12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2023 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #include <Jolt/Jolt.h>
- #include <Jolt/Physics/SoftBody/SoftBodySharedSettings.h>
- #include <Jolt/Physics/SoftBody/SoftBodyUpdateContext.h>
- #include <Jolt/ObjectStream/TypeDeclarations.h>
- #include <Jolt/Core/StreamIn.h>
- #include <Jolt/Core/StreamOut.h>
- #include <Jolt/Core/QuickSort.h>
- #include <Jolt/Core/UnorderedMap.h>
- #include <Jolt/Core/UnorderedSet.h>
- #include <Jolt/Core/BinaryHeap.h>
- JPH_NAMESPACE_BEGIN
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::Vertex)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Vertex, mPosition)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Vertex, mVelocity)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Vertex, mInvMass)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::Face)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Face, mVertex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Face, mMaterialIndex)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::Edge)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Edge, mVertex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Edge, mRestLength)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Edge, mCompliance)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::RodStretchShear)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::RodStretchShear, mVertex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::RodStretchShear, mLength)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::RodStretchShear, mInvMass)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::RodStretchShear, mCompliance)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::RodStretchShear, mBishop)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::RodBendTwist)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::RodBendTwist, mRod)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::RodBendTwist, mCompliance)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::RodBendTwist, mOmega0)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::DihedralBend)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::DihedralBend, mVertex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::DihedralBend, mCompliance)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::DihedralBend, mInitialAngle)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::Volume)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Volume, mVertex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Volume, mSixRestVolume)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Volume, mCompliance)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::InvBind)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::InvBind, mJointIndex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::InvBind, mInvBind)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::SkinWeight)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::SkinWeight, mInvBindIndex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::SkinWeight, mWeight)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::Skinned)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Skinned, mVertex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Skinned, mWeights)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Skinned, mMaxDistance)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Skinned, mBackStopDistance)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::Skinned, mBackStopRadius)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings::LRA)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::LRA, mVertex)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings::LRA, mMaxDistance)
- }
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(SoftBodySharedSettings)
- {
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mVertices)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mFaces)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mEdgeConstraints)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mDihedralBendConstraints)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mVolumeConstraints)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mSkinnedConstraints)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mInvBindMatrices)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mLRAConstraints)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mRodStretchShearConstraints)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mRodBendTwistConstraints)
- JPH_ADD_ATTRIBUTE(SoftBodySharedSettings, mMaterials)
- }
- void SoftBodySharedSettings::CalculateClosestKinematic()
- {
- // Check if we already calculated this
- if (!mClosestKinematic.empty())
- return;
- // Reserve output size
- mClosestKinematic.resize(mVertices.size());
- // Create a list of connected vertices
- Array<Array<uint32>> connectivity;
- connectivity.resize(mVertices.size());
- for (const Edge &e : mEdgeConstraints)
- {
- connectivity[e.mVertex[0]].push_back(e.mVertex[1]);
- connectivity[e.mVertex[1]].push_back(e.mVertex[0]);
- }
- for (const RodStretchShear &r : mRodStretchShearConstraints)
- {
- connectivity[r.mVertex[0]].push_back(r.mVertex[1]);
- connectivity[r.mVertex[1]].push_back(r.mVertex[0]);
- }
- // Use Dijkstra's algorithm to find the closest kinematic vertex for each vertex
- // See: https://en.wikipedia.org/wiki/Dijkstra's_algorithm
- //
- // An element in the open list
- struct Open
- {
- // Order so that we get the shortest distance first
- bool operator < (const Open &inRHS) const
- {
- return mDistance > inRHS.mDistance;
- }
- uint32 mVertex;
- float mDistance;
- };
- // Start with all kinematic elements
- Array<Open> to_visit;
- for (uint32 v = 0; v < mVertices.size(); ++v)
- if (mVertices[v].mInvMass == 0.0f)
- {
- mClosestKinematic[v].mVertex = v;
- mClosestKinematic[v].mHops = 0;
- mClosestKinematic[v].mDistance = 0.0f;
- to_visit.push_back({ v, 0.0f });
- BinaryHeapPush(to_visit.begin(), to_visit.end(), std::less<Open> { });
- }
- // Visit all vertices remembering the closest kinematic vertex and its distance
- JPH_IF_ENABLE_ASSERTS(float last_closest = 0.0f;)
- while (!to_visit.empty())
- {
- // Pop element from the open list
- BinaryHeapPop(to_visit.begin(), to_visit.end(), std::less<Open> { });
- Open current = to_visit.back();
- to_visit.pop_back();
- JPH_ASSERT(current.mDistance >= last_closest);
- JPH_IF_ENABLE_ASSERTS(last_closest = current.mDistance;)
- // Loop through all of its connected vertices
- for (uint32 v : connectivity[current.mVertex])
- {
- // Calculate distance from the current vertex to this target vertex and check if it is smaller
- float new_distance = current.mDistance + (Vec3(mVertices[v].mPosition) - Vec3(mVertices[current.mVertex].mPosition)).Length();
- if (new_distance < mClosestKinematic[v].mDistance)
- {
- // Remember new closest vertex
- mClosestKinematic[v].mVertex = mClosestKinematic[current.mVertex].mVertex;
- mClosestKinematic[v].mHops = mClosestKinematic[current.mVertex].mHops + 1;
- mClosestKinematic[v].mDistance = new_distance;
- to_visit.push_back({ v, new_distance });
- BinaryHeapPush(to_visit.begin(), to_visit.end(), std::less<Open> { });
- }
- }
- }
- }
- void SoftBodySharedSettings::CreateConstraints(const VertexAttributes *inVertexAttributes, uint inVertexAttributesLength, EBendType inBendType, float inAngleTolerance)
- {
- struct EdgeHelper
- {
- uint32 mVertex[2];
- uint32 mEdgeIdx;
- };
- // Create list of all edges
- Array<EdgeHelper> edges;
- edges.reserve(mFaces.size() * 3);
- for (const Face &f : mFaces)
- for (int i = 0; i < 3; ++i)
- {
- uint32 v0 = f.mVertex[i];
- uint32 v1 = f.mVertex[(i + 1) % 3];
- EdgeHelper e;
- e.mVertex[0] = min(v0, v1);
- e.mVertex[1] = max(v0, v1);
- e.mEdgeIdx = uint32(&f - mFaces.data()) * 3 + i;
- edges.push_back(e);
- }
- // Sort the edges
- QuickSort(edges.begin(), edges.end(), [](const EdgeHelper &inLHS, const EdgeHelper &inRHS) { return inLHS.mVertex[0] < inRHS.mVertex[0] || (inLHS.mVertex[0] == inRHS.mVertex[0] && inLHS.mVertex[1] < inRHS.mVertex[1]); });
- // Only add edges if one of the vertices is movable
- auto add_edge = [this](uint32 inVtx1, uint32 inVtx2, float inCompliance1, float inCompliance2) {
- if ((mVertices[inVtx1].mInvMass > 0.0f || mVertices[inVtx2].mInvMass > 0.0f)
- && inCompliance1 < FLT_MAX && inCompliance2 < FLT_MAX)
- {
- Edge temp_edge;
- temp_edge.mVertex[0] = inVtx1;
- temp_edge.mVertex[1] = inVtx2;
- temp_edge.mCompliance = 0.5f * (inCompliance1 + inCompliance2);
- temp_edge.mRestLength = (Vec3(mVertices[inVtx2].mPosition) - Vec3(mVertices[inVtx1].mPosition)).Length();
- JPH_ASSERT(temp_edge.mRestLength > 0.0f);
- mEdgeConstraints.push_back(temp_edge);
- }
- };
- // Helper function to get the attributes of a vertex
- auto attr = [inVertexAttributes, inVertexAttributesLength](uint32 inVertex) {
- return inVertexAttributes[min(inVertex, inVertexAttributesLength - 1)];
- };
- // Create the constraints
- float sq_sin_tolerance = Square(Sin(inAngleTolerance));
- float sq_cos_tolerance = Square(Cos(inAngleTolerance));
- mEdgeConstraints.clear();
- mEdgeConstraints.reserve(edges.size());
- for (Array<EdgeHelper>::size_type i = 0; i < edges.size(); ++i)
- {
- const EdgeHelper &e0 = edges[i];
- // Get attributes for the vertices of the edge
- const VertexAttributes &a0 = attr(e0.mVertex[0]);
- const VertexAttributes &a1 = attr(e0.mVertex[1]);
- // Flag that indicates if this edge is a shear edge (if 2 triangles form a quad-like shape and this edge is on the diagonal)
- bool is_shear = false;
- // Test if there are any shared edges
- for (Array<EdgeHelper>::size_type j = i + 1; j < edges.size(); ++j)
- {
- const EdgeHelper &e1 = edges[j];
- if (e0.mVertex[0] == e1.mVertex[0] && e0.mVertex[1] == e1.mVertex[1])
- {
- // Get opposing vertices
- const Face &f0 = mFaces[e0.mEdgeIdx / 3];
- const Face &f1 = mFaces[e1.mEdgeIdx / 3];
- uint32 vopposite0 = f0.mVertex[(e0.mEdgeIdx + 2) % 3];
- uint32 vopposite1 = f1.mVertex[(e1.mEdgeIdx + 2) % 3];
- const VertexAttributes &a_opposite0 = attr(vopposite0);
- const VertexAttributes &a_opposite1 = attr(vopposite1);
- // If the opposite vertices happen to be the same vertex then we have 2 triangles back to back and we skip creating shear / bend constraints
- if (vopposite0 == vopposite1)
- continue;
- // Faces should be roughly in a plane
- Vec3 n0 = (Vec3(mVertices[f0.mVertex[2]].mPosition) - Vec3(mVertices[f0.mVertex[0]].mPosition)).Cross(Vec3(mVertices[f0.mVertex[1]].mPosition) - Vec3(mVertices[f0.mVertex[0]].mPosition));
- Vec3 n1 = (Vec3(mVertices[f1.mVertex[2]].mPosition) - Vec3(mVertices[f1.mVertex[0]].mPosition)).Cross(Vec3(mVertices[f1.mVertex[1]].mPosition) - Vec3(mVertices[f1.mVertex[0]].mPosition));
- float n0_dot_n1 = n0.Dot(n1);
- if (n0_dot_n1 > 0.0f
- && Square(n0_dot_n1) > sq_cos_tolerance * n0.LengthSq() * n1.LengthSq())
- {
- // Faces should approximately form a quad
- Vec3 e0_dir = Vec3(mVertices[vopposite0].mPosition) - Vec3(mVertices[e0.mVertex[0]].mPosition);
- Vec3 e1_dir = Vec3(mVertices[vopposite1].mPosition) - Vec3(mVertices[e0.mVertex[0]].mPosition);
- if (Square(e0_dir.Dot(e1_dir)) < sq_sin_tolerance * e0_dir.LengthSq() * e1_dir.LengthSq())
- {
- // Shear constraint
- add_edge(vopposite0, vopposite1, a_opposite0.mShearCompliance, a_opposite1.mShearCompliance);
- is_shear = true;
- }
- }
- // Bend constraint
- switch (inBendType)
- {
- case EBendType::None:
- // Do nothing
- break;
- case EBendType::Distance:
- // Create an edge constraint to represent the bend constraint
- // Use the bend compliance of the shared edge
- if (!is_shear)
- add_edge(vopposite0, vopposite1, a0.mBendCompliance, a1.mBendCompliance);
- break;
- case EBendType::Dihedral:
- // Test if both opposite vertices are free to move
- if ((mVertices[vopposite0].mInvMass > 0.0f || mVertices[vopposite1].mInvMass > 0.0f)
- && a0.mBendCompliance < FLT_MAX && a1.mBendCompliance < FLT_MAX)
- {
- // Create a bend constraint
- // Use the bend compliance of the shared edge
- mDihedralBendConstraints.emplace_back(e0.mVertex[0], e0.mVertex[1], vopposite0, vopposite1, 0.5f * (a0.mBendCompliance + a1.mBendCompliance));
- }
- break;
- }
- }
- else
- {
- // Start iterating from the first non-shared edge
- i = j - 1;
- break;
- }
- }
- // Create a edge constraint for the current edge
- add_edge(e0.mVertex[0], e0.mVertex[1], is_shear? a0.mShearCompliance : a0.mCompliance, is_shear? a1.mShearCompliance : a1.mCompliance);
- }
- mEdgeConstraints.shrink_to_fit();
- // Calculate the initial angle for all bend constraints
- CalculateBendConstraintConstants();
- // Check if any vertices have LRA constraints
- bool has_lra_constraints = false;
- for (const VertexAttributes *va = inVertexAttributes; va < inVertexAttributes + inVertexAttributesLength; ++va)
- if (va->mLRAType != ELRAType::None)
- {
- has_lra_constraints = true;
- break;
- }
- if (has_lra_constraints)
- {
- // Ensure we have calculated the closest kinematic vertex for each vertex
- CalculateClosestKinematic();
- // Find non-kinematic vertices
- for (uint32 v = 0; v < (uint32)mVertices.size(); ++v)
- if (mVertices[v].mInvMass > 0.0f)
- {
- // Check if a closest vertex was found
- uint32 closest = mClosestKinematic[v].mVertex;
- if (closest != 0xffffffff)
- {
- // Check which LRA constraint to create
- const VertexAttributes &va = attr(v);
- switch (va.mLRAType)
- {
- case ELRAType::None:
- break;
- case ELRAType::EuclideanDistance:
- mLRAConstraints.emplace_back(closest, v, va.mLRAMaxDistanceMultiplier * (Vec3(mVertices[closest].mPosition) - Vec3(mVertices[v].mPosition)).Length());
- break;
- case ELRAType::GeodesicDistance:
- mLRAConstraints.emplace_back(closest, v, va.mLRAMaxDistanceMultiplier * mClosestKinematic[v].mDistance);
- break;
- }
- }
- }
- }
- }
- void SoftBodySharedSettings::CalculateEdgeLengths()
- {
- for (Edge &e : mEdgeConstraints)
- {
- JPH_ASSERT(e.mVertex[0] != e.mVertex[1], "Edges need to connect 2 different vertices");
- e.mRestLength = (Vec3(mVertices[e.mVertex[1]].mPosition) - Vec3(mVertices[e.mVertex[0]].mPosition)).Length();
- JPH_ASSERT(e.mRestLength > 0.0f);
- }
- }
- void SoftBodySharedSettings::CalculateRodProperties()
- {
- // Mark connections through bend twist constraints
- Array<Array<uint32>> connections;
- connections.resize(mRodStretchShearConstraints.size());
- for (const RodBendTwist &c : mRodBendTwistConstraints)
- {
- JPH_ASSERT(c.mRod[0] != c.mRod[1], "A bend twist constraint needs to be attached to different rods");
- connections[c.mRod[1]].push_back(c.mRod[0]);
- connections[c.mRod[0]].push_back(c.mRod[1]);
- }
- // Now calculate the Bishop frames for all rods
- struct Entry
- {
- uint32 mFrom; // Rod we're coming from
- uint32 mTo; // Rod we're going to
- };
- Array<Entry> stack;
- stack.reserve(mRodStretchShearConstraints.size());
- for (uint32 r0_idx = 0; r0_idx < mRodStretchShearConstraints.size(); ++r0_idx)
- {
- RodStretchShear &r0 = mRodStretchShearConstraints[r0_idx];
- // Do not calculate a 2nd time
- if (r0.mBishop == Quat::sZero())
- {
- // Calculate the frame for this rod
- {
- Vec3 tangent = Vec3(mVertices[r0.mVertex[1]].mPosition) - Vec3(mVertices[r0.mVertex[0]].mPosition);
- r0.mLength = tangent.Length();
- JPH_ASSERT(r0.mLength > 0.0f, "Rods of zero length are not supported!");
- tangent /= r0.mLength;
- Vec3 normal = tangent.GetNormalizedPerpendicular();
- Vec3 binormal = tangent.Cross(normal);
- r0.mBishop = Mat44(Vec4(normal, 0), Vec4(binormal, 0), Vec4(tangent, 0), Vec4(0, 0, 0, 1)).GetQuaternion().Normalized();
- }
- // Add connected rods to the stack if they haven't been calculated yet
- for (uint32 r1_idx : connections[r0_idx])
- if (mRodStretchShearConstraints[r1_idx].mBishop == Quat::sZero())
- stack.push_back({ r0_idx, r1_idx });
- // Now connect the bishop frame for all connected rods on the stack
- // This follows the procedure outlined in "Discrete Elastic Rods" - M. Bergou et al.
- // See: https://www.cs.columbia.edu/cg/pdfs/143-rods.pdf
- while (!stack.empty())
- {
- uint32 r1_idx = stack.back().mFrom;
- uint32 r2_idx = stack.back().mTo;
- stack.pop_back();
- const RodStretchShear &r1 = mRodStretchShearConstraints[r1_idx];
- RodStretchShear &r2 = mRodStretchShearConstraints[r2_idx];
- // Get the normal and tangent of the first rod's Bishop frame (that was already calculated)
- Mat44 r1_frame = Mat44::sRotation(r1.mBishop);
- Vec3 tangent1 = r1_frame.GetAxisZ();
- Vec3 normal1 = r1_frame.GetAxisX();
- // Calculate the Bishop frame for the 2nd rod
- Vec3 tangent2 = Vec3(mVertices[r2.mVertex[1]].mPosition) - Vec3(mVertices[r2.mVertex[0]].mPosition);
- if (tangent1.Dot(tangent2) < 0.0f)
- {
- // Edge is oriented in the opposite direction of the previous edge, flip it
- std::swap(r2.mVertex[0], r2.mVertex[1]);
- tangent2 = -tangent2;
- }
- r2.mLength = tangent2.Length();
- JPH_ASSERT(r2.mLength > 0.0f, "Rods of zero length are not supported!");
- tangent2 /= r2.mLength;
- Vec3 t1_cross_t2 = tangent1.Cross(tangent2);
- float sin_angle = t1_cross_t2.Length();
- Vec3 normal2 = normal1;
- if (sin_angle > 1.0e-6f)
- {
- t1_cross_t2 /= sin_angle;
- normal2 = Quat::sRotation(t1_cross_t2, ASin(sin_angle)) * normal2;
- }
- Vec3 binormal2 = tangent2.Cross(normal2);
- r2.mBishop = Mat44(Vec4(normal2, 0), Vec4(binormal2, 0), Vec4(tangent2, 0), Vec4(0, 0, 0, 1)).GetQuaternion().Normalized();
- // Add connected rods to the stack if they haven't been calculated yet
- for (uint32 r3_idx : connections[r2_idx])
- if (mRodStretchShearConstraints[r3_idx].mBishop == Quat::sZero())
- stack.push_back({ r2_idx, r3_idx });
- }
- }
- }
- // Calculate inverse mass for all rods by taking the minimum inverse mass (aka the heaviest vertex) of both vertices
- for (RodStretchShear &r : mRodStretchShearConstraints)
- {
- JPH_ASSERT(r.mVertex[0] != r.mVertex[1], "A rod stretch shear constraint requires two different vertices");
- r.mInvMass = min(mVertices[r.mVertex[0]].mInvMass, mVertices[r.mVertex[1]].mInvMass);
- }
- // Calculate the initial rotation between the rods
- for (RodBendTwist &r : mRodBendTwistConstraints)
- r.mOmega0 = (mRodStretchShearConstraints[r.mRod[0]].mBishop.Conjugated() * mRodStretchShearConstraints[r.mRod[1]].mBishop).Normalized();
- }
- void SoftBodySharedSettings::CalculateLRALengths(float inMaxDistanceMultiplier)
- {
- for (LRA &l : mLRAConstraints)
- {
- JPH_ASSERT(l.mVertex[0] != l.mVertex[1], "LRA constraints need to connect 2 different vertices");
- l.mMaxDistance = inMaxDistanceMultiplier * (Vec3(mVertices[l.mVertex[1]].mPosition) - Vec3(mVertices[l.mVertex[0]].mPosition)).Length();
- JPH_ASSERT(l.mMaxDistance > 0.0f);
- }
- }
- void SoftBodySharedSettings::CalculateBendConstraintConstants()
- {
- for (DihedralBend &b : mDihedralBendConstraints)
- {
- JPH_ASSERT(b.mVertex[0] != b.mVertex[1] && b.mVertex[0] != b.mVertex[2] && b.mVertex[0] != b.mVertex[3]
- && b.mVertex[1] != b.mVertex[2] && b.mVertex[1] != b.mVertex[3]
- && b.mVertex[2] != b.mVertex[3], "Bend constraints need 4 different vertices");
- // Get positions
- Vec3 x0 = Vec3(mVertices[b.mVertex[0]].mPosition);
- Vec3 x1 = Vec3(mVertices[b.mVertex[1]].mPosition);
- Vec3 x2 = Vec3(mVertices[b.mVertex[2]].mPosition);
- Vec3 x3 = Vec3(mVertices[b.mVertex[3]].mPosition);
- /*
- x2
- e1/ \e3
- / \
- x0----x1
- \ e0 /
- e2\ /e4
- x3
- */
- // Calculate edges
- Vec3 e0 = x1 - x0;
- Vec3 e1 = x2 - x0;
- Vec3 e2 = x3 - x0;
- // Normals of both triangles
- Vec3 n1 = e0.Cross(e1);
- Vec3 n2 = e2.Cross(e0);
- float denom = sqrt(n1.LengthSq() * n2.LengthSq());
- if (denom < 1.0e-12f)
- b.mInitialAngle = 0.0f;
- else
- {
- float sign = Sign(n2.Cross(n1).Dot(e0));
- b.mInitialAngle = sign * ACosApproximate(n1.Dot(n2) / denom); // Runtime uses the approximation too
- }
- }
- }
- void SoftBodySharedSettings::CalculateVolumeConstraintVolumes()
- {
- for (Volume &v : mVolumeConstraints)
- {
- JPH_ASSERT(v.mVertex[0] != v.mVertex[1] && v.mVertex[0] != v.mVertex[2] && v.mVertex[0] != v.mVertex[3]
- && v.mVertex[1] != v.mVertex[2] && v.mVertex[1] != v.mVertex[3]
- && v.mVertex[2] != v.mVertex[3], "Volume constraints need 4 different vertices");
- Vec3 x1(mVertices[v.mVertex[0]].mPosition);
- Vec3 x2(mVertices[v.mVertex[1]].mPosition);
- Vec3 x3(mVertices[v.mVertex[2]].mPosition);
- Vec3 x4(mVertices[v.mVertex[3]].mPosition);
- Vec3 x1x2 = x2 - x1;
- Vec3 x1x3 = x3 - x1;
- Vec3 x1x4 = x4 - x1;
- v.mSixRestVolume = abs(x1x2.Cross(x1x3).Dot(x1x4));
- }
- }
- void SoftBodySharedSettings::CalculateSkinnedConstraintNormals()
- {
- // Clear any previous results
- mSkinnedConstraintNormals.clear();
- // If there are no skinned constraints, we're done
- if (mSkinnedConstraints.empty())
- return;
- // First collect all vertices that are skinned
- using VertexIndexSet = UnorderedSet<uint32>;
- VertexIndexSet skinned_vertices;
- skinned_vertices.reserve(VertexIndexSet::size_type(mSkinnedConstraints.size()));
- for (const Skinned &s : mSkinnedConstraints)
- skinned_vertices.insert(s.mVertex);
- // Now collect all faces that connect only to skinned vertices
- using ConnectedFacesMap = UnorderedMap<uint32, VertexIndexSet>;
- ConnectedFacesMap connected_faces;
- connected_faces.reserve(ConnectedFacesMap::size_type(mVertices.size()));
- for (const Face &f : mFaces)
- {
- // Must connect to only skinned vertices
- bool valid = true;
- for (uint32 v : f.mVertex)
- valid &= skinned_vertices.find(v) != skinned_vertices.end();
- if (!valid)
- continue;
- // Store faces that connect to vertices
- for (uint32 v : f.mVertex)
- connected_faces[v].insert(uint32(&f - mFaces.data()));
- }
- // Populate the list of connecting faces per skinned vertex
- mSkinnedConstraintNormals.reserve(mFaces.size());
- for (Skinned &s : mSkinnedConstraints)
- {
- uint32 start = uint32(mSkinnedConstraintNormals.size());
- JPH_ASSERT((start >> 24) == 0);
- ConnectedFacesMap::const_iterator connected_faces_it = connected_faces.find(s.mVertex);
- if (connected_faces_it != connected_faces.cend())
- {
- const VertexIndexSet &faces = connected_faces_it->second;
- uint32 num = uint32(faces.size());
- JPH_ASSERT(num < 256);
- mSkinnedConstraintNormals.insert(mSkinnedConstraintNormals.end(), faces.begin(), faces.end());
- QuickSort(mSkinnedConstraintNormals.begin() + start, mSkinnedConstraintNormals.begin() + start + num);
- s.mNormalInfo = start + (num << 24);
- }
- else
- s.mNormalInfo = 0;
- }
- mSkinnedConstraintNormals.shrink_to_fit();
- }
- void SoftBodySharedSettings::Optimize(OptimizationResults &outResults)
- {
- // Clear any previous results
- mUpdateGroups.clear();
- // Create a list of connected vertices
- struct Connection
- {
- uint32 mVertex;
- uint32 mCount;
- };
- Array<Array<Connection>> connectivity;
- connectivity.resize(mVertices.size());
- auto add_connection = [&connectivity](uint inV1, uint inV2) {
- for (int i = 0; i < 2; ++i)
- {
- bool found = false;
- for (Connection &c : connectivity[inV1])
- if (c.mVertex == inV2)
- {
- c.mCount++;
- found = true;
- break;
- }
- if (!found)
- connectivity[inV1].push_back({ inV2, 1 });
- std::swap(inV1, inV2);
- }
- };
- for (const Edge &c : mEdgeConstraints)
- add_connection(c.mVertex[0], c.mVertex[1]);
- for (const LRA &c : mLRAConstraints)
- add_connection(c.mVertex[0], c.mVertex[1]);
- for (const RodStretchShear &c : mRodStretchShearConstraints)
- add_connection(c.mVertex[0], c.mVertex[1]);
- for (const RodBendTwist &c : mRodBendTwistConstraints)
- {
- add_connection(mRodStretchShearConstraints[c.mRod[0]].mVertex[0], mRodStretchShearConstraints[c.mRod[1]].mVertex[0]);
- add_connection(mRodStretchShearConstraints[c.mRod[0]].mVertex[1], mRodStretchShearConstraints[c.mRod[1]].mVertex[0]);
- add_connection(mRodStretchShearConstraints[c.mRod[0]].mVertex[0], mRodStretchShearConstraints[c.mRod[1]].mVertex[1]);
- add_connection(mRodStretchShearConstraints[c.mRod[0]].mVertex[1], mRodStretchShearConstraints[c.mRod[1]].mVertex[1]);
- }
- for (const DihedralBend &c : mDihedralBendConstraints)
- {
- add_connection(c.mVertex[0], c.mVertex[1]);
- add_connection(c.mVertex[0], c.mVertex[2]);
- add_connection(c.mVertex[0], c.mVertex[3]);
- add_connection(c.mVertex[1], c.mVertex[2]);
- add_connection(c.mVertex[1], c.mVertex[3]);
- add_connection(c.mVertex[2], c.mVertex[3]);
- }
- for (const Volume &c : mVolumeConstraints)
- {
- add_connection(c.mVertex[0], c.mVertex[1]);
- add_connection(c.mVertex[0], c.mVertex[2]);
- add_connection(c.mVertex[0], c.mVertex[3]);
- add_connection(c.mVertex[1], c.mVertex[2]);
- add_connection(c.mVertex[1], c.mVertex[3]);
- add_connection(c.mVertex[2], c.mVertex[3]);
- }
- // Skinned constraints only update 1 vertex, so we don't need special logic here
- // Maps each of the vertices to a group index
- Array<int> group_idx;
- group_idx.resize(mVertices.size(), -1);
- // Which group we are currently filling and its vertices
- int current_group_idx = 0;
- Array<uint> current_group;
- // Start greedy algorithm to group vertices
- for (;;)
- {
- // Find the bounding box of the ungrouped vertices
- AABox bounds;
- for (uint i = 0; i < (uint)mVertices.size(); ++i)
- if (group_idx[i] == -1)
- bounds.Encapsulate(Vec3(mVertices[i].mPosition));
- // If the bounds are invalid, it means that there were no ungrouped vertices
- if (!bounds.IsValid())
- break;
- // Determine longest and shortest axis
- Vec3 bounds_size = bounds.GetSize();
- uint max_axis = bounds_size.GetHighestComponentIndex();
- uint min_axis = bounds_size.GetLowestComponentIndex();
- if (min_axis == max_axis)
- min_axis = (min_axis + 1) % 3;
- uint mid_axis = 3 - min_axis - max_axis;
- // Find the vertex that has the lowest value on the axis with the largest extent
- uint current_vertex = UINT_MAX;
- Float3 current_vertex_position { FLT_MAX, FLT_MAX, FLT_MAX };
- for (uint i = 0; i < (uint)mVertices.size(); ++i)
- if (group_idx[i] == -1)
- {
- const Float3 &vertex_position = mVertices[i].mPosition;
- float max_axis_value = vertex_position[max_axis];
- float mid_axis_value = vertex_position[mid_axis];
- float min_axis_value = vertex_position[min_axis];
- if (max_axis_value < current_vertex_position[max_axis]
- || (max_axis_value == current_vertex_position[max_axis]
- && (mid_axis_value < current_vertex_position[mid_axis]
- || (mid_axis_value == current_vertex_position[mid_axis]
- && min_axis_value < current_vertex_position[min_axis]))))
- {
- current_vertex_position = mVertices[i].mPosition;
- current_vertex = i;
- }
- }
- if (current_vertex == UINT_MAX)
- break;
- // Initialize the current group with 1 vertex
- current_group.push_back(current_vertex);
- group_idx[current_vertex] = current_group_idx;
- // Fill up the group
- for (;;)
- {
- // Find the vertex that is most connected to the current group
- uint best_vertex = UINT_MAX;
- uint best_num_connections = 0;
- float best_dist_sq = FLT_MAX;
- for (uint i = 0; i < (uint)current_group.size(); ++i) // For all vertices in the current group
- for (const Connection &c : connectivity[current_group[i]]) // For all connections to other vertices
- {
- uint v = c.mVertex;
- if (group_idx[v] == -1) // Ungrouped vertices only
- {
- // Count the number of connections to this group
- uint num_connections = 0;
- for (const Connection &v2 : connectivity[v])
- if (group_idx[v2.mVertex] == current_group_idx)
- num_connections += v2.mCount;
- // Calculate distance to group centroid
- float dist_sq = (Vec3(mVertices[v].mPosition) - Vec3(mVertices[current_group.front()].mPosition)).LengthSq();
- if (best_vertex == UINT_MAX
- || num_connections > best_num_connections
- || (num_connections == best_num_connections && dist_sq < best_dist_sq))
- {
- best_vertex = v;
- best_num_connections = num_connections;
- best_dist_sq = dist_sq;
- }
- }
- }
- // Add the best vertex to the current group
- if (best_vertex != UINT_MAX)
- {
- current_group.push_back(best_vertex);
- group_idx[best_vertex] = current_group_idx;
- }
- // Create a new group?
- if (current_group.size() >= SoftBodyUpdateContext::cVertexConstraintBatch // If full, yes
- || (current_group.size() > SoftBodyUpdateContext::cVertexConstraintBatch / 2 && best_vertex == UINT_MAX)) // If half full and we found no connected vertex, yes
- {
- current_group.clear();
- current_group_idx++;
- break;
- }
- // If we didn't find a connected vertex, we need to find a new starting vertex
- if (best_vertex == UINT_MAX)
- break;
- }
- }
- // If the last group is more than half full, we'll keep it as a separate group, otherwise we merge it with the 'non parallel' group
- if (current_group.size() > SoftBodyUpdateContext::cVertexConstraintBatch / 2)
- ++current_group_idx;
- // We no longer need the current group array, free the memory
- current_group.clear();
- current_group.shrink_to_fit();
- // We're done with the connectivity list, free the memory
- connectivity.clear();
- connectivity.shrink_to_fit();
- // Assign the constraints to their groups
- struct Group
- {
- uint GetSize() const
- {
- return (uint)mEdgeConstraints.size() + (uint)mLRAConstraints.size() + (uint)mRodStretchShearConstraints.size() + (uint)mRodBendTwistConstraints.size() + (uint)mDihedralBendConstraints.size() + (uint)mVolumeConstraints.size() + (uint)mSkinnedConstraints.size();
- }
- Array<uint> mEdgeConstraints;
- Array<uint> mLRAConstraints;
- Array<uint> mRodStretchShearConstraints;
- Array<uint> mRodBendTwistConstraints;
- Array<uint> mDihedralBendConstraints;
- Array<uint> mVolumeConstraints;
- Array<uint> mSkinnedConstraints;
- };
- Array<Group> groups;
- groups.resize(current_group_idx + 1); // + non parallel group
- for (const Edge &e : mEdgeConstraints)
- {
- int g1 = group_idx[e.mVertex[0]];
- int g2 = group_idx[e.mVertex[1]];
- JPH_ASSERT(g1 >= 0 && g2 >= 0);
- if (g1 == g2) // In the same group
- groups[g1].mEdgeConstraints.push_back(uint(&e - mEdgeConstraints.data()));
- else // In different groups -> parallel group
- groups.back().mEdgeConstraints.push_back(uint(&e - mEdgeConstraints.data()));
- }
- for (const LRA &l : mLRAConstraints)
- {
- int g1 = group_idx[l.mVertex[0]];
- int g2 = group_idx[l.mVertex[1]];
- JPH_ASSERT(g1 >= 0 && g2 >= 0);
- if (g1 == g2) // In the same group
- groups[g1].mLRAConstraints.push_back(uint(&l - mLRAConstraints.data()));
- else // In different groups -> parallel group
- groups.back().mLRAConstraints.push_back(uint(&l - mLRAConstraints.data()));
- }
- for (const RodStretchShear &r : mRodStretchShearConstraints)
- {
- int g1 = group_idx[r.mVertex[0]];
- int g2 = group_idx[r.mVertex[1]];
- JPH_ASSERT(g1 >= 0 && g2 >= 0);
- if (g1 == g2) // In the same group
- groups[g1].mRodStretchShearConstraints.push_back(uint(&r - mRodStretchShearConstraints.data()));
- else // In different groups -> parallel group
- groups.back().mRodStretchShearConstraints.push_back(uint(&r - mRodStretchShearConstraints.data()));
- }
- for (const RodBendTwist &r : mRodBendTwistConstraints)
- {
- int g1 = group_idx[mRodStretchShearConstraints[r.mRod[0]].mVertex[0]];
- int g2 = group_idx[mRodStretchShearConstraints[r.mRod[0]].mVertex[1]];
- int g3 = group_idx[mRodStretchShearConstraints[r.mRod[1]].mVertex[0]];
- int g4 = group_idx[mRodStretchShearConstraints[r.mRod[1]].mVertex[1]];
- JPH_ASSERT(g1 >= 0 && g2 >= 0 && g3 >= 0 && g4 >= 0);
- if (g1 == g2 && g1 == g3 && g1 == g4) // In the same group
- groups[g1].mRodBendTwistConstraints.push_back(uint(&r - mRodBendTwistConstraints.data()));
- else // In different groups -> parallel group
- groups.back().mRodBendTwistConstraints.push_back(uint(&r - mRodBendTwistConstraints.data()));
- }
- for (const DihedralBend &d : mDihedralBendConstraints)
- {
- int g1 = group_idx[d.mVertex[0]];
- int g2 = group_idx[d.mVertex[1]];
- int g3 = group_idx[d.mVertex[2]];
- int g4 = group_idx[d.mVertex[3]];
- JPH_ASSERT(g1 >= 0 && g2 >= 0 && g3 >= 0 && g4 >= 0);
- if (g1 == g2 && g1 == g3 && g1 == g4) // In the same group
- groups[g1].mDihedralBendConstraints.push_back(uint(&d - mDihedralBendConstraints.data()));
- else // In different groups -> parallel group
- groups.back().mDihedralBendConstraints.push_back(uint(&d - mDihedralBendConstraints.data()));
- }
- for (const Volume &v : mVolumeConstraints)
- {
- int g1 = group_idx[v.mVertex[0]];
- int g2 = group_idx[v.mVertex[1]];
- int g3 = group_idx[v.mVertex[2]];
- int g4 = group_idx[v.mVertex[3]];
- JPH_ASSERT(g1 >= 0 && g2 >= 0 && g3 >= 0 && g4 >= 0);
- if (g1 == g2 && g1 == g3 && g1 == g4) // In the same group
- groups[g1].mVolumeConstraints.push_back(uint(&v - mVolumeConstraints.data()));
- else // In different groups -> parallel group
- groups.back().mVolumeConstraints.push_back(uint(&v - mVolumeConstraints.data()));
- }
- for (const Skinned &s : mSkinnedConstraints)
- {
- int g1 = group_idx[s.mVertex];
- JPH_ASSERT(g1 >= 0);
- groups[g1].mSkinnedConstraints.push_back(uint(&s - mSkinnedConstraints.data()));
- }
- // Sort the parallel groups from big to small (this means the big groups will be scheduled first and have more time to complete)
- QuickSort(groups.begin(), groups.end() - 1, [](const Group &inLHS, const Group &inRHS) { return inLHS.GetSize() > inRHS.GetSize(); });
- // Make sure we know the closest kinematic vertex so we can sort
- CalculateClosestKinematic();
- // Sort within each group
- for (Group &group : groups)
- {
- // Sort the edge constraints
- QuickSort(group.mEdgeConstraints.begin(), group.mEdgeConstraints.end(), [this](uint inLHS, uint inRHS)
- {
- const Edge &e1 = mEdgeConstraints[inLHS];
- const Edge &e2 = mEdgeConstraints[inRHS];
- // First sort so that the edge with the smallest distance to a kinematic vertex comes first
- float d1 = min(mClosestKinematic[e1.mVertex[0]].mDistance, mClosestKinematic[e1.mVertex[1]].mDistance);
- float d2 = min(mClosestKinematic[e2.mVertex[0]].mDistance, mClosestKinematic[e2.mVertex[1]].mDistance);
- if (d1 != d2)
- return d1 < d2;
- // Order the edges so that the ones with the smallest index go first (hoping to get better cache locality when we process the edges).
- // Note we could also re-order the vertices but that would be much more of a burden to the end user
- uint32 m1 = e1.GetMinVertexIndex();
- uint32 m2 = e2.GetMinVertexIndex();
- if (m1 != m2)
- return m1 < m2;
- return inLHS < inRHS;
- });
- // Sort the LRA constraints
- QuickSort(group.mLRAConstraints.begin(), group.mLRAConstraints.end(), [this](uint inLHS, uint inRHS)
- {
- const LRA &l1 = mLRAConstraints[inLHS];
- const LRA &l2 = mLRAConstraints[inRHS];
- // First sort so that the longest constraint comes first (meaning the shortest constraint has the most influence on the end result)
- // Most of the time there will be a single LRA constraint per vertex and since the LRA constraint only modifies a single vertex,
- // updating one constraint will not violate another constraint.
- if (l1.mMaxDistance != l2.mMaxDistance)
- return l1.mMaxDistance > l2.mMaxDistance;
- // Order constraints so that the ones with the smallest index go first
- uint32 m1 = l1.GetMinVertexIndex();
- uint32 m2 = l2.GetMinVertexIndex();
- if (m1 != m2)
- return m1 < m2;
- return inLHS < inRHS;
- });
- // Sort the rod stretch shear constraints
- QuickSort(group.mRodStretchShearConstraints.begin(), group.mRodStretchShearConstraints.end(), [this](uint inLHS, uint inRHS)
- {
- const RodStretchShear &r1 = mRodStretchShearConstraints[inLHS];
- const RodStretchShear &r2 = mRodStretchShearConstraints[inRHS];
- // First sort so that the rod with the smallest distance to a kinematic vertex comes first
- float d1 = min(mClosestKinematic[r1.mVertex[0]].mDistance, mClosestKinematic[r1.mVertex[1]].mDistance);
- float d2 = min(mClosestKinematic[r2.mVertex[0]].mDistance, mClosestKinematic[r2.mVertex[1]].mDistance);
- if (d1 != d2)
- return d1 < d2;
- // Then sort on the rod that connects to the smallest kinematic vertex
- uint32 m1 = min(mClosestKinematic[r1.mVertex[0]].mVertex, mClosestKinematic[r1.mVertex[1]].mVertex);
- uint32 m2 = min(mClosestKinematic[r2.mVertex[0]].mVertex, mClosestKinematic[r2.mVertex[1]].mVertex);
- if (m1 != m2)
- return m1 < m2;
- // Order the rods so that the ones with the smallest index go first (hoping to get better cache locality when we process the rods).
- m1 = r1.GetMinVertexIndex();
- m2 = r2.GetMinVertexIndex();
- if (m1 != m2)
- return m1 < m2;
- return inLHS < inRHS;
- });
- // Sort the rod bend twist constraints
- QuickSort(group.mRodBendTwistConstraints.begin(), group.mRodBendTwistConstraints.end(), [this](uint inLHS, uint inRHS)
- {
- const RodBendTwist &b1 = mRodBendTwistConstraints[inLHS];
- const RodStretchShear &b1_r1 = mRodStretchShearConstraints[b1.mRod[0]];
- const RodStretchShear &b1_r2 = mRodStretchShearConstraints[b1.mRod[1]];
- const RodBendTwist &b2 = mRodBendTwistConstraints[inRHS];
- const RodStretchShear &b2_r1 = mRodStretchShearConstraints[b2.mRod[0]];
- const RodStretchShear &b2_r2 = mRodStretchShearConstraints[b2.mRod[1]];
- // First sort so that the rod with the smallest number of hops to a kinematic vertex comes first.
- // Note that we don't use distance because of the bilateral interleaving below.
- uint32 m1 = min(
- min(mClosestKinematic[b1_r1.mVertex[0]].mHops, mClosestKinematic[b1_r1.mVertex[1]].mHops),
- min(mClosestKinematic[b1_r2.mVertex[0]].mHops, mClosestKinematic[b1_r2.mVertex[1]].mHops));
- uint32 m2 = min(
- min(mClosestKinematic[b2_r1.mVertex[0]].mHops, mClosestKinematic[b2_r1.mVertex[1]].mHops),
- min(mClosestKinematic[b2_r2.mVertex[0]].mHops, mClosestKinematic[b2_r2.mVertex[1]].mHops));
- if (m1 != m2)
- return m1 < m2;
- // Then sort on the rod that connects to the kinematic vertex with lowest index.
- // This ensures that we consistently order the rods that are attached to other kinematic constraints.
- // Again, this helps bilateral interleaving below.
- m1 = min(
- min(mClosestKinematic[b1_r1.mVertex[0]].mVertex, mClosestKinematic[b1_r1.mVertex[1]].mVertex),
- min(mClosestKinematic[b1_r2.mVertex[0]].mVertex, mClosestKinematic[b1_r2.mVertex[1]].mVertex));
- m2 = min(
- min(mClosestKinematic[b2_r1.mVertex[0]].mVertex, mClosestKinematic[b2_r1.mVertex[1]].mVertex),
- min(mClosestKinematic[b2_r2.mVertex[0]].mVertex, mClosestKinematic[b2_r2.mVertex[1]].mVertex));
- if (m1 != m2)
- return m1 < m2;
- // Finally order so that the smallest vertex index goes first
- m1 = min(b1_r1.GetMinVertexIndex(), b1_r2.GetMinVertexIndex());
- m2 = min(b2_r1.GetMinVertexIndex(), b2_r2.GetMinVertexIndex());
- if (m1 != m2)
- return m1 < m2;
- return inLHS < inRHS;
- });
- // Bilateral interleaving, see figure 4 of "Position and Orientation Based Cosserat Rods" - Kugelstadt and Schoemer - SIGGRAPH 2016
- // Keeping the twist constraints sorted often results in an unstable simulation
- for (Array<uint>::size_type i = 1, s = group.mRodBendTwistConstraints.size(), s2 = s >> 1; i < s2; i += 2)
- std::swap(group.mRodBendTwistConstraints[i], group.mRodBendTwistConstraints[s - i]);
- // Sort the dihedral bend constraints
- QuickSort(group.mDihedralBendConstraints.begin(), group.mDihedralBendConstraints.end(), [this](uint inLHS, uint inRHS)
- {
- const DihedralBend &b1 = mDihedralBendConstraints[inLHS];
- const DihedralBend &b2 = mDihedralBendConstraints[inRHS];
- // First sort so that the constraint with the smallest distance to a kinematic vertex comes first
- float d1 = min(
- min(mClosestKinematic[b1.mVertex[0]].mDistance, mClosestKinematic[b1.mVertex[1]].mDistance),
- min(mClosestKinematic[b1.mVertex[2]].mDistance, mClosestKinematic[b1.mVertex[3]].mDistance));
- float d2 = min(
- min(mClosestKinematic[b2.mVertex[0]].mDistance, mClosestKinematic[b2.mVertex[1]].mDistance),
- min(mClosestKinematic[b2.mVertex[2]].mDistance, mClosestKinematic[b2.mVertex[3]].mDistance));
- if (d1 != d2)
- return d1 < d2;
- // Finally order so that the smallest vertex index goes first
- uint32 m1 = b1.GetMinVertexIndex();
- uint32 m2 = b2.GetMinVertexIndex();
- if (m1 != m2)
- return m1 < m2;
- return inLHS < inRHS;
- });
- // Sort the volume constraints
- QuickSort(group.mVolumeConstraints.begin(), group.mVolumeConstraints.end(), [this](uint inLHS, uint inRHS)
- {
- const Volume &v1 = mVolumeConstraints[inLHS];
- const Volume &v2 = mVolumeConstraints[inRHS];
- // First sort so that the constraint with the smallest distance to a kinematic vertex comes first
- float d1 = min(
- min(mClosestKinematic[v1.mVertex[0]].mDistance, mClosestKinematic[v1.mVertex[1]].mDistance),
- min(mClosestKinematic[v1.mVertex[2]].mDistance, mClosestKinematic[v1.mVertex[3]].mDistance));
- float d2 = min(
- min(mClosestKinematic[v2.mVertex[0]].mDistance, mClosestKinematic[v2.mVertex[1]].mDistance),
- min(mClosestKinematic[v2.mVertex[2]].mDistance, mClosestKinematic[v2.mVertex[3]].mDistance));
- if (d1 != d2)
- return d1 < d2;
- // Order constraints so that the ones with the smallest index go first
- uint32 m1 = v1.GetMinVertexIndex();
- uint32 m2 = v2.GetMinVertexIndex();
- if (m1 != m2)
- return m1 < m2;
- return inLHS < inRHS;
- });
- // Sort the skinned constraints
- QuickSort(group.mSkinnedConstraints.begin(), group.mSkinnedConstraints.end(), [this](uint inLHS, uint inRHS)
- {
- const Skinned &s1 = mSkinnedConstraints[inLHS];
- const Skinned &s2 = mSkinnedConstraints[inRHS];
- // Order the skinned constraints so that the ones with the smallest index go first (hoping to get better cache locality when we process the edges).
- if (s1.mVertex != s2.mVertex)
- return s1.mVertex < s2.mVertex;
- return inLHS < inRHS;
- });
- }
- // Temporary store constraints as we reorder them
- Array<Edge> temp_edges;
- temp_edges.swap(mEdgeConstraints);
- mEdgeConstraints.reserve(temp_edges.size());
- outResults.mEdgeRemap.resize(temp_edges.size(), ~uint(0));
- Array<LRA> temp_lra;
- temp_lra.swap(mLRAConstraints);
- mLRAConstraints.reserve(temp_lra.size());
- outResults.mLRARemap.resize(temp_lra.size(), ~uint(0));
- Array<RodStretchShear> temp_rod_stretch_shear;
- temp_rod_stretch_shear.swap(mRodStretchShearConstraints);
- mRodStretchShearConstraints.reserve(temp_rod_stretch_shear.size());
- outResults.mRodStretchShearConstraintRemap.resize(temp_rod_stretch_shear.size(), ~uint(0));
- Array<RodBendTwist> temp_rod_bend_twist;
- temp_rod_bend_twist.swap(mRodBendTwistConstraints);
- mRodBendTwistConstraints.reserve(temp_rod_bend_twist.size());
- outResults.mRodBendTwistConstraintRemap.resize(temp_rod_bend_twist.size(), ~uint(0));
- Array<DihedralBend> temp_dihedral_bend;
- temp_dihedral_bend.swap(mDihedralBendConstraints);
- mDihedralBendConstraints.reserve(temp_dihedral_bend.size());
- outResults.mDihedralBendRemap.resize(temp_dihedral_bend.size(), ~uint(0));
- Array<Volume> temp_volume;
- temp_volume.swap(mVolumeConstraints);
- mVolumeConstraints.reserve(temp_volume.size());
- outResults.mVolumeRemap.resize(temp_volume.size(), ~uint(0));
- Array<Skinned> temp_skinned;
- temp_skinned.swap(mSkinnedConstraints);
- mSkinnedConstraints.reserve(temp_skinned.size());
- outResults.mSkinnedRemap.resize(temp_skinned.size(), ~uint(0));
- // Finalize update groups
- for (const Group &group : groups)
- {
- // Reorder edge constraints for this group
- for (uint idx : group.mEdgeConstraints)
- {
- outResults.mEdgeRemap[idx] = (uint)mEdgeConstraints.size();
- mEdgeConstraints.push_back(temp_edges[idx]);
- }
- // Reorder LRA constraints for this group
- for (uint idx : group.mLRAConstraints)
- {
- outResults.mLRARemap[idx] = (uint)mLRAConstraints.size();
- mLRAConstraints.push_back(temp_lra[idx]);
- }
- // Reorder rod stretch shear constraints for this group
- for (uint idx : group.mRodStretchShearConstraints)
- {
- outResults.mRodStretchShearConstraintRemap[idx] = (uint)mRodStretchShearConstraints.size();
- mRodStretchShearConstraints.push_back(temp_rod_stretch_shear[idx]);
- }
- // Reorder rod bend twist constraints for this group
- for (uint idx : group.mRodBendTwistConstraints)
- {
- outResults.mRodBendTwistConstraintRemap[idx] = (uint)mRodBendTwistConstraints.size();
- mRodBendTwistConstraints.push_back(temp_rod_bend_twist[idx]);
- }
- // Reorder dihedral bend constraints for this group
- for (uint idx : group.mDihedralBendConstraints)
- {
- outResults.mDihedralBendRemap[idx] = (uint)mDihedralBendConstraints.size();
- mDihedralBendConstraints.push_back(temp_dihedral_bend[idx]);
- }
- // Reorder volume constraints for this group
- for (uint idx : group.mVolumeConstraints)
- {
- outResults.mVolumeRemap[idx] = (uint)mVolumeConstraints.size();
- mVolumeConstraints.push_back(temp_volume[idx]);
- }
- // Reorder skinned constraints for this group
- for (uint idx : group.mSkinnedConstraints)
- {
- outResults.mSkinnedRemap[idx] = (uint)mSkinnedConstraints.size();
- mSkinnedConstraints.push_back(temp_skinned[idx]);
- }
- // Store end indices
- mUpdateGroups.push_back({ (uint)mEdgeConstraints.size(), (uint)mLRAConstraints.size(), (uint)mRodStretchShearConstraints.size(), (uint)mRodBendTwistConstraints.size(), (uint)mDihedralBendConstraints.size(), (uint)mVolumeConstraints.size(), (uint)mSkinnedConstraints.size() });
- }
- // Remap bend twist indices because mRodStretchShearConstraints has been reordered
- for (RodBendTwist &r : mRodBendTwistConstraints)
- for (int i = 0; i < 2; ++i)
- r.mRod[i] = outResults.mRodStretchShearConstraintRemap[r.mRod[i]];
- // Free closest kinematic buffer
- mClosestKinematic.clear();
- mClosestKinematic.shrink_to_fit();
- }
- Ref<SoftBodySharedSettings> SoftBodySharedSettings::Clone() const
- {
- Ref<SoftBodySharedSettings> clone = new SoftBodySharedSettings;
- clone->mVertices = mVertices;
- clone->mFaces = mFaces;
- clone->mEdgeConstraints = mEdgeConstraints;
- clone->mDihedralBendConstraints = mDihedralBendConstraints;
- clone->mVolumeConstraints = mVolumeConstraints;
- clone->mSkinnedConstraints = mSkinnedConstraints;
- clone->mSkinnedConstraintNormals = mSkinnedConstraintNormals;
- clone->mInvBindMatrices = mInvBindMatrices;
- clone->mLRAConstraints = mLRAConstraints;
- clone->mRodStretchShearConstraints = mRodStretchShearConstraints;
- clone->mRodBendTwistConstraints = mRodBendTwistConstraints;
- clone->mMaterials = mMaterials;
- clone->mUpdateGroups = mUpdateGroups;
- return clone;
- }
- void SoftBodySharedSettings::SaveBinaryState(StreamOut &inStream) const
- {
- inStream.Write(mVertices);
- inStream.Write(mFaces);
- inStream.Write(mEdgeConstraints);
- inStream.Write(mDihedralBendConstraints);
- inStream.Write(mVolumeConstraints);
- inStream.Write(mSkinnedConstraints);
- inStream.Write(mSkinnedConstraintNormals);
- inStream.Write(mLRAConstraints);
- inStream.Write(mUpdateGroups);
- // Can't write mRodStretchShearConstraints directly because the class contains padding
- inStream.Write(mRodStretchShearConstraints, [](const RodStretchShear &inElement, StreamOut &inS) {
- inS.Write(inElement.mVertex);
- inS.Write(inElement.mLength);
- inS.Write(inElement.mInvMass);
- inS.Write(inElement.mCompliance);
- inS.Write(inElement.mBishop);
- });
- // Can't write mRodBendTwistConstraints directly because the class contains padding
- inStream.Write(mRodBendTwistConstraints, [](const RodBendTwist &inElement, StreamOut &inS) {
- inS.Write(inElement.mRod);
- inS.Write(inElement.mCompliance);
- inS.Write(inElement.mOmega0);
- });
- // Can't write mInvBindMatrices directly because the class contains padding
- inStream.Write(mInvBindMatrices, [](const InvBind &inElement, StreamOut &inS) {
- inS.Write(inElement.mJointIndex);
- inS.Write(inElement.mInvBind);
- });
- }
- void SoftBodySharedSettings::RestoreBinaryState(StreamIn &inStream)
- {
- inStream.Read(mVertices);
- inStream.Read(mFaces);
- inStream.Read(mEdgeConstraints);
- inStream.Read(mDihedralBendConstraints);
- inStream.Read(mVolumeConstraints);
- inStream.Read(mSkinnedConstraints);
- inStream.Read(mSkinnedConstraintNormals);
- inStream.Read(mLRAConstraints);
- inStream.Read(mUpdateGroups);
- inStream.Read(mRodStretchShearConstraints, [](StreamIn &inS, RodStretchShear &outElement) {
- inS.Read(outElement.mVertex);
- inS.Read(outElement.mLength);
- inS.Read(outElement.mInvMass);
- inS.Read(outElement.mCompliance);
- inS.Read(outElement.mBishop);
- });
- inStream.Read(mRodBendTwistConstraints, [](StreamIn &inS, RodBendTwist &outElement) {
- inS.Read(outElement.mRod);
- inS.Read(outElement.mCompliance);
- inS.Read(outElement.mOmega0);
- });
- inStream.Read(mInvBindMatrices, [](StreamIn &inS, InvBind &outElement) {
- inS.Read(outElement.mJointIndex);
- inS.Read(outElement.mInvBind);
- });
- }
- void SoftBodySharedSettings::SaveWithMaterials(StreamOut &inStream, SharedSettingsToIDMap &ioSettingsMap, MaterialToIDMap &ioMaterialMap) const
- {
- SharedSettingsToIDMap::const_iterator settings_iter = ioSettingsMap.find(this);
- if (settings_iter == ioSettingsMap.end())
- {
- // Write settings ID
- uint32 settings_id = ioSettingsMap.size();
- ioSettingsMap[this] = settings_id;
- inStream.Write(settings_id);
- // Write the settings
- SaveBinaryState(inStream);
- // Write materials
- StreamUtils::SaveObjectArray(inStream, mMaterials, &ioMaterialMap);
- }
- else
- {
- // Known settings, just write the ID
- inStream.Write(settings_iter->second);
- }
- }
- SoftBodySharedSettings::SettingsResult SoftBodySharedSettings::sRestoreWithMaterials(StreamIn &inStream, IDToSharedSettingsMap &ioSettingsMap, IDToMaterialMap &ioMaterialMap)
- {
- SettingsResult result;
- // Read settings id
- uint32 settings_id;
- inStream.Read(settings_id);
- if (inStream.IsEOF() || inStream.IsFailed())
- {
- result.SetError("Failed to read settings id");
- return result;
- }
- // Check nullptr settings
- if (settings_id == ~uint32(0))
- {
- result.Set(nullptr);
- return result;
- }
- // Check if we already read this settings
- if (settings_id < ioSettingsMap.size())
- {
- result.Set(ioSettingsMap[settings_id]);
- return result;
- }
- // Create new object
- Ref<SoftBodySharedSettings> settings = new SoftBodySharedSettings;
- // Read state
- settings->RestoreBinaryState(inStream);
- // Read materials
- Result mlresult = StreamUtils::RestoreObjectArray<PhysicsMaterialList>(inStream, ioMaterialMap);
- if (mlresult.HasError())
- {
- result.SetError(mlresult.GetError());
- return result;
- }
- settings->mMaterials = mlresult.Get();
- // Add the settings to the map
- ioSettingsMap.push_back(settings);
- result.Set(settings);
- return result;
- }
- Ref<SoftBodySharedSettings> SoftBodySharedSettings::sCreateCube(uint inGridSize, float inGridSpacing)
- {
- const Vec3 cOffset = Vec3::sReplicate(-0.5f * inGridSpacing * (inGridSize - 1));
- // Create settings
- SoftBodySharedSettings *settings = new SoftBodySharedSettings;
- for (uint z = 0; z < inGridSize; ++z)
- for (uint y = 0; y < inGridSize; ++y)
- for (uint x = 0; x < inGridSize; ++x)
- {
- SoftBodySharedSettings::Vertex v;
- (cOffset + Vec3::sReplicate(inGridSpacing) * Vec3(float(x), float(y), float(z))).StoreFloat3(&v.mPosition);
- settings->mVertices.push_back(v);
- }
- // Function to get the vertex index of a point on the cube
- auto vertex_index = [inGridSize](uint inX, uint inY, uint inZ)
- {
- return inX + inY * inGridSize + inZ * inGridSize * inGridSize;
- };
- // Create edges
- for (uint z = 0; z < inGridSize; ++z)
- for (uint y = 0; y < inGridSize; ++y)
- for (uint x = 0; x < inGridSize; ++x)
- {
- SoftBodySharedSettings::Edge e;
- e.mVertex[0] = vertex_index(x, y, z);
- if (x < inGridSize - 1)
- {
- e.mVertex[1] = vertex_index(x + 1, y, z);
- settings->mEdgeConstraints.push_back(e);
- }
- if (y < inGridSize - 1)
- {
- e.mVertex[1] = vertex_index(x, y + 1, z);
- settings->mEdgeConstraints.push_back(e);
- }
- if (z < inGridSize - 1)
- {
- e.mVertex[1] = vertex_index(x, y, z + 1);
- settings->mEdgeConstraints.push_back(e);
- }
- }
- settings->CalculateEdgeLengths();
- // Tetrahedrons to fill a cube
- const int tetra_indices[6][4][3] = {
- { {0, 0, 0}, {0, 1, 1}, {0, 0, 1}, {1, 1, 1} },
- { {0, 0, 0}, {0, 1, 0}, {0, 1, 1}, {1, 1, 1} },
- { {0, 0, 0}, {0, 0, 1}, {1, 0, 1}, {1, 1, 1} },
- { {0, 0, 0}, {1, 0, 1}, {1, 0, 0}, {1, 1, 1} },
- { {0, 0, 0}, {1, 1, 0}, {0, 1, 0}, {1, 1, 1} },
- { {0, 0, 0}, {1, 0, 0}, {1, 1, 0}, {1, 1, 1} }
- };
- // Create volume constraints
- for (uint z = 0; z < inGridSize - 1; ++z)
- for (uint y = 0; y < inGridSize - 1; ++y)
- for (uint x = 0; x < inGridSize - 1; ++x)
- for (uint t = 0; t < 6; ++t)
- {
- SoftBodySharedSettings::Volume v;
- for (uint i = 0; i < 4; ++i)
- v.mVertex[i] = vertex_index(x + tetra_indices[t][i][0], y + tetra_indices[t][i][1], z + tetra_indices[t][i][2]);
- settings->mVolumeConstraints.push_back(v);
- }
- settings->CalculateVolumeConstraintVolumes();
- // Create faces
- for (uint y = 0; y < inGridSize - 1; ++y)
- for (uint x = 0; x < inGridSize - 1; ++x)
- {
- SoftBodySharedSettings::Face f;
- // Face 1
- f.mVertex[0] = vertex_index(x, y, 0);
- f.mVertex[1] = vertex_index(x, y + 1, 0);
- f.mVertex[2] = vertex_index(x + 1, y + 1, 0);
- settings->AddFace(f);
- f.mVertex[1] = vertex_index(x + 1, y + 1, 0);
- f.mVertex[2] = vertex_index(x + 1, y, 0);
- settings->AddFace(f);
- // Face 2
- f.mVertex[0] = vertex_index(x, y, inGridSize - 1);
- f.mVertex[1] = vertex_index(x + 1, y + 1, inGridSize - 1);
- f.mVertex[2] = vertex_index(x, y + 1, inGridSize - 1);
- settings->AddFace(f);
- f.mVertex[1] = vertex_index(x + 1, y, inGridSize - 1);
- f.mVertex[2] = vertex_index(x + 1, y + 1, inGridSize - 1);
- settings->AddFace(f);
- // Face 3
- f.mVertex[0] = vertex_index(x, 0, y);
- f.mVertex[1] = vertex_index(x + 1, 0, y + 1);
- f.mVertex[2] = vertex_index(x, 0, y + 1);
- settings->AddFace(f);
- f.mVertex[1] = vertex_index(x + 1, 0, y);
- f.mVertex[2] = vertex_index(x + 1, 0, y + 1);
- settings->AddFace(f);
- // Face 4
- f.mVertex[0] = vertex_index(x, inGridSize - 1, y);
- f.mVertex[1] = vertex_index(x, inGridSize - 1, y + 1);
- f.mVertex[2] = vertex_index(x + 1, inGridSize - 1, y + 1);
- settings->AddFace(f);
- f.mVertex[1] = vertex_index(x + 1, inGridSize - 1, y + 1);
- f.mVertex[2] = vertex_index(x + 1, inGridSize - 1, y);
- settings->AddFace(f);
- // Face 5
- f.mVertex[0] = vertex_index(0, x, y);
- f.mVertex[1] = vertex_index(0, x, y + 1);
- f.mVertex[2] = vertex_index(0, x + 1, y + 1);
- settings->AddFace(f);
- f.mVertex[1] = vertex_index(0, x + 1, y + 1);
- f.mVertex[2] = vertex_index(0, x + 1, y);
- settings->AddFace(f);
- // Face 6
- f.mVertex[0] = vertex_index(inGridSize - 1, x, y);
- f.mVertex[1] = vertex_index(inGridSize - 1, x + 1, y + 1);
- f.mVertex[2] = vertex_index(inGridSize - 1, x, y + 1);
- settings->AddFace(f);
- f.mVertex[1] = vertex_index(inGridSize - 1, x + 1, y);
- f.mVertex[2] = vertex_index(inGridSize - 1, x + 1, y + 1);
- settings->AddFace(f);
- }
- // Optimize the settings
- settings->Optimize();
- return settings;
- }
- JPH_NAMESPACE_END
|