123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #include <Jolt/Jolt.h>
- #include <Jolt/Physics/Collision/EstimateCollisionResponse.h>
- #include <Jolt/Physics/Body/Body.h>
- JPH_NAMESPACE_BEGIN
- void EstimateCollisionResponse(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, Vec3 &outLinearVelocity1, Vec3 &outAngularVelocity1, Vec3 &outLinearVelocity2, Vec3 &outAngularVelocity2, ContactImpulses &outContactImpulses, float inCombinedRestitution, float inMinVelocityForRestitution, uint inNumIterations)
- {
- // Note this code is based on AxisConstraintPart, see that class for more comments on the math
- // Start with zero impulses
- outContactImpulses.resize(inManifold.mRelativeContactPointsOn1.size());
- for (float &impulse : outContactImpulses)
- impulse = 0.0f;
- // Get body velocities
- EMotionType motion_type1 = inBody1.GetMotionType();
- const MotionProperties *motion_properties1 = inBody1.GetMotionPropertiesUnchecked();
- if (motion_type1 != EMotionType::Static)
- {
- outLinearVelocity1 = motion_properties1->GetLinearVelocity();
- outAngularVelocity1 = motion_properties1->GetAngularVelocity();
- }
- else
- outLinearVelocity1 = outAngularVelocity1 = Vec3::sZero();
- EMotionType motion_type2 = inBody2.GetMotionType();
- const MotionProperties *motion_properties2 = inBody2.GetMotionPropertiesUnchecked();
- if (motion_type2 != EMotionType::Static)
- {
- outLinearVelocity2 = motion_properties2->GetLinearVelocity();
- outAngularVelocity2 = motion_properties2->GetAngularVelocity();
- }
- else
- outLinearVelocity2 = outAngularVelocity2 = Vec3::sZero();
- // Get inverse mass and inertia
- float inv_m1, inv_m2;
- Mat44 inv_i1, inv_i2;
- if (motion_type1 == EMotionType::Dynamic)
- {
- inv_m1 = motion_properties1->GetInverseMass();
- inv_i1 = inBody1.GetInverseInertia();
- }
- else
- {
- inv_m1 = 0.0f;
- inv_i1 = Mat44::sZero();
- }
- if (motion_type2 == EMotionType::Dynamic)
- {
- inv_m2 = motion_properties2->GetInverseMass();
- inv_i2 = inBody2.GetInverseInertia();
- }
- else
- {
- inv_m2 = 0.0f;
- inv_i2 = Mat44::sZero();
- }
- // Get center of masses relative to the base offset
- Vec3 com1 = Vec3(inBody1.GetCenterOfMassPosition() - inManifold.mBaseOffset);
- Vec3 com2 = Vec3(inBody2.GetCenterOfMassPosition() - inManifold.mBaseOffset);
- struct ContactConstraint
- {
- Vec3 mR1PlusUxAxis;
- Vec3 mR2xAxis;
- Vec3 mInvI1_R1PlusUxAxis;
- Vec3 mInvI2_R2xAxis;
- float mEffectiveMass;
- float mBias;
- };
- // Initialize the constraint properties
- ContactConstraint constraints[ContactPoints::capacity()];
- JPH_ASSERT(inManifold.mRelativeContactPointsOn1.size() == inManifold.mRelativeContactPointsOn2.size());
- for (uint c = 0; c < inManifold.mRelativeContactPointsOn1.size(); ++c)
- {
- ContactConstraint &contact = constraints[c];
- // Calculate contact points relative to body 1 and 2
- Vec3 p = 0.5f * (inManifold.mRelativeContactPointsOn1[c] + inManifold.mRelativeContactPointsOn2[c]);
- Vec3 r1 = p - com1;
- Vec3 r2 = p - com2;
- // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
- contact.mR1PlusUxAxis = r1.Cross(inManifold.mWorldSpaceNormal);
- contact.mR2xAxis = r2.Cross(inManifold.mWorldSpaceNormal);
- contact.mInvI1_R1PlusUxAxis = inv_i1.Multiply3x3(contact.mR1PlusUxAxis);
- contact.mInvI2_R2xAxis = inv_i2.Multiply3x3(contact.mR2xAxis);
- contact.mEffectiveMass = 1.0f / (inv_m1 + contact.mInvI1_R1PlusUxAxis.Dot(contact.mR1PlusUxAxis) + inv_m2 + contact.mInvI2_R2xAxis.Dot(contact.mR2xAxis));
- // Handle elastic collisions
- contact.mBias = 0.0f;
- if (inCombinedRestitution > 0.0f)
- {
- // Calculate velocity of contact point
- Vec3 relative_velocity = outLinearVelocity2 + outAngularVelocity2.Cross(r2) - outLinearVelocity1 - outAngularVelocity1.Cross(r1);
- float normal_velocity = relative_velocity.Dot(inManifold.mWorldSpaceNormal);
- // If it is big enough, apply restitution
- if (normal_velocity < -inMinVelocityForRestitution)
- contact.mBias = inCombinedRestitution * normal_velocity;
- }
- }
- // If there's only 1 contact point, we only need 1 iteration
- int num_iterations = inManifold.mRelativeContactPointsOn1.size() == 1? 1 : inNumIterations;
- // Calculate the impulse needed to resolve the contacts
- for (int iteration = 0; iteration < num_iterations; ++iteration)
- for (uint c = 0; c < inManifold.mRelativeContactPointsOn1.size(); ++c)
- {
- const ContactConstraint &contact = constraints[c];
- float &total_lambda = outContactImpulses[c];
- // Calculate jacobian multiplied by linear/angular velocity
- float jv = inManifold.mWorldSpaceNormal.Dot(outLinearVelocity1 - outLinearVelocity2) + contact.mR1PlusUxAxis.Dot(outAngularVelocity1) - contact.mR2xAxis.Dot(outAngularVelocity2);
- // Lagrange multiplier is:
- //
- // lambda = -K^-1 (J v + b)
- float lambda = contact.mEffectiveMass * (jv - contact.mBias);
- float new_lambda = max(total_lambda + lambda, 0.0f); // Clamp impulse
- lambda = new_lambda - total_lambda; // Lambda potentially got clamped, calculate the new impulse to apply
- total_lambda = new_lambda; // Store accumulated impulse
- // Apply impulse to body velocities
- outLinearVelocity1 -= (lambda * inv_m1) * inManifold.mWorldSpaceNormal;
- outAngularVelocity1 -= lambda * contact.mInvI1_R1PlusUxAxis;
- outLinearVelocity2 += (lambda * inv_m2) * inManifold.mWorldSpaceNormal;
- outAngularVelocity2 += lambda * contact.mInvI2_R2xAxis;
- }
- }
- JPH_NAMESPACE_END
|