HelloWorld.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. // The Jolt headers don't include Jolt.h. Always include Jolt.h before including any other Jolt header.
  4. // You can use Jolt.h in your precompiled header to speed up compilation.
  5. #include <Jolt/Jolt.h>
  6. // Jolt includes
  7. #include <Jolt/RegisterTypes.h>
  8. #include <Jolt/Core/Factory.h>
  9. #include <Jolt/Core/TempAllocator.h>
  10. #include <Jolt/Core/JobSystemThreadPool.h>
  11. #include <Jolt/Physics/PhysicsSettings.h>
  12. #include <Jolt/Physics/PhysicsSystem.h>
  13. #include <Jolt/Physics/Collision/Shape/BoxShape.h>
  14. #include <Jolt/Physics/Collision/Shape/SphereShape.h>
  15. #include <Jolt/Physics/Body/BodyCreationSettings.h>
  16. #include <Jolt/Physics/Body/BodyActivationListener.h>
  17. // STL includes
  18. #include <iostream>
  19. #include <cstdarg>
  20. #include <thread>
  21. // Disable common warnings triggered by Jolt, you can use JPH_SUPPRESS_WARNING_PUSH / JPH_SUPPRESS_WARNING_POP to store and restore the warning state
  22. JPH_SUPPRESS_WARNINGS
  23. // All Jolt symbols are in the JPH namespace
  24. using namespace JPH;
  25. // If you want your code to compile using single or double precision write 0.0_r to get a Real value that compiles to double or float depending if JPH_DOUBLE_PRECISION is set or not.
  26. using namespace JPH::literals;
  27. // We're also using STL classes in this example
  28. using namespace std;
  29. // Callback for traces, connect this to your own trace function if you have one
  30. static void TraceImpl(const char *inFMT, ...)
  31. {
  32. // Format the message
  33. va_list list;
  34. va_start(list, inFMT);
  35. char buffer[1024];
  36. vsnprintf(buffer, sizeof(buffer), inFMT, list);
  37. va_end(list);
  38. // Print to the TTY
  39. cout << buffer << endl;
  40. }
  41. #ifdef JPH_ENABLE_ASSERTS
  42. // Callback for asserts, connect this to your own assert handler if you have one
  43. static bool AssertFailedImpl(const char *inExpression, const char *inMessage, const char *inFile, uint inLine)
  44. {
  45. // Print to the TTY
  46. cout << inFile << ":" << inLine << ": (" << inExpression << ") " << (inMessage != nullptr? inMessage : "") << endl;
  47. // Breakpoint
  48. return true;
  49. };
  50. #endif // JPH_ENABLE_ASSERTS
  51. // Layer that objects can be in, determines which other objects it can collide with
  52. // Typically you at least want to have 1 layer for moving bodies and 1 layer for static bodies, but you can have more
  53. // layers if you want. E.g. you could have a layer for high detail collision (which is not used by the physics simulation
  54. // but only if you do collision testing).
  55. namespace Layers
  56. {
  57. static constexpr uint8 NON_MOVING = 0;
  58. static constexpr uint8 MOVING = 1;
  59. static constexpr uint8 NUM_LAYERS = 2;
  60. };
  61. /// Class that determines if two object layers can collide
  62. class ObjectLayerPairFilterImpl : public ObjectLayerPairFilter
  63. {
  64. public:
  65. virtual bool ShouldCollide(ObjectLayer inObject1, ObjectLayer inObject2) const override
  66. {
  67. switch (inObject1)
  68. {
  69. case Layers::NON_MOVING:
  70. return inObject2 == Layers::MOVING; // Non moving only collides with moving
  71. case Layers::MOVING:
  72. return true; // Moving collides with everything
  73. default:
  74. JPH_ASSERT(false);
  75. return false;
  76. }
  77. }
  78. };
  79. // Each broadphase layer results in a separate bounding volume tree in the broad phase. You at least want to have
  80. // a layer for non-moving and moving objects to avoid having to update a tree full of static objects every frame.
  81. // You can have a 1-on-1 mapping between object layers and broadphase layers (like in this case) but if you have
  82. // many object layers you'll be creating many broad phase trees, which is not efficient. If you want to fine tune
  83. // your broadphase layers define JPH_TRACK_BROADPHASE_STATS and look at the stats reported on the TTY.
  84. namespace BroadPhaseLayers
  85. {
  86. static constexpr BroadPhaseLayer NON_MOVING(0);
  87. static constexpr BroadPhaseLayer MOVING(1);
  88. static constexpr uint NUM_LAYERS(2);
  89. };
  90. // BroadPhaseLayerInterface implementation
  91. // This defines a mapping between object and broadphase layers.
  92. class BPLayerInterfaceImpl final : public BroadPhaseLayerInterface
  93. {
  94. public:
  95. BPLayerInterfaceImpl()
  96. {
  97. // Create a mapping table from object to broad phase layer
  98. mObjectToBroadPhase[Layers::NON_MOVING] = BroadPhaseLayers::NON_MOVING;
  99. mObjectToBroadPhase[Layers::MOVING] = BroadPhaseLayers::MOVING;
  100. }
  101. virtual uint GetNumBroadPhaseLayers() const override
  102. {
  103. return BroadPhaseLayers::NUM_LAYERS;
  104. }
  105. virtual BroadPhaseLayer GetBroadPhaseLayer(ObjectLayer inLayer) const override
  106. {
  107. JPH_ASSERT(inLayer < Layers::NUM_LAYERS);
  108. return mObjectToBroadPhase[inLayer];
  109. }
  110. #if defined(JPH_EXTERNAL_PROFILE) || defined(JPH_PROFILE_ENABLED)
  111. virtual const char * GetBroadPhaseLayerName(BroadPhaseLayer inLayer) const override
  112. {
  113. switch ((BroadPhaseLayer::Type)inLayer)
  114. {
  115. case (BroadPhaseLayer::Type)BroadPhaseLayers::NON_MOVING: return "NON_MOVING";
  116. case (BroadPhaseLayer::Type)BroadPhaseLayers::MOVING: return "MOVING";
  117. default: JPH_ASSERT(false); return "INVALID";
  118. }
  119. }
  120. #endif // JPH_EXTERNAL_PROFILE || JPH_PROFILE_ENABLED
  121. private:
  122. BroadPhaseLayer mObjectToBroadPhase[Layers::NUM_LAYERS];
  123. };
  124. /// Class that determines if an object layer can collide with a broadphase layer
  125. class ObjectVsBroadPhaseLayerFilterImpl : public ObjectVsBroadPhaseLayerFilter
  126. {
  127. public:
  128. virtual bool ShouldCollide(ObjectLayer inLayer1, BroadPhaseLayer inLayer2) const override
  129. {
  130. switch (inLayer1)
  131. {
  132. case Layers::NON_MOVING:
  133. return inLayer2 == BroadPhaseLayers::MOVING;
  134. case Layers::MOVING:
  135. return true;
  136. default:
  137. JPH_ASSERT(false);
  138. return false;
  139. }
  140. }
  141. };
  142. // An example contact listener
  143. class MyContactListener : public ContactListener
  144. {
  145. public:
  146. // See: ContactListener
  147. virtual ValidateResult OnContactValidate(const Body &inBody1, const Body &inBody2, RVec3Arg inBaseOffset, const CollideShapeResult &inCollisionResult) override
  148. {
  149. cout << "Contact validate callback" << endl;
  150. // Allows you to ignore a contact before it is created (using layers to not make objects collide is cheaper!)
  151. return ValidateResult::AcceptAllContactsForThisBodyPair;
  152. }
  153. virtual void OnContactAdded(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  154. {
  155. cout << "A contact was added" << endl;
  156. }
  157. virtual void OnContactPersisted(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  158. {
  159. cout << "A contact was persisted" << endl;
  160. }
  161. virtual void OnContactRemoved(const SubShapeIDPair &inSubShapePair) override
  162. {
  163. cout << "A contact was removed" << endl;
  164. }
  165. };
  166. // An example activation listener
  167. class MyBodyActivationListener : public BodyActivationListener
  168. {
  169. public:
  170. virtual void OnBodyActivated(const BodyID &inBodyID, uint64 inBodyUserData) override
  171. {
  172. cout << "A body got activated" << endl;
  173. }
  174. virtual void OnBodyDeactivated(const BodyID &inBodyID, uint64 inBodyUserData) override
  175. {
  176. cout << "A body went to sleep" << endl;
  177. }
  178. };
  179. // Program entry point
  180. int main(int argc, char** argv)
  181. {
  182. // Register allocation hook
  183. RegisterDefaultAllocator();
  184. // Install callbacks
  185. Trace = TraceImpl;
  186. JPH_IF_ENABLE_ASSERTS(AssertFailed = AssertFailedImpl;)
  187. // Create a factory
  188. Factory::sInstance = new Factory();
  189. // Register all Jolt physics types
  190. RegisterTypes();
  191. // We need a temp allocator for temporary allocations during the physics update. We're
  192. // pre-allocating 10 MB to avoid having to do allocations during the physics update.
  193. // B.t.w. 10 MB is way too much for this example but it is a typical value you can use.
  194. // If you don't want to pre-allocate you can also use TempAllocatorMalloc to fall back to
  195. // malloc / free.
  196. TempAllocatorImpl temp_allocator(10 * 1024 * 1024);
  197. // We need a job system that will execute physics jobs on multiple threads. Typically
  198. // you would implement the JobSystem interface yourself and let Jolt Physics run on top
  199. // of your own job scheduler. JobSystemThreadPool is an example implementation.
  200. JobSystemThreadPool job_system(cMaxPhysicsJobs, cMaxPhysicsBarriers, thread::hardware_concurrency() - 1);
  201. // This is the max amount of rigid bodies that you can add to the physics system. If you try to add more you'll get an error.
  202. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  203. const uint cMaxBodies = 1024;
  204. // This determines how many mutexes to allocate to protect rigid bodies from concurrent access. Set it to 0 for the default settings.
  205. const uint cNumBodyMutexes = 0;
  206. // This is the max amount of body pairs that can be queued at any time (the broad phase will detect overlapping
  207. // body pairs based on their bounding boxes and will insert them into a queue for the narrowphase). If you make this buffer
  208. // too small the queue will fill up and the broad phase jobs will start to do narrow phase work. This is slightly less efficient.
  209. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  210. const uint cMaxBodyPairs = 1024;
  211. // This is the maximum size of the contact constraint buffer. If more contacts (collisions between bodies) are detected than this
  212. // number then these contacts will be ignored and bodies will start interpenetrating / fall through the world.
  213. // Note: This value is low because this is a simple test. For a real project use something in the order of 10240.
  214. const uint cMaxContactConstraints = 1024;
  215. // Create mapping table from object layer to broadphase layer
  216. // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
  217. BPLayerInterfaceImpl broad_phase_layer_interface;
  218. // Create class that filters object vs broadphase layers
  219. // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
  220. ObjectVsBroadPhaseLayerFilterImpl object_vs_broadphase_layer_filter;
  221. // Create class that filters object vs object layers
  222. // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
  223. ObjectLayerPairFilterImpl object_vs_object_layer_filter;
  224. // Now we can create the actual physics system.
  225. PhysicsSystem physics_system;
  226. physics_system.Init(cMaxBodies, cNumBodyMutexes, cMaxBodyPairs, cMaxContactConstraints, broad_phase_layer_interface, object_vs_broadphase_layer_filter, object_vs_object_layer_filter);
  227. // A body activation listener gets notified when bodies activate and go to sleep
  228. // Note that this is called from a job so whatever you do here needs to be thread safe.
  229. // Registering one is entirely optional.
  230. MyBodyActivationListener body_activation_listener;
  231. physics_system.SetBodyActivationListener(&body_activation_listener);
  232. // A contact listener gets notified when bodies (are about to) collide, and when they separate again.
  233. // Note that this is called from a job so whatever you do here needs to be thread safe.
  234. // Registering one is entirely optional.
  235. MyContactListener contact_listener;
  236. physics_system.SetContactListener(&contact_listener);
  237. // The main way to interact with the bodies in the physics system is through the body interface. There is a locking and a non-locking
  238. // variant of this. We're going to use the locking version (even though we're not planning to access bodies from multiple threads)
  239. BodyInterface &body_interface = physics_system.GetBodyInterface();
  240. // Next we can create a rigid body to serve as the floor, we make a large box
  241. // Create the settings for the collision volume (the shape).
  242. // Note that for simple shapes (like boxes) you can also directly construct a BoxShape.
  243. BoxShapeSettings floor_shape_settings(Vec3(100.0f, 1.0f, 100.0f));
  244. // Create the shape
  245. ShapeSettings::ShapeResult floor_shape_result = floor_shape_settings.Create();
  246. ShapeRefC floor_shape = floor_shape_result.Get(); // We don't expect an error here, but you can check floor_shape_result for HasError() / GetError()
  247. // Create the settings for the body itself. Note that here you can also set other properties like the restitution / friction.
  248. BodyCreationSettings floor_settings(floor_shape, RVec3(0.0_r, -1.0_r, 0.0_r), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING);
  249. // Create the actual rigid body
  250. Body *floor = body_interface.CreateBody(floor_settings); // Note that if we run out of bodies this can return nullptr
  251. // Add it to the world
  252. body_interface.AddBody(floor->GetID(), EActivation::DontActivate);
  253. // Now create a dynamic body to bounce on the floor
  254. // Note that this uses the shorthand version of creating and adding a body to the world
  255. BodyCreationSettings sphere_settings(new SphereShape(0.5f), RVec3(0.0_r, 2.0_r, 0.0_r), Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING);
  256. BodyID sphere_id = body_interface.CreateAndAddBody(sphere_settings, EActivation::Activate);
  257. // Now you can interact with the dynamic body, in this case we're going to give it a velocity.
  258. // (note that if we had used CreateBody then we could have set the velocity straight on the body before adding it to the physics system)
  259. body_interface.SetLinearVelocity(sphere_id, Vec3(0.0f, -5.0f, 0.0f));
  260. // We simulate the physics world in discrete time steps. 60 Hz is a good rate to update the physics system.
  261. const float cDeltaTime = 1.0f / 60.0f;
  262. // Optional step: Before starting the physics simulation you can optimize the broad phase. This improves collision detection performance (it's pointless here because we only have 2 bodies).
  263. // You should definitely not call this every frame or when e.g. streaming in a new level section as it is an expensive operation.
  264. // Instead insert all new objects in batches instead of 1 at a time to keep the broad phase efficient.
  265. physics_system.OptimizeBroadPhase();
  266. // Now we're ready to simulate the body, keep simulating until it goes to sleep
  267. uint step = 0;
  268. while (body_interface.IsActive(sphere_id))
  269. {
  270. // Next step
  271. ++step;
  272. // Output current position and velocity of the sphere
  273. RVec3 position = body_interface.GetCenterOfMassPosition(sphere_id);
  274. Vec3 velocity = body_interface.GetLinearVelocity(sphere_id);
  275. cout << "Step " << step << ": Position = (" << position.GetX() << ", " << position.GetY() << ", " << position.GetZ() << "), Velocity = (" << velocity.GetX() << ", " << velocity.GetY() << ", " << velocity.GetZ() << ")" << endl;
  276. // If you take larger steps than 1 / 60th of a second you need to do multiple collision steps in order to keep the simulation stable. Do 1 collision step per 1 / 60th of a second (round up).
  277. const int cCollisionSteps = 1;
  278. // If you want more accurate step results you can do multiple sub steps within a collision step. Usually you would set this to 1.
  279. const int cIntegrationSubSteps = 1;
  280. // Step the world
  281. physics_system.Update(cDeltaTime, cCollisionSteps, cIntegrationSubSteps, &temp_allocator, &job_system);
  282. }
  283. // Remove the sphere from the physics system. Note that the sphere itself keeps all of its state and can be re-added at any time.
  284. body_interface.RemoveBody(sphere_id);
  285. // Destroy the sphere. After this the sphere ID is no longer valid.
  286. body_interface.DestroyBody(sphere_id);
  287. // Remove and destroy the floor
  288. body_interface.RemoveBody(floor->GetID());
  289. body_interface.DestroyBody(floor->GetID());
  290. // Destroy the factory
  291. delete Factory::sInstance;
  292. Factory::sInstance = nullptr;
  293. return 0;
  294. }