HelloWorld.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. // The Jolt headers don't include Jolt.h. Always include Jolt.h before including any other Jolt header.
  4. // You can use Jolt.h in your precompiled header to speed up compilation.
  5. #include <Jolt/Jolt.h>
  6. // Jolt includes
  7. #include <Jolt/RegisterTypes.h>
  8. #include <Jolt/Core/TempAllocator.h>
  9. #include <Jolt/Core/JobSystemThreadPool.h>
  10. #include <Jolt/Physics/PhysicsSettings.h>
  11. #include <Jolt/Physics/PhysicsSystem.h>
  12. #include <Jolt/Physics/Collision/Shape/BoxShape.h>
  13. #include <Jolt/Physics/Collision/Shape/SphereShape.h>
  14. #include <Jolt/Physics/Body/BodyCreationSettings.h>
  15. #include <Jolt/Physics/Body/BodyActivationListener.h>
  16. // STL includes
  17. #include <iostream>
  18. #include <cstdarg>
  19. #include <thread>
  20. // Disable common warnings triggered by Jolt, you can use JPH_SUPPRESS_WARNING_PUSH / JPH_SUPPRESS_WARNING_POP to store and restore the warning state
  21. JPH_SUPPRESS_WARNINGS
  22. // All Jolt symbols are in the JPH namespace
  23. using namespace JPH;
  24. // We're also using STL classes in this example
  25. using namespace std;
  26. // Callback for traces, connect this to your own trace function if you have one
  27. static void TraceImpl(const char *inFMT, ...)
  28. {
  29. // Format the message
  30. va_list list;
  31. va_start(list, inFMT);
  32. char buffer[1024];
  33. vsnprintf(buffer, sizeof(buffer), inFMT, list);
  34. // Print to the TTY
  35. cout << buffer << endl;
  36. }
  37. #ifdef JPH_ENABLE_ASSERTS
  38. // Callback for asserts, connect this to your own assert handler if you have one
  39. static bool AssertFailedImpl(const char *inExpression, const char *inMessage, const char *inFile, uint inLine)
  40. {
  41. // Print to the TTY
  42. cout << inFile << ":" << inLine << ": (" << inExpression << ") " << (inMessage != nullptr? inMessage : "") << endl;
  43. // Breakpoint
  44. return true;
  45. };
  46. #endif // JPH_ENABLE_ASSERTS
  47. // Layer that objects can be in, determines which other objects it can collide with
  48. // Typically you at least want to have 1 layer for moving bodies and 1 layer for static bodies, but you can have more
  49. // layers if you want. E.g. you could have a layer for high detail collision (which is not used by the physics simulation
  50. // but only if you do collision testing).
  51. namespace Layers
  52. {
  53. static constexpr uint8 NON_MOVING = 0;
  54. static constexpr uint8 MOVING = 1;
  55. static constexpr uint8 NUM_LAYERS = 2;
  56. };
  57. // Function that determines if two object layers can collide
  58. static bool MyObjectCanCollide(ObjectLayer inObject1, ObjectLayer inObject2)
  59. {
  60. switch (inObject1)
  61. {
  62. case Layers::NON_MOVING:
  63. return inObject2 == Layers::MOVING; // Non moving only collides with moving
  64. case Layers::MOVING:
  65. return true; // Moving collides with everything
  66. default:
  67. JPH_ASSERT(false);
  68. return false;
  69. }
  70. };
  71. // Each broadphase layer results in a separate bounding volume tree in the broad phase. You at least want to have
  72. // a layer for non-moving and moving objects to avoid having to update a tree full of static objects every frame.
  73. // You can have a 1-on-1 mapping between object layers and broadphase layers (like in this case) but if you have
  74. // many object layers you'll be creating many broad phase trees, which is not efficient. If you want to fine tune
  75. // your broadphase layers define JPH_TRACK_BROADPHASE_STATS and look at the stats reported on the TTY.
  76. namespace BroadPhaseLayers
  77. {
  78. static constexpr BroadPhaseLayer NON_MOVING(0);
  79. static constexpr BroadPhaseLayer MOVING(1);
  80. static constexpr uint NUM_LAYERS(2);
  81. };
  82. // BroadPhaseLayerInterface implementation
  83. // This defines a mapping between object and broadphase layers.
  84. class BPLayerInterfaceImpl final : public BroadPhaseLayerInterface
  85. {
  86. public:
  87. BPLayerInterfaceImpl()
  88. {
  89. // Create a mapping table from object to broad phase layer
  90. mObjectToBroadPhase[Layers::NON_MOVING] = BroadPhaseLayers::NON_MOVING;
  91. mObjectToBroadPhase[Layers::MOVING] = BroadPhaseLayers::MOVING;
  92. }
  93. virtual uint GetNumBroadPhaseLayers() const override
  94. {
  95. return BroadPhaseLayers::NUM_LAYERS;
  96. }
  97. virtual BroadPhaseLayer GetBroadPhaseLayer(ObjectLayer inLayer) const override
  98. {
  99. JPH_ASSERT(inLayer < Layers::NUM_LAYERS);
  100. return mObjectToBroadPhase[inLayer];
  101. }
  102. #if defined(JPH_EXTERNAL_PROFILE) || defined(JPH_PROFILE_ENABLED)
  103. virtual const char * GetBroadPhaseLayerName(BroadPhaseLayer inLayer) const override
  104. {
  105. switch ((BroadPhaseLayer::Type)inLayer)
  106. {
  107. case (BroadPhaseLayer::Type)BroadPhaseLayers::NON_MOVING: return "NON_MOVING";
  108. case (BroadPhaseLayer::Type)BroadPhaseLayers::MOVING: return "MOVING";
  109. default: JPH_ASSERT(false); return "INVALID";
  110. }
  111. }
  112. #endif // JPH_EXTERNAL_PROFILE || JPH_PROFILE_ENABLED
  113. private:
  114. BroadPhaseLayer mObjectToBroadPhase[Layers::NUM_LAYERS];
  115. };
  116. // Function that determines if two broadphase layers can collide
  117. static bool MyBroadPhaseCanCollide(ObjectLayer inLayer1, BroadPhaseLayer inLayer2)
  118. {
  119. switch (inLayer1)
  120. {
  121. case Layers::NON_MOVING:
  122. return inLayer2 == BroadPhaseLayers::MOVING;
  123. case Layers::MOVING:
  124. return true;
  125. default:
  126. JPH_ASSERT(false);
  127. return false;
  128. }
  129. }
  130. // An example contact listener
  131. class MyContactListener : public ContactListener
  132. {
  133. public:
  134. // See: ContactListener
  135. virtual ValidateResult OnContactValidate(const Body &inBody1, const Body &inBody2, const CollideShapeResult &inCollisionResult) override
  136. {
  137. cout << "Contact validate callback" << endl;
  138. // Allows you to ignore a contact before it is created (using layers to not make objects collide is cheaper!)
  139. return ValidateResult::AcceptAllContactsForThisBodyPair;
  140. }
  141. virtual void OnContactAdded(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  142. {
  143. cout << "A contact was added" << endl;
  144. }
  145. virtual void OnContactPersisted(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  146. {
  147. cout << "A contact was persisted" << endl;
  148. }
  149. virtual void OnContactRemoved(const SubShapeIDPair &inSubShapePair) override
  150. {
  151. cout << "A contact was removed" << endl;
  152. }
  153. };
  154. // An example activation listener
  155. class MyBodyActivationListener : public BodyActivationListener
  156. {
  157. public:
  158. virtual void OnBodyActivated(const BodyID &inBodyID, uint64 inBodyUserData) override
  159. {
  160. cout << "A body got activated" << endl;
  161. }
  162. virtual void OnBodyDeactivated(const BodyID &inBodyID, uint64 inBodyUserData) override
  163. {
  164. cout << "A body went to sleep" << endl;
  165. }
  166. };
  167. // Program entry point
  168. int main(int argc, char** argv)
  169. {
  170. // Install callbacks
  171. Trace = TraceImpl;
  172. JPH_IF_ENABLE_ASSERTS(AssertFailed = AssertFailedImpl;)
  173. // Register all Jolt physics types
  174. RegisterTypes();
  175. // We need a temp allocator for temporary allocations during the physics update. We're
  176. // pre-allocating 10 MB to avoid having to do allocations during the physics update.
  177. // B.t.w. 10 MB is way too much for this example but it is a typical value you can use.
  178. // If you don't want to pre-allocate you can also use TempAllocatorMalloc to fall back to
  179. // malloc / free.
  180. TempAllocatorImpl temp_allocator(10 * 1024 * 1024);
  181. // We need a job system that will execute physics jobs on multiple threads. Typically
  182. // you would implement the JobSystem interface yourself and let Jolt Physics run on top
  183. // of your own job scheduler. JobSystemThreadPool is an example implementation.
  184. JobSystemThreadPool job_system(cMaxPhysicsJobs, cMaxPhysicsBarriers, thread::hardware_concurrency() - 1);
  185. // This is the max amount of rigid bodies that you can add to the physics system. If you try to add more you'll get an error.
  186. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  187. const uint cMaxBodies = 1024;
  188. // This determines how many mutexes to allocate to protect rigid bodies from concurrent access. Set it to 0 for the default settings.
  189. const uint cNumBodyMutexes = 0;
  190. // This is the max amount of body pairs that can be queued at any time (the broad phase will detect overlapping
  191. // body pairs based on their bounding boxes and will insert them into a queue for the narrowphase). If you make this buffer
  192. // too small the queue will fill up and the broad phase jobs will start to do narrow phase work. This is slightly less efficient.
  193. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  194. const uint cMaxBodyPairs = 1024;
  195. // This is the maximum size of the contact constraint buffer. If more contacts (collisions between bodies) are detected than this
  196. // number then these contacts will be ignored and bodies will start interpenetrating / fall through the world.
  197. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  198. const uint cMaxContactConstraints = 1024;
  199. // Create mapping table from object layer to broadphase layer
  200. // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
  201. BPLayerInterfaceImpl broad_phase_layer_interface;
  202. // Now we can create the actual physics system.
  203. PhysicsSystem physics_system;
  204. physics_system.Init(cMaxBodies, cNumBodyMutexes, cMaxBodyPairs, cMaxContactConstraints, broad_phase_layer_interface, MyBroadPhaseCanCollide, MyObjectCanCollide);
  205. // A body activation listener gets notified when bodies activate and go to sleep
  206. // Note that this is called from a job so whatever you do here needs to be thread safe.
  207. // Registering one is entirely optional.
  208. MyBodyActivationListener body_activation_listener;
  209. physics_system.SetBodyActivationListener(&body_activation_listener);
  210. // A contact listener gets notified when bodies (are about to) collide, and when they separate again.
  211. // Note that this is called from a job so whatever you do here needs to be thread safe.
  212. // Registering one is entirely optional.
  213. MyContactListener contact_listener;
  214. physics_system.SetContactListener(&contact_listener);
  215. // The main way to interact with the bodies in the physics system is through the body interface. There is a locking and a non-locking
  216. // variant of this. We're going to use the locking version (even though we're not planning to access bodies from multiple threads)
  217. BodyInterface &body_interface = physics_system.GetBodyInterface();
  218. // Next we can create a rigid body to serve as the floor, we make a large box
  219. // Create the settings for the collision volume (the shape).
  220. // Note that for simple shapes (like boxes) you can also directly construct a BoxShape.
  221. BoxShapeSettings floor_shape_settings(Vec3(100.0f, 1.0f, 100.0f));
  222. // Create the shape
  223. ShapeSettings::ShapeResult floor_shape_result = floor_shape_settings.Create();
  224. ShapeRefC floor_shape = floor_shape_result.Get(); // We don't expect an error here, but you can check floor_shape_result for HasError() / GetError()
  225. // Create the settings for the body itself. Note that here you can also set other properties like the restitution / friction.
  226. BodyCreationSettings floor_settings(floor_shape, Vec3(0.0f, -1.0f, 0.0f), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING);
  227. // Create the actual rigid body
  228. Body *floor = body_interface.CreateBody(floor_settings); // Note that if we run out of bodies this can return nullptr
  229. // Add it to the world
  230. body_interface.AddBody(floor->GetID(), EActivation::DontActivate);
  231. // Now create a dynamic body to bounce on the floor
  232. // Note that this uses the shorthand version of creating and adding a body to the world
  233. BodyCreationSettings sphere_settings(new SphereShape(0.5f), Vec3(0.0f, 2.0f, 0.0f), Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING);
  234. BodyID sphere_id = body_interface.CreateAndAddBody(sphere_settings, EActivation::Activate);
  235. // Now you can interact with the dynamic body, in this case we're going to give it a velocity.
  236. // (note that if we had used CreateBody then we could have set the velocity straight on the body before adding it to the physics system)
  237. body_interface.SetLinearVelocity(sphere_id, Vec3(0.0f, -5.0f, 0.0f));
  238. // We simulate the physics world in discrete time steps. 60 Hz is a good rate to update the physics system.
  239. const float cDeltaTime = 1.0f / 60.0f;
  240. // Optional step: Before starting the physics simulation you can optimize the broad phase. This improves collision detection performance (it's pointless here because we only have 2 bodies).
  241. // You should definitely not call this every frame or when e.g. streaming in a new level section as it is an expensive operation.
  242. // Instead insert all new objects in batches instead of 1 at a time to keep the broad phase efficient.
  243. physics_system.OptimizeBroadPhase();
  244. // Now we're ready to simulate the body, keep simulating until it goes to sleep
  245. uint step = 0;
  246. while (body_interface.IsActive(sphere_id))
  247. {
  248. // Next step
  249. ++step;
  250. // Output current position and velocity of the sphere
  251. Vec3 position = body_interface.GetCenterOfMassPosition(sphere_id);
  252. Vec3 velocity = body_interface.GetLinearVelocity(sphere_id);
  253. cout << "Step " << step << ": Position = (" << position.GetX() << ", " << position.GetY() << ", " << position.GetZ() << "), Velocity = (" << velocity.GetX() << ", " << velocity.GetY() << ", " << velocity.GetZ() << ")" << endl;
  254. // If you take larger steps than 1 / 60th of a second you need to do multiple collision steps in order to keep the simulation stable. Do 1 collision step per 1 / 60th of a second (round up).
  255. const int cCollisionSteps = 1;
  256. // If you want more accurate step results you can do multiple sub steps within a collision step. Usually you would set this to 1.
  257. const int cIntegrationSubSteps = 1;
  258. // Step the world
  259. physics_system.Update(cDeltaTime, cCollisionSteps, cIntegrationSubSteps, &temp_allocator, &job_system);
  260. }
  261. // Remove the sphere from the physics system. Note that the sphere itself keeps all of its state and can be re-added at any time.
  262. body_interface.RemoveBody(sphere_id);
  263. // Destroy the sphere. After this the sphere ID is no longer valid.
  264. body_interface.DestroyBody(sphere_id);
  265. // Remove and destroy the floor
  266. body_interface.RemoveBody(floor->GetID());
  267. body_interface.DestroyBody(floor->GetID());
  268. return 0;
  269. }