SliderConstraint.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt.h>
  4. #include <Physics/Constraints/SliderConstraint.h>
  5. #include <Physics/Body/Body.h>
  6. #include <ObjectStream/TypeDeclarations.h>
  7. #include <Core/StreamIn.h>
  8. #include <Core/StreamOut.h>
  9. #ifdef JPH_DEBUG_RENDERER
  10. #include <Renderer/DebugRenderer.h>
  11. #endif // JPH_DEBUG_RENDERER
  12. namespace JPH {
  13. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  14. {
  15. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  16. JPH_ADD_ENUM_ATTRIBUTE(SliderConstraintSettings, mSpace)
  17. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
  18. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
  21. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
  22. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
  23. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  24. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  25. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  26. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  27. }
  28. void SliderConstraintSettings::SetPoint(const Body &inBody1, const Body &inBody2)
  29. {
  30. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  31. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point, otherwise use the mid point between the two center of masses
  32. Vec3 anchor;
  33. if (!inBody1.CanBeKinematicOrDynamic())
  34. anchor = inBody2.GetCenterOfMassPosition();
  35. else if (!inBody2.CanBeKinematicOrDynamic())
  36. anchor = inBody1.GetCenterOfMassPosition();
  37. else
  38. anchor = 0.5f * (inBody1.GetCenterOfMassPosition() + inBody2.GetCenterOfMassPosition());
  39. mPoint1 = mPoint2 = anchor;
  40. }
  41. void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
  42. {
  43. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  44. mSliderAxis1 = mSliderAxis2 = inSliderAxis;
  45. mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
  46. }
  47. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  48. {
  49. ConstraintSettings::SaveBinaryState(inStream);
  50. inStream.Write(mSpace);
  51. inStream.Write(mPoint1);
  52. inStream.Write(mSliderAxis1);
  53. inStream.Write(mNormalAxis1);
  54. inStream.Write(mPoint2);
  55. inStream.Write(mSliderAxis2);
  56. inStream.Write(mNormalAxis2);
  57. inStream.Write(mLimitsMin);
  58. inStream.Write(mLimitsMax);
  59. inStream.Write(mMaxFrictionForce);
  60. mMotorSettings.SaveBinaryState(inStream);
  61. }
  62. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  63. {
  64. ConstraintSettings::RestoreBinaryState(inStream);
  65. inStream.Read(mSpace);
  66. inStream.Read(mPoint1);
  67. inStream.Read(mSliderAxis1);
  68. inStream.Read(mNormalAxis1);
  69. inStream.Read(mPoint2);
  70. inStream.Read(mSliderAxis2);
  71. inStream.Read(mNormalAxis2);
  72. inStream.Read(mLimitsMin);
  73. inStream.Read(mLimitsMax);
  74. inStream.Read(mMaxFrictionForce);
  75. mMotorSettings.RestoreBinaryState(inStream);
  76. }
  77. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  78. {
  79. return new SliderConstraint(inBody1, inBody2, *this);
  80. }
  81. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  82. TwoBodyConstraint(inBody1, inBody2, inSettings),
  83. mLocalSpacePosition1(inSettings.mPoint1),
  84. mLocalSpacePosition2(inSettings.mPoint2),
  85. mLocalSpaceSliderAxis1(inSettings.mSliderAxis1),
  86. mLocalSpaceNormal1(inSettings.mNormalAxis1),
  87. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  88. mMotorSettings(inSettings.mMotorSettings)
  89. {
  90. // Store inverse of initial rotation from body 1 to body 2 in body 1 space:
  91. //
  92. // q20 = q10 r0
  93. // <=> r0 = q10^-1 q20
  94. // <=> r0^-1 = q20^-1 q10
  95. //
  96. // where:
  97. //
  98. // q10, q20 = world space initial orientation of body 1 and 2
  99. // r0 = initial rotation rotation from body 1 to body 2 in local space of body 1
  100. //
  101. // We can also write this in terms of the constraint matrices:
  102. //
  103. // q20 c2 = q10 c1
  104. // <=> q20 = q10 c1 c2^-1
  105. // => r0 = c1 c2^-1
  106. // <=> r0^-1 = c2 c1^-1
  107. //
  108. // where:
  109. //
  110. // c1, c2 = matrix that takes us from body 1 and 2 COM to constraint space 1 and 2
  111. if (inSettings.mSliderAxis1 == inSettings.mSliderAxis2 && inSettings.mNormalAxis1 == inSettings.mNormalAxis2)
  112. {
  113. // Axis are the same -> identity transform
  114. mInvInitialOrientation = Quat::sIdentity();
  115. }
  116. else
  117. {
  118. Mat44 constraint1(Vec4(inSettings.mSliderAxis1, 0), Vec4(inSettings.mNormalAxis1, 0), Vec4(inSettings.mSliderAxis1.Cross(inSettings.mNormalAxis1), 0), Vec4(0, 0, 0, 1));
  119. Mat44 constraint2(Vec4(inSettings.mSliderAxis2, 0), Vec4(inSettings.mNormalAxis2, 0), Vec4(inSettings.mSliderAxis2.Cross(inSettings.mNormalAxis2), 0), Vec4(0, 0, 0, 1));
  120. mInvInitialOrientation = constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated();
  121. }
  122. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  123. {
  124. // If all properties were specified in world space, take them to local space now
  125. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  126. mLocalSpacePosition1 = inv_transform1 * mLocalSpacePosition1;
  127. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(mLocalSpaceSliderAxis1).Normalized();
  128. mLocalSpaceNormal1 = inv_transform1.Multiply3x3(mLocalSpaceNormal1).Normalized();
  129. mLocalSpacePosition2 = inBody2.GetInverseCenterOfMassTransform() * mLocalSpacePosition2;
  130. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  131. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  132. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  133. }
  134. // Calculate 2nd local space normal
  135. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  136. // Store limits
  137. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax, "Better use a fixed constraint");
  138. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  139. }
  140. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  141. {
  142. JPH_ASSERT(inLimitsMin <= 0.0f);
  143. JPH_ASSERT(inLimitsMax >= 0.0f);
  144. mLimitsMin = inLimitsMin;
  145. mLimitsMax = inLimitsMax;
  146. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  147. }
  148. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  149. {
  150. // Calculate points relative to body
  151. mR1 = inRotation1 * mLocalSpacePosition1;
  152. mR2 = inRotation2 * mLocalSpacePosition2;
  153. // Calculate X2 + R2 - X1 - R1
  154. mU = mBody2->GetCenterOfMassPosition() + mR2 - mBody1->GetCenterOfMassPosition() - mR1;
  155. }
  156. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  157. {
  158. // Calculate world space normals
  159. mN1 = inRotation1 * mLocalSpaceNormal1;
  160. mN2 = inRotation1 * mLocalSpaceNormal2;
  161. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  162. }
  163. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  164. {
  165. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  166. {
  167. // Calculate world space slider axis
  168. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  169. // Calculate slide distance along axis
  170. mD = mU.Dot(mWorldSpaceSliderAxis);
  171. }
  172. }
  173. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime, Mat44Arg inRotation1)
  174. {
  175. // Check if distance is within limits
  176. if (mHasLimits && (mD <= mLimitsMin || mD >= mLimitsMax))
  177. mPositionLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  178. else
  179. mPositionLimitsConstraintPart.Deactivate();
  180. }
  181. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  182. {
  183. switch (mMotorState)
  184. {
  185. case EMotorState::Off:
  186. if (mMaxFrictionForce > 0.0f)
  187. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  188. else
  189. mMotorConstraintPart.Deactivate();
  190. break;
  191. case EMotorState::Velocity:
  192. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  193. break;
  194. case EMotorState::Position:
  195. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mFrequency, mMotorSettings.mDamping);
  196. break;
  197. }
  198. }
  199. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  200. {
  201. // Calculate constraint properties that are constant while bodies don't move
  202. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  203. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  204. CalculateR1R2U(rotation1, rotation2);
  205. CalculatePositionConstraintProperties(rotation1, rotation2);
  206. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  207. CalculateSlidingAxisAndPosition(rotation1);
  208. CalculatePositionLimitsConstraintProperties(inDeltaTime, rotation1);
  209. CalculateMotorConstraintProperties(inDeltaTime);
  210. }
  211. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  212. {
  213. // Warm starting: Apply previous frame impulse
  214. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  215. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  216. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  217. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  218. }
  219. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  220. {
  221. // Solve motor
  222. bool motor = false;
  223. if (mMotorConstraintPart.IsActive())
  224. {
  225. switch (mMotorState)
  226. {
  227. case EMotorState::Off:
  228. {
  229. float max_lambda = mMaxFrictionForce * inDeltaTime;
  230. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  231. break;
  232. }
  233. case EMotorState::Velocity:
  234. case EMotorState::Position:
  235. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  236. break;
  237. }
  238. }
  239. // Solve position constraint along 2 axis
  240. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  241. // Solve rotation constraint
  242. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  243. // Solve limits along slider axis
  244. bool limit = false;
  245. if (mPositionLimitsConstraintPart.IsActive())
  246. {
  247. if (mD <= mLimitsMin)
  248. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, 0, FLT_MAX);
  249. else
  250. {
  251. JPH_ASSERT(mD >= mLimitsMax);
  252. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -FLT_MAX, 0);
  253. }
  254. }
  255. return motor || pos || rot || limit;
  256. }
  257. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  258. {
  259. // Motor operates on velocities only, don't call SolvePositionConstraint
  260. // Solve position constraint along 2 axis
  261. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  262. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  263. CalculateR1R2U(rotation1, rotation2);
  264. CalculatePositionConstraintProperties(rotation1, rotation2);
  265. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  266. // Solve rotation constraint
  267. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  268. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  269. // Solve limits along slider axis
  270. bool limit = false;
  271. if (mHasLimits)
  272. {
  273. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  274. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  275. CalculateR1R2U(rotation1, rotation2);
  276. CalculateSlidingAxisAndPosition(rotation1);
  277. CalculatePositionLimitsConstraintProperties(inDeltaTime, rotation1);
  278. if (mPositionLimitsConstraintPart.IsActive())
  279. {
  280. if (mD <= mLimitsMin)
  281. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  282. else
  283. {
  284. JPH_ASSERT(mD >= mLimitsMax);
  285. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  286. }
  287. }
  288. }
  289. return pos || rot || limit;
  290. }
  291. #ifdef JPH_DEBUG_RENDERER
  292. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  293. {
  294. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  295. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  296. // Transform the local positions into world space
  297. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  298. Vec3 position1 = transform1 * mLocalSpacePosition1;
  299. Vec3 position2 = transform2 * mLocalSpacePosition2;
  300. // Draw constraint
  301. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  302. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  303. inRenderer->DrawLine(position1, position2, Color::sGreen);
  304. // Draw motor
  305. switch (mMotorState)
  306. {
  307. case EMotorState::Position:
  308. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  309. break;
  310. case EMotorState::Velocity:
  311. {
  312. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  313. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  314. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  315. break;
  316. }
  317. case EMotorState::Off:
  318. break;
  319. }
  320. }
  321. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  322. {
  323. if (mHasLimits)
  324. {
  325. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  326. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  327. // Transform the local positions into world space
  328. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  329. Vec3 position1 = transform1 * mLocalSpacePosition1;
  330. Vec3 position2 = transform2 * mLocalSpacePosition2;
  331. // Calculate the limits in world space
  332. Vec3 limits_min = position1 + mLimitsMin * slider_axis;
  333. Vec3 limits_max = position1 + mLimitsMax * slider_axis;
  334. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  335. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  336. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  337. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  338. }
  339. }
  340. #endif // JPH_DEBUG_RENDERER
  341. void SliderConstraint::SaveState(StateRecorder &inStream) const
  342. {
  343. TwoBodyConstraint::SaveState(inStream);
  344. mMotorConstraintPart.SaveState(inStream);
  345. mPositionConstraintPart.SaveState(inStream);
  346. mRotationConstraintPart.SaveState(inStream);
  347. mPositionLimitsConstraintPart.SaveState(inStream);
  348. inStream.Write(mMotorState);
  349. inStream.Write(mTargetVelocity);
  350. inStream.Write(mTargetPosition);
  351. }
  352. void SliderConstraint::RestoreState(StateRecorder &inStream)
  353. {
  354. TwoBodyConstraint::RestoreState(inStream);
  355. mMotorConstraintPart.RestoreState(inStream);
  356. mPositionConstraintPart.RestoreState(inStream);
  357. mRotationConstraintPart.RestoreState(inStream);
  358. mPositionLimitsConstraintPart.RestoreState(inStream);
  359. inStream.Read(mMotorState);
  360. inStream.Read(mTargetVelocity);
  361. inStream.Read(mTargetPosition);
  362. }
  363. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  364. {
  365. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  366. }
  367. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  368. {
  369. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  370. mat.SetTranslation(mLocalSpacePosition2);
  371. return mat;
  372. }
  373. } // JPH