SliderConstraint.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt.h>
  4. #include <Physics/Constraints/SliderConstraint.h>
  5. #include <Physics/Body/Body.h>
  6. #include <ObjectStream/TypeDeclarations.h>
  7. #include <Core/StreamIn.h>
  8. #include <Core/StreamOut.h>
  9. #ifdef JPH_DEBUG_RENDERER
  10. #include <Renderer/DebugRenderer.h>
  11. #endif // JPH_DEBUG_RENDERER
  12. namespace JPH {
  13. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  14. {
  15. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  16. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
  17. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
  18. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
  21. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
  22. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  23. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  24. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  25. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  26. }
  27. void SliderConstraintSettings::SetPoint(const Body &inBody1, const Body &inBody2)
  28. {
  29. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point, otherwise use the mid point between the two center of masses
  30. Vec3 anchor;
  31. if (!inBody1.CanBeKinematicOrDynamic())
  32. anchor = inBody2.GetCenterOfMassPosition();
  33. else if (!inBody2.CanBeKinematicOrDynamic())
  34. anchor = inBody1.GetCenterOfMassPosition();
  35. else
  36. anchor = 0.5f * (inBody1.GetCenterOfMassPosition() + inBody2.GetCenterOfMassPosition());
  37. mPoint1 = mPoint2 = anchor;
  38. }
  39. void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
  40. {
  41. mSliderAxis1 = mSliderAxis2 = inSliderAxis;
  42. mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
  43. }
  44. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  45. {
  46. ConstraintSettings::SaveBinaryState(inStream);
  47. inStream.Write(mPoint1);
  48. inStream.Write(mSliderAxis1);
  49. inStream.Write(mNormalAxis1);
  50. inStream.Write(mPoint2);
  51. inStream.Write(mSliderAxis2);
  52. inStream.Write(mNormalAxis2);
  53. inStream.Write(mLimitsMin);
  54. inStream.Write(mLimitsMax);
  55. inStream.Write(mMaxFrictionForce);
  56. mMotorSettings.SaveBinaryState(inStream);
  57. }
  58. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  59. {
  60. ConstraintSettings::RestoreBinaryState(inStream);
  61. inStream.Read(mPoint1);
  62. inStream.Read(mSliderAxis1);
  63. inStream.Read(mNormalAxis1);
  64. inStream.Read(mPoint2);
  65. inStream.Read(mSliderAxis2);
  66. inStream.Read(mNormalAxis2);
  67. inStream.Read(mLimitsMin);
  68. inStream.Read(mLimitsMax);
  69. inStream.Read(mMaxFrictionForce);
  70. mMotorSettings.RestoreBinaryState(inStream);
  71. }
  72. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  73. {
  74. return new SliderConstraint(inBody1, inBody2, *this);
  75. }
  76. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  77. TwoBodyConstraint(inBody1, inBody2, inSettings),
  78. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  79. mMotorSettings(inSettings.mMotorSettings)
  80. {
  81. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  82. // Store local positions
  83. mLocalSpacePosition1 = inv_transform1 * inSettings.mPoint1;
  84. mLocalSpacePosition2 = inBody2.GetInverseCenterOfMassTransform() * inSettings.mPoint2;
  85. // Store local sliding axis
  86. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(inSettings.mSliderAxis1).Normalized();
  87. // Store local space normals
  88. mLocalSpaceNormal1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
  89. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  90. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  91. if (inSettings.mSliderAxis1 == inSettings.mSliderAxis2 && inSettings.mNormalAxis1 == inSettings.mNormalAxis2)
  92. {
  93. // Bodies are in their neutral poses, no need to take slider and normal axis into account
  94. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientation(inBody1, inBody2);
  95. }
  96. else
  97. {
  98. // Bodies are not in their neutral pose, need to adjust initial rotation for it
  99. // Form two world space constraint matrices C1, C2
  100. // Body 1 needs to be rotated by D to get it into neutral pose: C2 = D C1 <=> D = C2 C1^1
  101. // so instead of using body1 rotation as above use D R1 = C2 C1^-1 R1
  102. Mat44 constraint1(Vec4(inSettings.mSliderAxis1, 0), Vec4(inSettings.mNormalAxis1, 0), Vec4(inSettings.mSliderAxis1.Cross(inSettings.mNormalAxis1), 0), Vec4(0, 0, 0, 1));
  103. Mat44 constraint2(Vec4(inSettings.mSliderAxis2, 0), Vec4(inSettings.mNormalAxis2, 0), Vec4(inSettings.mSliderAxis2.Cross(inSettings.mNormalAxis2), 0), Vec4(0, 0, 0, 1));
  104. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated() * inBody1.GetRotation();
  105. }
  106. // Store limits
  107. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax, "Better use a fixed constraint");
  108. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  109. }
  110. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  111. {
  112. JPH_ASSERT(inLimitsMin <= 0.0f);
  113. JPH_ASSERT(inLimitsMax >= 0.0f);
  114. mLimitsMin = inLimitsMin;
  115. mLimitsMax = inLimitsMax;
  116. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  117. }
  118. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  119. {
  120. // Calculate points relative to body
  121. mR1 = inRotation1 * mLocalSpacePosition1;
  122. mR2 = inRotation2 * mLocalSpacePosition2;
  123. // Calculate X2 + R2 - X1 - R1
  124. mU = mBody2->GetCenterOfMassPosition() + mR2 - mBody1->GetCenterOfMassPosition() - mR1;
  125. }
  126. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  127. {
  128. // Calculate world space normals
  129. mN1 = inRotation1 * mLocalSpaceNormal1;
  130. mN2 = inRotation1 * mLocalSpaceNormal2;
  131. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  132. }
  133. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  134. {
  135. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  136. {
  137. // Calculate world space slider axis
  138. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  139. // Calculate slide distance along axis
  140. mD = mU.Dot(mWorldSpaceSliderAxis);
  141. }
  142. }
  143. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime, Mat44Arg inRotation1)
  144. {
  145. // Check if distance is within limits
  146. if (mHasLimits && (mD <= mLimitsMin || mD >= mLimitsMax))
  147. mPositionLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  148. else
  149. mPositionLimitsConstraintPart.Deactivate();
  150. }
  151. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  152. {
  153. switch (mMotorState)
  154. {
  155. case EMotorState::Off:
  156. if (mMaxFrictionForce > 0.0f)
  157. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  158. else
  159. mMotorConstraintPart.Deactivate();
  160. break;
  161. case EMotorState::Velocity:
  162. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  163. break;
  164. case EMotorState::Position:
  165. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mFrequency, mMotorSettings.mDamping);
  166. break;
  167. }
  168. }
  169. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  170. {
  171. // Calculate constraint properties that are constant while bodies don't move
  172. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  173. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  174. CalculateR1R2U(rotation1, rotation2);
  175. CalculatePositionConstraintProperties(rotation1, rotation2);
  176. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  177. CalculateSlidingAxisAndPosition(rotation1);
  178. CalculatePositionLimitsConstraintProperties(inDeltaTime, rotation1);
  179. CalculateMotorConstraintProperties(inDeltaTime);
  180. }
  181. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  182. {
  183. // Warm starting: Apply previous frame impulse
  184. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  185. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  186. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  187. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  188. }
  189. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  190. {
  191. // Solve motor
  192. bool motor = false;
  193. if (mMotorConstraintPart.IsActive())
  194. {
  195. switch (mMotorState)
  196. {
  197. case EMotorState::Off:
  198. {
  199. float max_lambda = mMaxFrictionForce * inDeltaTime;
  200. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  201. break;
  202. }
  203. case EMotorState::Velocity:
  204. case EMotorState::Position:
  205. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  206. break;
  207. }
  208. }
  209. // Solve position constraint along 2 axis
  210. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  211. // Solve rotation constraint
  212. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  213. // Solve limits along slider axis
  214. bool limit = false;
  215. if (mPositionLimitsConstraintPart.IsActive())
  216. {
  217. if (mD <= mLimitsMin)
  218. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, 0, FLT_MAX);
  219. else
  220. {
  221. JPH_ASSERT(mD >= mLimitsMax);
  222. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -FLT_MAX, 0);
  223. }
  224. }
  225. return motor || pos || rot || limit;
  226. }
  227. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  228. {
  229. // Motor operates on velocities only, don't call SolvePositionConstraint
  230. // Solve position constraint along 2 axis
  231. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  232. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  233. CalculateR1R2U(rotation1, rotation2);
  234. CalculatePositionConstraintProperties(rotation1, rotation2);
  235. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  236. // Solve rotation constraint
  237. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  238. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  239. // Solve limits along slider axis
  240. bool limit = false;
  241. if (mHasLimits)
  242. {
  243. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  244. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  245. CalculateR1R2U(rotation1, rotation2);
  246. CalculateSlidingAxisAndPosition(rotation1);
  247. CalculatePositionLimitsConstraintProperties(inDeltaTime, rotation1);
  248. if (mPositionLimitsConstraintPart.IsActive())
  249. {
  250. if (mD <= mLimitsMin)
  251. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  252. else
  253. {
  254. JPH_ASSERT(mD >= mLimitsMax);
  255. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  256. }
  257. }
  258. }
  259. return pos || rot || limit;
  260. }
  261. #ifdef JPH_DEBUG_RENDERER
  262. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  263. {
  264. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  265. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  266. // Transform the local positions into world space
  267. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  268. Vec3 position1 = transform1 * mLocalSpacePosition1;
  269. Vec3 position2 = transform2 * mLocalSpacePosition2;
  270. // Draw constraint
  271. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  272. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  273. inRenderer->DrawLine(position1, position2, Color::sGreen);
  274. // Draw motor
  275. switch (mMotorState)
  276. {
  277. case EMotorState::Position:
  278. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  279. break;
  280. case EMotorState::Velocity:
  281. {
  282. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  283. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  284. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  285. break;
  286. }
  287. case EMotorState::Off:
  288. break;
  289. }
  290. }
  291. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  292. {
  293. if (mHasLimits)
  294. {
  295. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  296. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  297. // Transform the local positions into world space
  298. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  299. Vec3 position1 = transform1 * mLocalSpacePosition1;
  300. Vec3 position2 = transform2 * mLocalSpacePosition2;
  301. // Calculate the limits in world space
  302. Vec3 limits_min = position1 + mLimitsMin * slider_axis;
  303. Vec3 limits_max = position1 + mLimitsMax * slider_axis;
  304. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  305. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  306. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  307. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  308. }
  309. }
  310. #endif // JPH_DEBUG_RENDERER
  311. void SliderConstraint::SaveState(StateRecorder &inStream) const
  312. {
  313. TwoBodyConstraint::SaveState(inStream);
  314. mMotorConstraintPart.SaveState(inStream);
  315. mPositionConstraintPart.SaveState(inStream);
  316. mRotationConstraintPart.SaveState(inStream);
  317. mPositionLimitsConstraintPart.SaveState(inStream);
  318. inStream.Write(mMotorState);
  319. inStream.Write(mTargetVelocity);
  320. inStream.Write(mTargetPosition);
  321. }
  322. void SliderConstraint::RestoreState(StateRecorder &inStream)
  323. {
  324. TwoBodyConstraint::RestoreState(inStream);
  325. mMotorConstraintPart.RestoreState(inStream);
  326. mPositionConstraintPart.RestoreState(inStream);
  327. mRotationConstraintPart.RestoreState(inStream);
  328. mPositionLimitsConstraintPart.RestoreState(inStream);
  329. inStream.Read(mMotorState);
  330. inStream.Read(mTargetVelocity);
  331. inStream.Read(mTargetPosition);
  332. }
  333. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  334. {
  335. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  336. }
  337. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  338. {
  339. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  340. mat.SetTranslation(mLocalSpacePosition2);
  341. return mat;
  342. }
  343. } // JPH