  848. JPH_NAMESPACE_END