PhysicsSystem.cpp 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/PhysicsSystem.h>
  6. #include <Jolt/Physics/PhysicsSettings.h>
  7. #include <Jolt/Physics/PhysicsUpdateContext.h>
  8. #include <Jolt/Physics/PhysicsStepListener.h>
  9. #include <Jolt/Physics/Collision/BroadPhase/BroadPhaseBruteForce.h>
  10. #include <Jolt/Physics/Collision/BroadPhase/BroadPhaseQuadTree.h>
  11. #include <Jolt/Physics/Collision/CollisionDispatch.h>
  12. #include <Jolt/Physics/Collision/AABoxCast.h>
  13. #include <Jolt/Physics/Collision/ShapeCast.h>
  14. #include <Jolt/Physics/Collision/CollideShape.h>
  15. #include <Jolt/Physics/Collision/CollisionCollectorImpl.h>
  16. #include <Jolt/Physics/Collision/CastResult.h>
  17. #include <Jolt/Physics/Collision/CollideConvexVsTriangles.h>
  18. #include <Jolt/Physics/Collision/ManifoldBetweenTwoFaces.h>
  19. #include <Jolt/Physics/Collision/Shape/ConvexShape.h>
  20. #include <Jolt/Physics/Constraints/ConstraintPart/AxisConstraintPart.h>
  21. #include <Jolt/Physics/DeterminismLog.h>
  22. #include <Jolt/Geometry/RayAABox.h>
  23. #include <Jolt/Core/JobSystem.h>
  24. #include <Jolt/Core/TempAllocator.h>
  25. #include <Jolt/Core/QuickSort.h>
  26. #ifdef JPH_DEBUG_RENDERER
  27. #include <Jolt/Renderer/DebugRenderer.h>
  28. #endif // JPH_DEBUG_RENDERER
  29. JPH_NAMESPACE_BEGIN
  30. #ifdef JPH_DEBUG_RENDERER
  31. bool PhysicsSystem::sDrawMotionQualityLinearCast = false;
  32. #endif // JPH_DEBUG_RENDERER
  33. //#define BROAD_PHASE BroadPhaseBruteForce
  34. #define BROAD_PHASE BroadPhaseQuadTree
  35. static const Color cColorUpdateBroadPhaseFinalize = Color::sGetDistinctColor(1);
  36. static const Color cColorUpdateBroadPhasePrepare = Color::sGetDistinctColor(2);
  37. static const Color cColorFindCollisions = Color::sGetDistinctColor(3);
  38. static const Color cColorApplyGravity = Color::sGetDistinctColor(4);
  39. static const Color cColorSetupVelocityConstraints = Color::sGetDistinctColor(5);
  40. static const Color cColorBuildIslandsFromConstraints = Color::sGetDistinctColor(6);
  41. static const Color cColorDetermineActiveConstraints = Color::sGetDistinctColor(7);
  42. static const Color cColorFinalizeIslands = Color::sGetDistinctColor(8);
  43. static const Color cColorContactRemovedCallbacks = Color::sGetDistinctColor(9);
  44. static const Color cColorBodySetIslandIndex = Color::sGetDistinctColor(10);
  45. static const Color cColorStartNextStep = Color::sGetDistinctColor(11);
  46. static const Color cColorSolveVelocityConstraints = Color::sGetDistinctColor(12);
  47. static const Color cColorPreIntegrateVelocity = Color::sGetDistinctColor(13);
  48. static const Color cColorIntegrateVelocity = Color::sGetDistinctColor(14);
  49. static const Color cColorPostIntegrateVelocity = Color::sGetDistinctColor(15);
  50. static const Color cColorResolveCCDContacts = Color::sGetDistinctColor(16);
  51. static const Color cColorSolvePositionConstraints = Color::sGetDistinctColor(17);
  52. static const Color cColorFindCCDContacts = Color::sGetDistinctColor(18);
  53. static const Color cColorStepListeners = Color::sGetDistinctColor(19);
  54. PhysicsSystem::~PhysicsSystem()
  55. {
  56. // Remove broadphase
  57. delete mBroadPhase;
  58. }
  59. void PhysicsSystem::Init(uint inMaxBodies, uint inNumBodyMutexes, uint inMaxBodyPairs, uint inMaxContactConstraints, const BroadPhaseLayerInterface &inBroadPhaseLayerInterface, const ObjectVsBroadPhaseLayerFilter &inObjectVsBroadPhaseLayerFilter, const ObjectLayerPairFilter &inObjectLayerPairFilter)
  60. {
  61. mObjectVsBroadPhaseLayerFilter = &inObjectVsBroadPhaseLayerFilter;
  62. mObjectLayerPairFilter = &inObjectLayerPairFilter;
  63. // Initialize body manager
  64. mBodyManager.Init(inMaxBodies, inNumBodyMutexes, inBroadPhaseLayerInterface);
  65. // Create broadphase
  66. mBroadPhase = new BROAD_PHASE();
  67. mBroadPhase->Init(&mBodyManager, inBroadPhaseLayerInterface);
  68. // Init contact constraint manager
  69. mContactManager.Init(inMaxBodyPairs, inMaxContactConstraints);
  70. // Init islands builder
  71. mIslandBuilder.Init(inMaxBodies);
  72. // Initialize body interface
  73. mBodyInterfaceLocking.Init(mBodyLockInterfaceLocking, mBodyManager, *mBroadPhase);
  74. mBodyInterfaceNoLock.Init(mBodyLockInterfaceNoLock, mBodyManager, *mBroadPhase);
  75. // Initialize narrow phase query
  76. mNarrowPhaseQueryLocking.Init(mBodyLockInterfaceLocking, *mBroadPhase);
  77. mNarrowPhaseQueryNoLock.Init(mBodyLockInterfaceNoLock, *mBroadPhase);
  78. }
  79. void PhysicsSystem::OptimizeBroadPhase()
  80. {
  81. mBroadPhase->Optimize();
  82. }
  83. void PhysicsSystem::AddStepListener(PhysicsStepListener *inListener)
  84. {
  85. lock_guard lock(mStepListenersMutex);
  86. JPH_ASSERT(find(mStepListeners.begin(), mStepListeners.end(), inListener) == mStepListeners.end());
  87. mStepListeners.push_back(inListener);
  88. }
  89. void PhysicsSystem::RemoveStepListener(PhysicsStepListener *inListener)
  90. {
  91. lock_guard lock(mStepListenersMutex);
  92. StepListeners::iterator i = find(mStepListeners.begin(), mStepListeners.end(), inListener);
  93. JPH_ASSERT(i != mStepListeners.end());
  94. *i = mStepListeners.back();
  95. mStepListeners.pop_back();
  96. }
  97. EPhysicsUpdateError PhysicsSystem::Update(float inDeltaTime, int inCollisionSteps, TempAllocator *inTempAllocator, JobSystem *inJobSystem)
  98. {
  99. JPH_PROFILE_FUNCTION();
  100. JPH_DET_LOG("PhysicsSystem::Update: dt: " << inDeltaTime << " steps: " << inCollisionSteps);
  101. JPH_ASSERT(inCollisionSteps > 0);
  102. JPH_ASSERT(inDeltaTime >= 0.0f);
  103. // Sync point for the broadphase. This will allow it to do clean up operations without having any mutexes locked yet.
  104. mBroadPhase->FrameSync();
  105. // If there are no active bodies or there's no time delta
  106. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  107. if (num_active_bodies == 0 || inDeltaTime <= 0.0f)
  108. {
  109. mBodyManager.LockAllBodies();
  110. // Update broadphase
  111. mBroadPhase->LockModifications();
  112. BroadPhase::UpdateState update_state = mBroadPhase->UpdatePrepare();
  113. mBroadPhase->UpdateFinalize(update_state);
  114. mBroadPhase->UnlockModifications();
  115. // Call contact removal callbacks from contacts that existed in the previous update
  116. mContactManager.FinalizeContactCacheAndCallContactPointRemovedCallbacks(0, 0);
  117. mBodyManager.UnlockAllBodies();
  118. return EPhysicsUpdateError::None;
  119. }
  120. // Calculate ratio between current and previous frame delta time to scale initial constraint forces
  121. float step_delta_time = inDeltaTime / inCollisionSteps;
  122. float warm_start_impulse_ratio = mPhysicsSettings.mConstraintWarmStart && mPreviousStepDeltaTime > 0.0f? step_delta_time / mPreviousStepDeltaTime : 0.0f;
  123. mPreviousStepDeltaTime = step_delta_time;
  124. // Create the context used for passing information between jobs
  125. PhysicsUpdateContext context(*inTempAllocator);
  126. context.mPhysicsSystem = this;
  127. context.mJobSystem = inJobSystem;
  128. context.mBarrier = inJobSystem->CreateBarrier();
  129. context.mIslandBuilder = &mIslandBuilder;
  130. context.mStepDeltaTime = step_delta_time;
  131. context.mWarmStartImpulseRatio = warm_start_impulse_ratio;
  132. context.mSteps.resize(inCollisionSteps);
  133. // Allocate space for body pairs
  134. JPH_ASSERT(context.mBodyPairs == nullptr);
  135. context.mBodyPairs = static_cast<BodyPair *>(inTempAllocator->Allocate(sizeof(BodyPair) * mPhysicsSettings.mMaxInFlightBodyPairs));
  136. // Lock all bodies for write so that we can freely touch them
  137. mStepListenersMutex.lock();
  138. mBodyManager.LockAllBodies();
  139. mBroadPhase->LockModifications();
  140. // Get max number of concurrent jobs
  141. int max_concurrency = context.GetMaxConcurrency();
  142. // Calculate how many step listener jobs we spawn
  143. int num_step_listener_jobs = mStepListeners.empty()? 0 : max(1, min((int)mStepListeners.size() / mPhysicsSettings.mStepListenersBatchSize / mPhysicsSettings.mStepListenerBatchesPerJob, max_concurrency));
  144. // Number of gravity jobs depends on the amount of active bodies.
  145. // Launch max 1 job per batch of active bodies
  146. // Leave 1 thread for update broadphase prepare and 1 for determine active constraints
  147. int num_apply_gravity_jobs = max(1, min(((int)num_active_bodies + cApplyGravityBatchSize - 1) / cApplyGravityBatchSize, max_concurrency - 2));
  148. // Number of determine active constraints jobs to run depends on number of constraints.
  149. // Leave 1 thread for update broadphase prepare and 1 for apply gravity
  150. int num_determine_active_constraints_jobs = max(1, min(((int)mConstraintManager.GetNumConstraints() + cDetermineActiveConstraintsBatchSize - 1) / cDetermineActiveConstraintsBatchSize, max_concurrency - 2));
  151. // Number of find collisions jobs to run depends on number of active bodies.
  152. // Note that when we have more than 1 thread, we always spawn at least 2 find collisions jobs so that the first job can wait for build islands from constraints
  153. // (which may activate additional bodies that need to be processed) while the second job can start processing collision work.
  154. int num_find_collisions_jobs = max(max_concurrency == 1? 1 : 2, min(((int)num_active_bodies + cActiveBodiesBatchSize - 1) / cActiveBodiesBatchSize, max_concurrency));
  155. // Number of integrate velocity jobs depends on number of active bodies.
  156. int num_integrate_velocity_jobs = max(1, min(((int)num_active_bodies + cIntegrateVelocityBatchSize - 1) / cIntegrateVelocityBatchSize, max_concurrency));
  157. {
  158. JPH_PROFILE("Build Jobs");
  159. // Iterate over collision steps
  160. for (int step_idx = 0; step_idx < inCollisionSteps; ++step_idx)
  161. {
  162. bool is_first_step = step_idx == 0;
  163. bool is_last_step = step_idx == inCollisionSteps - 1;
  164. PhysicsUpdateContext::Step &step = context.mSteps[step_idx];
  165. step.mContext = &context;
  166. step.mIsFirst = is_first_step;
  167. step.mIsLast = is_last_step;
  168. // Create job to do broadphase finalization
  169. // This job must finish before integrating velocities. Until then the positions will not be updated neither will bodies be added / removed.
  170. step.mUpdateBroadphaseFinalize = inJobSystem->CreateJob("UpdateBroadPhaseFinalize", cColorUpdateBroadPhaseFinalize, [&context, &step]()
  171. {
  172. // Validate that all find collision jobs have stopped
  173. JPH_ASSERT(step.mActiveFindCollisionJobs == 0);
  174. // Finalize the broadphase update
  175. context.mPhysicsSystem->mBroadPhase->UpdateFinalize(step.mBroadPhaseUpdateState);
  176. // Signal that it is done
  177. step.mPreIntegrateVelocity.RemoveDependency();
  178. }, num_find_collisions_jobs + 2); // depends on: find collisions, broadphase prepare update, finish building jobs
  179. // The immediate jobs below are only immediate for the first step, the all finished job will kick them for the next step
  180. int previous_step_dependency_count = is_first_step? 0 : 1;
  181. // Start job immediately: Start the prepare broadphase
  182. // Must be done under body lock protection since the order is body locks then broadphase mutex
  183. // If this is turned around the RemoveBody call will hang since it locks in that order
  184. step.mBroadPhasePrepare = inJobSystem->CreateJob("UpdateBroadPhasePrepare", cColorUpdateBroadPhasePrepare, [&context, &step]()
  185. {
  186. // Prepare the broadphase update
  187. step.mBroadPhaseUpdateState = context.mPhysicsSystem->mBroadPhase->UpdatePrepare();
  188. // Now the finalize can run (if other dependencies are met too)
  189. step.mUpdateBroadphaseFinalize.RemoveDependency();
  190. }, previous_step_dependency_count);
  191. // This job will find all collisions
  192. step.mBodyPairQueues.resize(max_concurrency);
  193. step.mMaxBodyPairsPerQueue = mPhysicsSettings.mMaxInFlightBodyPairs / max_concurrency;
  194. step.mActiveFindCollisionJobs = ~PhysicsUpdateContext::JobMask(0) >> (sizeof(PhysicsUpdateContext::JobMask) * 8 - num_find_collisions_jobs);
  195. step.mFindCollisions.resize(num_find_collisions_jobs);
  196. for (int i = 0; i < num_find_collisions_jobs; ++i)
  197. {
  198. // Build islands from constraints may activate additional bodies, so the first job will wait for this to finish in order to not miss any active bodies
  199. int num_dep_build_islands_from_constraints = i == 0? 1 : 0;
  200. step.mFindCollisions[i] = inJobSystem->CreateJob("FindCollisions", cColorFindCollisions, [&step, i]()
  201. {
  202. step.mContext->mPhysicsSystem->JobFindCollisions(&step, i);
  203. }, num_apply_gravity_jobs + num_determine_active_constraints_jobs + 1 + num_dep_build_islands_from_constraints); // depends on: apply gravity, determine active constraints, finish building jobs, build islands from constraints
  204. }
  205. if (is_first_step)
  206. {
  207. #ifdef JPH_ENABLE_ASSERTS
  208. // Don't allow write operations to the active bodies list
  209. mBodyManager.SetActiveBodiesLocked(true);
  210. #endif
  211. // Store the number of active bodies at the start of the step
  212. step.mNumActiveBodiesAtStepStart = mBodyManager.GetNumActiveBodies();
  213. // Lock all constraints
  214. mConstraintManager.LockAllConstraints();
  215. // Allocate memory for storing the active constraints
  216. JPH_ASSERT(context.mActiveConstraints == nullptr);
  217. context.mActiveConstraints = static_cast<Constraint **>(inTempAllocator->Allocate(mConstraintManager.GetNumConstraints() * sizeof(Constraint *)));
  218. // Prepare contact buffer
  219. mContactManager.PrepareConstraintBuffer(&context);
  220. // Setup island builder
  221. mIslandBuilder.PrepareContactConstraints(mContactManager.GetMaxConstraints(), context.mTempAllocator);
  222. }
  223. // This job applies gravity to all active bodies
  224. step.mApplyGravity.resize(num_apply_gravity_jobs);
  225. for (int i = 0; i < num_apply_gravity_jobs; ++i)
  226. step.mApplyGravity[i] = inJobSystem->CreateJob("ApplyGravity", cColorApplyGravity, [&context, &step]()
  227. {
  228. context.mPhysicsSystem->JobApplyGravity(&context, &step);
  229. JobHandle::sRemoveDependencies(step.mFindCollisions);
  230. }, num_step_listener_jobs > 0? num_step_listener_jobs : previous_step_dependency_count); // depends on: step listeners (or previous step if no step listeners)
  231. // This job will setup velocity constraints for non-collision constraints
  232. step.mSetupVelocityConstraints = inJobSystem->CreateJob("SetupVelocityConstraints", cColorSetupVelocityConstraints, [&context, &step]()
  233. {
  234. context.mPhysicsSystem->JobSetupVelocityConstraints(context.mStepDeltaTime, &step);
  235. JobHandle::sRemoveDependencies(step.mSolveVelocityConstraints);
  236. }, num_determine_active_constraints_jobs + 1); // depends on: determine active constraints, finish building jobs
  237. // This job will build islands from constraints
  238. step.mBuildIslandsFromConstraints = inJobSystem->CreateJob("BuildIslandsFromConstraints", cColorBuildIslandsFromConstraints, [&context, &step]()
  239. {
  240. context.mPhysicsSystem->JobBuildIslandsFromConstraints(&context, &step);
  241. step.mFindCollisions[0].RemoveDependency(); // The first collisions job cannot start running until we've finished building islands and activated all bodies
  242. step.mFinalizeIslands.RemoveDependency();
  243. }, num_determine_active_constraints_jobs + 1); // depends on: determine active constraints, finish building jobs
  244. // This job determines active constraints
  245. step.mDetermineActiveConstraints.resize(num_determine_active_constraints_jobs);
  246. for (int i = 0; i < num_determine_active_constraints_jobs; ++i)
  247. step.mDetermineActiveConstraints[i] = inJobSystem->CreateJob("DetermineActiveConstraints", cColorDetermineActiveConstraints, [&context, &step]()
  248. {
  249. context.mPhysicsSystem->JobDetermineActiveConstraints(&step);
  250. step.mSetupVelocityConstraints.RemoveDependency();
  251. step.mBuildIslandsFromConstraints.RemoveDependency();
  252. // Kick find collisions last as they will use up all CPU cores leaving no space for the previous 2 jobs
  253. JobHandle::sRemoveDependencies(step.mFindCollisions);
  254. }, num_step_listener_jobs > 0? num_step_listener_jobs : previous_step_dependency_count); // depends on: step listeners (or previous step if no step listeners)
  255. // This job calls the step listeners
  256. step.mStepListeners.resize(num_step_listener_jobs);
  257. for (int i = 0; i < num_step_listener_jobs; ++i)
  258. step.mStepListeners[i] = inJobSystem->CreateJob("StepListeners", cColorStepListeners, [&context, &step]()
  259. {
  260. // Call the step listeners
  261. context.mPhysicsSystem->JobStepListeners(&step);
  262. // Kick apply gravity and determine active constraint jobs
  263. JobHandle::sRemoveDependencies(step.mApplyGravity);
  264. JobHandle::sRemoveDependencies(step.mDetermineActiveConstraints);
  265. }, previous_step_dependency_count);
  266. // Unblock the previous step
  267. if (!is_first_step)
  268. context.mSteps[step_idx - 1].mStartNextStep.RemoveDependency();
  269. // This job will finalize the simulation islands
  270. step.mFinalizeIslands = inJobSystem->CreateJob("FinalizeIslands", cColorFinalizeIslands, [&context, &step]()
  271. {
  272. // Validate that all find collision jobs have stopped
  273. JPH_ASSERT(step.mActiveFindCollisionJobs == 0);
  274. context.mPhysicsSystem->JobFinalizeIslands(&context);
  275. JobHandle::sRemoveDependencies(step.mSolveVelocityConstraints);
  276. step.mBodySetIslandIndex.RemoveDependency();
  277. }, num_find_collisions_jobs + 2); // depends on: find collisions, build islands from constraints, finish building jobs
  278. // Unblock previous job
  279. // Note: technically we could release find collisions here but we don't want to because that could make them run before 'setup velocity constraints' which means that job won't have a thread left
  280. step.mBuildIslandsFromConstraints.RemoveDependency();
  281. // This job will call the contact removed callbacks
  282. step.mContactRemovedCallbacks = inJobSystem->CreateJob("ContactRemovedCallbacks", cColorContactRemovedCallbacks, [&context, &step]()
  283. {
  284. context.mPhysicsSystem->JobContactRemovedCallbacks(&step);
  285. if (step.mStartNextStep.IsValid())
  286. step.mStartNextStep.RemoveDependency();
  287. }, 1); // depends on the find ccd contacts
  288. // This job will set the island index on each body (only used for debug drawing purposes)
  289. // It will also delete any bodies that have been destroyed in the last frame
  290. step.mBodySetIslandIndex = inJobSystem->CreateJob("BodySetIslandIndex", cColorBodySetIslandIndex, [&context, &step]()
  291. {
  292. context.mPhysicsSystem->JobBodySetIslandIndex();
  293. if (step.mStartNextStep.IsValid())
  294. step.mStartNextStep.RemoveDependency();
  295. }, 1); // depends on: finalize islands
  296. // Job to start the next collision step
  297. if (!is_last_step)
  298. {
  299. PhysicsUpdateContext::Step *next_step = &context.mSteps[step_idx + 1];
  300. step.mStartNextStep = inJobSystem->CreateJob("StartNextStep", cColorStartNextStep, [this, next_step]()
  301. {
  302. #ifdef _DEBUG
  303. // Validate that the cached bounds are correct
  304. mBodyManager.ValidateActiveBodyBounds();
  305. #endif // _DEBUG
  306. // Store the number of active bodies at the start of the step
  307. next_step->mNumActiveBodiesAtStepStart = mBodyManager.GetNumActiveBodies();
  308. // Clear the large island splitter
  309. TempAllocator *temp_allocator = next_step->mContext->mTempAllocator;
  310. mLargeIslandSplitter.Reset(temp_allocator);
  311. // Clear the island builder
  312. mIslandBuilder.ResetIslands(temp_allocator);
  313. // Setup island builder
  314. mIslandBuilder.PrepareContactConstraints(mContactManager.GetMaxConstraints(), temp_allocator);
  315. // Restart the contact manager
  316. mContactManager.RecycleConstraintBuffer();
  317. // Kick the jobs of the next step (in the same order as the first step)
  318. next_step->mBroadPhasePrepare.RemoveDependency();
  319. if (next_step->mStepListeners.empty())
  320. {
  321. // Kick the gravity and active constraints jobs immediately
  322. JobHandle::sRemoveDependencies(next_step->mApplyGravity);
  323. JobHandle::sRemoveDependencies(next_step->mDetermineActiveConstraints);
  324. }
  325. else
  326. {
  327. // Kick the step listeners job first
  328. JobHandle::sRemoveDependencies(next_step->mStepListeners);
  329. }
  330. }, max_concurrency + 3); // depends on: solve position constraints of the last step, body set island index, contact removed callbacks, finish building the previous step
  331. }
  332. // This job will solve the velocity constraints
  333. step.mSolveVelocityConstraints.resize(max_concurrency);
  334. for (int i = 0; i < max_concurrency; ++i)
  335. step.mSolveVelocityConstraints[i] = inJobSystem->CreateJob("SolveVelocityConstraints", cColorSolveVelocityConstraints, [&context, &step]()
  336. {
  337. context.mPhysicsSystem->JobSolveVelocityConstraints(&context, &step);
  338. step.mPreIntegrateVelocity.RemoveDependency();
  339. }, 3); // depends on: finalize islands, setup velocity constraints, finish building jobs.
  340. // Kick find collisions after setup velocity constraints because the former job will use up all CPU cores
  341. step.mSetupVelocityConstraints.RemoveDependency();
  342. JobHandle::sRemoveDependencies(step.mFindCollisions);
  343. // Finalize islands is a dependency on find collisions so it can go last
  344. step.mFinalizeIslands.RemoveDependency();
  345. // This job will prepare the position update of all active bodies
  346. step.mPreIntegrateVelocity = inJobSystem->CreateJob("PreIntegrateVelocity", cColorPreIntegrateVelocity, [&context, &step]()
  347. {
  348. context.mPhysicsSystem->JobPreIntegrateVelocity(&context, &step);
  349. JobHandle::sRemoveDependencies(step.mIntegrateVelocity);
  350. }, 2 + max_concurrency); // depends on: broadphase update finalize, solve velocity constraints, finish building jobs.
  351. // Unblock previous jobs
  352. step.mUpdateBroadphaseFinalize.RemoveDependency();
  353. JobHandle::sRemoveDependencies(step.mSolveVelocityConstraints);
  354. // This job will update the positions of all active bodies
  355. step.mIntegrateVelocity.resize(num_integrate_velocity_jobs);
  356. for (int i = 0; i < num_integrate_velocity_jobs; ++i)
  357. step.mIntegrateVelocity[i] = inJobSystem->CreateJob("IntegrateVelocity", cColorIntegrateVelocity, [&context, &step]()
  358. {
  359. context.mPhysicsSystem->JobIntegrateVelocity(&context, &step);
  360. step.mPostIntegrateVelocity.RemoveDependency();
  361. }, 2); // depends on: pre integrate velocity, finish building jobs.
  362. // Unblock previous job
  363. step.mPreIntegrateVelocity.RemoveDependency();
  364. // This job will finish the position update of all active bodies
  365. step.mPostIntegrateVelocity = inJobSystem->CreateJob("PostIntegrateVelocity", cColorPostIntegrateVelocity, [&context, &step]()
  366. {
  367. context.mPhysicsSystem->JobPostIntegrateVelocity(&context, &step);
  368. step.mResolveCCDContacts.RemoveDependency();
  369. }, num_integrate_velocity_jobs + 1); // depends on: integrate velocity, finish building jobs
  370. // Unblock previous jobs
  371. JobHandle::sRemoveDependencies(step.mIntegrateVelocity);
  372. // This job will update the positions and velocities for all bodies that need continuous collision detection
  373. step.mResolveCCDContacts = inJobSystem->CreateJob("ResolveCCDContacts", cColorResolveCCDContacts, [&context, &step]()
  374. {
  375. context.mPhysicsSystem->JobResolveCCDContacts(&context, &step);
  376. JobHandle::sRemoveDependencies(step.mSolvePositionConstraints);
  377. }, 2); // depends on: integrate velocities, detect ccd contacts (added dynamically), finish building jobs.
  378. // Unblock previous job
  379. step.mPostIntegrateVelocity.RemoveDependency();
  380. // Fixes up drift in positions and updates the broadphase with new body positions
  381. step.mSolvePositionConstraints.resize(max_concurrency);
  382. for (int i = 0; i < max_concurrency; ++i)
  383. step.mSolvePositionConstraints[i] = inJobSystem->CreateJob("SolvePositionConstraints", cColorSolvePositionConstraints, [&context, &step]()
  384. {
  385. context.mPhysicsSystem->JobSolvePositionConstraints(&context, &step);
  386. // Kick the next step
  387. if (step.mStartNextStep.IsValid())
  388. step.mStartNextStep.RemoveDependency();
  389. }, 2); // depends on: resolve ccd contacts, finish building jobs.
  390. // Unblock previous job.
  391. step.mResolveCCDContacts.RemoveDependency();
  392. // Unblock previous jobs
  393. JobHandle::sRemoveDependencies(step.mSolvePositionConstraints);
  394. }
  395. }
  396. // Build the list of jobs to wait for
  397. JobSystem::Barrier *barrier = context.mBarrier;
  398. {
  399. JPH_PROFILE("Build job barrier");
  400. StaticArray<JobHandle, cMaxPhysicsJobs> handles;
  401. for (const PhysicsUpdateContext::Step &step : context.mSteps)
  402. {
  403. if (step.mBroadPhasePrepare.IsValid())
  404. handles.push_back(step.mBroadPhasePrepare);
  405. for (const JobHandle &h : step.mStepListeners)
  406. handles.push_back(h);
  407. for (const JobHandle &h : step.mDetermineActiveConstraints)
  408. handles.push_back(h);
  409. for (const JobHandle &h : step.mApplyGravity)
  410. handles.push_back(h);
  411. for (const JobHandle &h : step.mFindCollisions)
  412. handles.push_back(h);
  413. if (step.mUpdateBroadphaseFinalize.IsValid())
  414. handles.push_back(step.mUpdateBroadphaseFinalize);
  415. handles.push_back(step.mSetupVelocityConstraints);
  416. handles.push_back(step.mBuildIslandsFromConstraints);
  417. handles.push_back(step.mFinalizeIslands);
  418. handles.push_back(step.mBodySetIslandIndex);
  419. for (const JobHandle &h : step.mSolveVelocityConstraints)
  420. handles.push_back(h);
  421. handles.push_back(step.mPreIntegrateVelocity);
  422. for (const JobHandle &h : step.mIntegrateVelocity)
  423. handles.push_back(h);
  424. handles.push_back(step.mPostIntegrateVelocity);
  425. handles.push_back(step.mResolveCCDContacts);
  426. for (const JobHandle &h : step.mSolvePositionConstraints)
  427. handles.push_back(h);
  428. handles.push_back(step.mContactRemovedCallbacks);
  429. if (step.mStartNextStep.IsValid())
  430. handles.push_back(step.mStartNextStep);
  431. }
  432. barrier->AddJobs(handles.data(), handles.size());
  433. }
  434. // Wait until all jobs finish
  435. // Note we don't just wait for the last job. If we would and another job
  436. // would be scheduled in between there is the possibility of a deadlock.
  437. // The other job could try to e.g. add/remove a body which would try to
  438. // lock a body mutex while this thread has already locked the mutex
  439. inJobSystem->WaitForJobs(barrier);
  440. // We're done with the barrier for this update
  441. inJobSystem->DestroyBarrier(barrier);
  442. #ifdef _DEBUG
  443. // Validate that the cached bounds are correct
  444. mBodyManager.ValidateActiveBodyBounds();
  445. #endif // _DEBUG
  446. // Clear the large island splitter
  447. mLargeIslandSplitter.Reset(inTempAllocator);
  448. // Clear the island builder
  449. mIslandBuilder.ResetIslands(inTempAllocator);
  450. // Clear the contact manager
  451. mContactManager.FinishConstraintBuffer();
  452. // Free active constraints
  453. inTempAllocator->Free(context.mActiveConstraints, mConstraintManager.GetNumConstraints() * sizeof(Constraint *));
  454. context.mActiveConstraints = nullptr;
  455. // Free body pairs
  456. inTempAllocator->Free(context.mBodyPairs, sizeof(BodyPair) * mPhysicsSettings.mMaxInFlightBodyPairs);
  457. context.mBodyPairs = nullptr;
  458. // Unlock the broadphase
  459. mBroadPhase->UnlockModifications();
  460. // Unlock all constraints
  461. mConstraintManager.UnlockAllConstraints();
  462. #ifdef JPH_ENABLE_ASSERTS
  463. // Allow write operations to the active bodies list
  464. mBodyManager.SetActiveBodiesLocked(false);
  465. #endif
  466. // Unlock all bodies
  467. mBodyManager.UnlockAllBodies();
  468. // Unlock step listeners
  469. mStepListenersMutex.unlock();
  470. // Return any errors
  471. EPhysicsUpdateError errors = static_cast<EPhysicsUpdateError>(context.mErrors.load(memory_order_acquire));
  472. JPH_ASSERT(errors == EPhysicsUpdateError::None, "An error occured during the physics update, see EPhysicsUpdateError for more information");
  473. return errors;
  474. }
  475. void PhysicsSystem::JobStepListeners(PhysicsUpdateContext::Step *ioStep)
  476. {
  477. #ifdef JPH_ENABLE_ASSERTS
  478. // Read positions (broadphase updates concurrently so we can't write), read/write velocities
  479. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  480. // Can activate bodies only (we cache the amount of active bodies at the beginning of the step in mNumActiveBodiesAtStepStart so we cannot deactivate here)
  481. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  482. #endif
  483. float step_time = ioStep->mContext->mStepDeltaTime;
  484. uint32 batch_size = mPhysicsSettings.mStepListenersBatchSize;
  485. for (;;)
  486. {
  487. // Get the start of a new batch
  488. uint32 batch = ioStep->mStepListenerReadIdx.fetch_add(batch_size);
  489. if (batch >= mStepListeners.size())
  490. break;
  491. // Call the listeners
  492. for (uint32 i = batch, i_end = min((uint32)mStepListeners.size(), batch + batch_size); i < i_end; ++i)
  493. mStepListeners[i]->OnStep(step_time, *this);
  494. }
  495. }
  496. void PhysicsSystem::JobDetermineActiveConstraints(PhysicsUpdateContext::Step *ioStep) const
  497. {
  498. #ifdef JPH_ENABLE_ASSERTS
  499. // No body access
  500. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  501. #endif
  502. uint32 num_constraints = mConstraintManager.GetNumConstraints();
  503. uint32 num_active_constraints;
  504. Constraint **active_constraints = (Constraint **)JPH_STACK_ALLOC(cDetermineActiveConstraintsBatchSize * sizeof(Constraint *));
  505. for (;;)
  506. {
  507. // Atomically fetch a batch of constraints
  508. uint32 constraint_idx = ioStep->mConstraintReadIdx.fetch_add(cDetermineActiveConstraintsBatchSize);
  509. if (constraint_idx >= num_constraints)
  510. break;
  511. // Calculate the end of the batch
  512. uint32 constraint_idx_end = min(num_constraints, constraint_idx + cDetermineActiveConstraintsBatchSize);
  513. // Store the active constraints at the start of the step (bodies get activated during the step which in turn may activate constraints leading to an inconsistent shapshot)
  514. mConstraintManager.GetActiveConstraints(constraint_idx, constraint_idx_end, active_constraints, num_active_constraints);
  515. // Copy the block of active constraints to the global list of active constraints
  516. if (num_active_constraints > 0)
  517. {
  518. uint32 active_constraint_idx = ioStep->mNumActiveConstraints.fetch_add(num_active_constraints);
  519. memcpy(ioStep->mContext->mActiveConstraints + active_constraint_idx, active_constraints, num_active_constraints * sizeof(Constraint *));
  520. }
  521. }
  522. }
  523. void PhysicsSystem::JobApplyGravity(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  524. {
  525. #ifdef JPH_ENABLE_ASSERTS
  526. // We update velocities and need the rotation to do so
  527. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  528. #endif
  529. // Get list of active bodies that we had at the start of the physics update.
  530. // Any body that is activated as part of the simulation step does not receive gravity this frame.
  531. // Note that bodies may be activated during this job but not deactivated, this means that only elements
  532. // will be added to the array. Since the array is made to not reallocate, this is a safe operation.
  533. const BodyID *active_bodies = mBodyManager.GetActiveBodiesUnsafe();
  534. uint32 num_active_bodies_at_step_start = ioStep->mNumActiveBodiesAtStepStart;
  535. // Fetch delta time once outside the loop
  536. float delta_time = ioContext->mStepDeltaTime;
  537. // Update velocities from forces
  538. for (;;)
  539. {
  540. // Atomically fetch a batch of bodies
  541. uint32 active_body_idx = ioStep->mApplyGravityReadIdx.fetch_add(cApplyGravityBatchSize);
  542. if (active_body_idx >= num_active_bodies_at_step_start)
  543. break;
  544. // Calculate the end of the batch
  545. uint32 active_body_idx_end = min(num_active_bodies_at_step_start, active_body_idx + cApplyGravityBatchSize);
  546. // Process the batch
  547. while (active_body_idx < active_body_idx_end)
  548. {
  549. Body &body = mBodyManager.GetBody(active_bodies[active_body_idx]);
  550. if (body.IsDynamic())
  551. body.GetMotionProperties()->ApplyForceTorqueAndDragInternal(body.GetRotation(), mGravity, delta_time);
  552. active_body_idx++;
  553. }
  554. }
  555. }
  556. void PhysicsSystem::JobSetupVelocityConstraints(float inDeltaTime, PhysicsUpdateContext::Step *ioStep) const
  557. {
  558. #ifdef JPH_ENABLE_ASSERTS
  559. // We only read positions
  560. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::Read);
  561. #endif
  562. ConstraintManager::sSetupVelocityConstraints(ioStep->mContext->mActiveConstraints, ioStep->mNumActiveConstraints, inDeltaTime);
  563. }
  564. void PhysicsSystem::JobBuildIslandsFromConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  565. {
  566. #ifdef JPH_ENABLE_ASSERTS
  567. // We read constraints and positions
  568. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::Read);
  569. // Can only activate bodies
  570. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  571. #endif
  572. // Prepare the island builder
  573. mIslandBuilder.PrepareNonContactConstraints(ioStep->mNumActiveConstraints, ioContext->mTempAllocator);
  574. // Build the islands
  575. ConstraintManager::sBuildIslands(ioStep->mContext->mActiveConstraints, ioStep->mNumActiveConstraints, mIslandBuilder, mBodyManager);
  576. }
  577. void PhysicsSystem::TrySpawnJobFindCollisions(PhysicsUpdateContext::Step *ioStep) const
  578. {
  579. // Get how many jobs we can spawn and check if we can spawn more
  580. uint max_jobs = ioStep->mBodyPairQueues.size();
  581. if (CountBits(ioStep->mActiveFindCollisionJobs) >= max_jobs)
  582. return;
  583. // Count how many body pairs we have waiting
  584. uint32 num_body_pairs = 0;
  585. for (const PhysicsUpdateContext::BodyPairQueue &queue : ioStep->mBodyPairQueues)
  586. num_body_pairs += queue.mWriteIdx - queue.mReadIdx;
  587. // Count how many active bodies we have waiting
  588. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies() - ioStep->mActiveBodyReadIdx;
  589. // Calculate how many jobs we would like
  590. uint desired_num_jobs = min((num_body_pairs + cNarrowPhaseBatchSize - 1) / cNarrowPhaseBatchSize + (num_active_bodies + cActiveBodiesBatchSize - 1) / cActiveBodiesBatchSize, max_jobs);
  591. for (;;)
  592. {
  593. // Get the bit mask of active jobs and see if we can spawn more
  594. PhysicsUpdateContext::JobMask current_active_jobs = ioStep->mActiveFindCollisionJobs;
  595. if (CountBits(current_active_jobs) >= desired_num_jobs)
  596. break;
  597. // Loop through all possible job indices
  598. for (uint job_index = 0; job_index < max_jobs; ++job_index)
  599. {
  600. // Test if it has been started
  601. PhysicsUpdateContext::JobMask job_mask = PhysicsUpdateContext::JobMask(1) << job_index;
  602. if ((current_active_jobs & job_mask) == 0)
  603. {
  604. // Try to claim the job index
  605. PhysicsUpdateContext::JobMask prev_value = ioStep->mActiveFindCollisionJobs.fetch_or(job_mask);
  606. if ((prev_value & job_mask) == 0)
  607. {
  608. // Add dependencies from the find collisions job to the next jobs
  609. ioStep->mUpdateBroadphaseFinalize.AddDependency();
  610. ioStep->mFinalizeIslands.AddDependency();
  611. // Start the job
  612. JobHandle job = ioStep->mContext->mJobSystem->CreateJob("FindCollisions", cColorFindCollisions, [step = ioStep, job_index]()
  613. {
  614. step->mContext->mPhysicsSystem->JobFindCollisions(step, job_index);
  615. });
  616. // Add the job to the job barrier so the main updating thread can execute the job too
  617. ioStep->mContext->mBarrier->AddJob(job);
  618. // Spawn only 1 extra job at a time
  619. return;
  620. }
  621. }
  622. }
  623. }
  624. }
  625. static void sFinalizeContactAllocator(PhysicsUpdateContext::Step &ioStep, const ContactConstraintManager::ContactAllocator &inAllocator)
  626. {
  627. // Atomically accumulate the number of found manifolds and body pairs
  628. ioStep.mNumBodyPairs.fetch_add(inAllocator.mNumBodyPairs, memory_order_relaxed);
  629. ioStep.mNumManifolds.fetch_add(inAllocator.mNumManifolds, memory_order_relaxed);
  630. // Combine update errors
  631. ioStep.mContext->mErrors.fetch_or((uint32)inAllocator.mErrors, memory_order_relaxed);
  632. }
  633. void PhysicsSystem::JobFindCollisions(PhysicsUpdateContext::Step *ioStep, int inJobIndex)
  634. {
  635. #ifdef JPH_ENABLE_ASSERTS
  636. // We read positions and read velocities (for elastic collisions)
  637. BodyAccess::Grant grant(BodyAccess::EAccess::Read, BodyAccess::EAccess::Read);
  638. // Can only activate bodies
  639. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  640. #endif
  641. // Allocation context for allocating new contact points
  642. ContactAllocator contact_allocator(mContactManager.GetContactAllocator());
  643. // Determine initial queue to read pairs from if no broadphase work can be done
  644. // (always start looking at results from the next job)
  645. int read_queue_idx = (inJobIndex + 1) % ioStep->mBodyPairQueues.size();
  646. for (;;)
  647. {
  648. // Check if there are active bodies to be processed
  649. uint32 active_bodies_read_idx = ioStep->mActiveBodyReadIdx;
  650. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  651. if (active_bodies_read_idx < num_active_bodies)
  652. {
  653. // Take a batch of active bodies
  654. uint32 active_bodies_read_idx_end = min(num_active_bodies, active_bodies_read_idx + cActiveBodiesBatchSize);
  655. if (ioStep->mActiveBodyReadIdx.compare_exchange_strong(active_bodies_read_idx, active_bodies_read_idx_end))
  656. {
  657. // Callback when a new body pair is found
  658. class MyBodyPairCallback : public BodyPairCollector
  659. {
  660. public:
  661. // Constructor
  662. MyBodyPairCallback(PhysicsUpdateContext::Step *inStep, ContactAllocator &ioContactAllocator, int inJobIndex) :
  663. mStep(inStep),
  664. mContactAllocator(ioContactAllocator),
  665. mJobIndex(inJobIndex)
  666. {
  667. }
  668. // Callback function when a body pair is found
  669. virtual void AddHit(const BodyPair &inPair) override
  670. {
  671. // Check if we have space in our write queue
  672. PhysicsUpdateContext::BodyPairQueue &queue = mStep->mBodyPairQueues[mJobIndex];
  673. uint32 body_pairs_in_queue = queue.mWriteIdx - queue.mReadIdx;
  674. if (body_pairs_in_queue >= mStep->mMaxBodyPairsPerQueue)
  675. {
  676. // Buffer full, process the pair now
  677. mStep->mContext->mPhysicsSystem->ProcessBodyPair(mContactAllocator, inPair);
  678. }
  679. else
  680. {
  681. // Store the pair in our own queue
  682. mStep->mContext->mBodyPairs[mJobIndex * mStep->mMaxBodyPairsPerQueue + queue.mWriteIdx % mStep->mMaxBodyPairsPerQueue] = inPair;
  683. ++queue.mWriteIdx;
  684. }
  685. }
  686. private:
  687. PhysicsUpdateContext::Step * mStep;
  688. ContactAllocator & mContactAllocator;
  689. int mJobIndex;
  690. };
  691. MyBodyPairCallback add_pair(ioStep, contact_allocator, inJobIndex);
  692. // Copy active bodies to temporary array, broadphase will reorder them
  693. uint32 batch_size = active_bodies_read_idx_end - active_bodies_read_idx;
  694. BodyID *active_bodies = (BodyID *)JPH_STACK_ALLOC(batch_size * sizeof(BodyID));
  695. memcpy(active_bodies, mBodyManager.GetActiveBodiesUnsafe() + active_bodies_read_idx, batch_size * sizeof(BodyID));
  696. // Find pairs in the broadphase
  697. mBroadPhase->FindCollidingPairs(active_bodies, batch_size, mPhysicsSettings.mSpeculativeContactDistance, *mObjectVsBroadPhaseLayerFilter, *mObjectLayerPairFilter, add_pair);
  698. // Check if we have enough pairs in the buffer to start a new job
  699. const PhysicsUpdateContext::BodyPairQueue &queue = ioStep->mBodyPairQueues[inJobIndex];
  700. uint32 body_pairs_in_queue = queue.mWriteIdx - queue.mReadIdx;
  701. if (body_pairs_in_queue >= cNarrowPhaseBatchSize)
  702. TrySpawnJobFindCollisions(ioStep);
  703. }
  704. }
  705. else
  706. {
  707. // Lockless loop to get the next body pair from the pairs buffer
  708. const PhysicsUpdateContext *context = ioStep->mContext;
  709. int first_read_queue_idx = read_queue_idx;
  710. for (;;)
  711. {
  712. PhysicsUpdateContext::BodyPairQueue &queue = ioStep->mBodyPairQueues[read_queue_idx];
  713. // Get the next pair to process
  714. uint32 pair_idx = queue.mReadIdx;
  715. // If the pair hasn't been written yet
  716. if (pair_idx >= queue.mWriteIdx)
  717. {
  718. // Go to the next queue
  719. read_queue_idx = (read_queue_idx + 1) % ioStep->mBodyPairQueues.size();
  720. // If we're back at the first queue, we've looked at all of them and found nothing
  721. if (read_queue_idx == first_read_queue_idx)
  722. {
  723. // Collect information from the contact allocator and accumulate it in the step.
  724. sFinalizeContactAllocator(*ioStep, contact_allocator);
  725. // Mark this job as inactive
  726. ioStep->mActiveFindCollisionJobs.fetch_and(~PhysicsUpdateContext::JobMask(1 << inJobIndex));
  727. // Trigger the next jobs
  728. ioStep->mUpdateBroadphaseFinalize.RemoveDependency();
  729. ioStep->mFinalizeIslands.RemoveDependency();
  730. return;
  731. }
  732. // Try again reading from the next queue
  733. continue;
  734. }
  735. // Copy the body pair out of the buffer
  736. const BodyPair bp = context->mBodyPairs[read_queue_idx * ioStep->mMaxBodyPairsPerQueue + pair_idx % ioStep->mMaxBodyPairsPerQueue];
  737. // Mark this pair as taken
  738. if (queue.mReadIdx.compare_exchange_strong(pair_idx, pair_idx + 1))
  739. {
  740. // Process the actual body pair
  741. ProcessBodyPair(contact_allocator, bp);
  742. break;
  743. }
  744. }
  745. }
  746. }
  747. }
  748. void PhysicsSystem::ProcessBodyPair(ContactAllocator &ioContactAllocator, const BodyPair &inBodyPair)
  749. {
  750. JPH_PROFILE_FUNCTION();
  751. // Fetch body pair
  752. Body *body1 = &mBodyManager.GetBody(inBodyPair.mBodyA);
  753. Body *body2 = &mBodyManager.GetBody(inBodyPair.mBodyB);
  754. JPH_ASSERT(body1->IsActive());
  755. JPH_DET_LOG("ProcessBodyPair: id1: " << inBodyPair.mBodyA << " id2: " << inBodyPair.mBodyB << " p1: " << body1->GetCenterOfMassPosition() << " p2: " << body2->GetCenterOfMassPosition() << " r1: " << body1->GetRotation() << " r2: " << body2->GetRotation());
  756. // Ensure that body1 is dynamic, this ensures that we do the collision detection in the space of a moving body, which avoids accuracy problems when testing a very large static object against a small dynamic object
  757. // Ensure that body1 id < body2 id for dynamic vs dynamic
  758. // Keep body order unchanged when colliding with a sensor
  759. if ((!body1->IsDynamic() || (body2->IsDynamic() && inBodyPair.mBodyB < inBodyPair.mBodyA))
  760. && !body2->IsSensor())
  761. swap(body1, body2);
  762. JPH_ASSERT(body1->IsDynamic() || body2->IsSensor());
  763. // Check if the contact points from the previous frame are reusable and if so copy them
  764. bool pair_handled = false, constraint_created = false;
  765. if (mPhysicsSettings.mUseBodyPairContactCache && !(body1->IsCollisionCacheInvalid() || body2->IsCollisionCacheInvalid()))
  766. mContactManager.GetContactsFromCache(ioContactAllocator, *body1, *body2, pair_handled, constraint_created);
  767. // If the cache hasn't handled this body pair do actual collision detection
  768. if (!pair_handled)
  769. {
  770. // Create entry in the cache for this body pair
  771. // Needs to happen irrespective if we found a collision or not (we want to remember that no collision was found too)
  772. ContactConstraintManager::BodyPairHandle body_pair_handle = mContactManager.AddBodyPair(ioContactAllocator, *body1, *body2);
  773. if (body_pair_handle == nullptr)
  774. return; // Out of cache space
  775. // Create the query settings
  776. CollideShapeSettings settings;
  777. settings.mCollectFacesMode = ECollectFacesMode::CollectFaces;
  778. settings.mActiveEdgeMode = mPhysicsSettings.mCheckActiveEdges? EActiveEdgeMode::CollideOnlyWithActive : EActiveEdgeMode::CollideWithAll;
  779. settings.mMaxSeparationDistance = mPhysicsSettings.mSpeculativeContactDistance;
  780. settings.mActiveEdgeMovementDirection = body1->GetLinearVelocity() - body2->GetLinearVelocity();
  781. // Get transforms relative to body1
  782. RVec3 offset = body1->GetCenterOfMassPosition();
  783. Mat44 transform1 = Mat44::sRotation(body1->GetRotation());
  784. Mat44 transform2 = body2->GetCenterOfMassTransform().PostTranslated(-offset).ToMat44();
  785. if (mPhysicsSettings.mUseManifoldReduction // Check global flag
  786. && body1->GetUseManifoldReductionWithBody(*body2)) // Check body flag
  787. {
  788. // Version WITH contact manifold reduction
  789. class MyManifold : public ContactManifold
  790. {
  791. public:
  792. Vec3 mFirstWorldSpaceNormal;
  793. };
  794. // A temporary structure that allows us to keep track of the all manifolds between this body pair
  795. using Manifolds = StaticArray<MyManifold, 32>;
  796. // Create collector
  797. class ReductionCollideShapeCollector : public CollideShapeCollector
  798. {
  799. public:
  800. ReductionCollideShapeCollector(PhysicsSystem *inSystem, const Body *inBody1, const Body *inBody2) :
  801. mSystem(inSystem),
  802. mBody1(inBody1),
  803. mBody2(inBody2)
  804. {
  805. }
  806. virtual void AddHit(const CollideShapeResult &inResult) override
  807. {
  808. // One of the following should be true:
  809. // - Body 1 is dynamic and body 2 may be dynamic, static or kinematic
  810. // - Body 1 is not dynamic in which case body 2 should be a sensor
  811. JPH_ASSERT(mBody1->IsDynamic() || mBody2->IsSensor());
  812. JPH_ASSERT(!ShouldEarlyOut());
  813. // Test if we want to accept this hit
  814. if (mValidateBodyPair)
  815. {
  816. switch (mSystem->mContactManager.ValidateContactPoint(*mBody1, *mBody2, mBody1->GetCenterOfMassPosition(), inResult))
  817. {
  818. case ValidateResult::AcceptContact:
  819. // We're just accepting this one, nothing to do
  820. break;
  821. case ValidateResult::AcceptAllContactsForThisBodyPair:
  822. // Accept and stop calling the validate callback
  823. mValidateBodyPair = false;
  824. break;
  825. case ValidateResult::RejectContact:
  826. // Skip this contact
  827. return;
  828. case ValidateResult::RejectAllContactsForThisBodyPair:
  829. // Skip this and early out
  830. ForceEarlyOut();
  831. return;
  832. }
  833. }
  834. // Calculate normal
  835. Vec3 world_space_normal = inResult.mPenetrationAxis.Normalized();
  836. // Check if we can add it to an existing manifold
  837. Manifolds::iterator manifold;
  838. float contact_normal_cos_max_delta_rot = mSystem->mPhysicsSettings.mContactNormalCosMaxDeltaRotation;
  839. for (manifold = mManifolds.begin(); manifold != mManifolds.end(); ++manifold)
  840. if (world_space_normal.Dot(manifold->mFirstWorldSpaceNormal) >= contact_normal_cos_max_delta_rot)
  841. {
  842. // Update average normal
  843. manifold->mWorldSpaceNormal += world_space_normal;
  844. manifold->mPenetrationDepth = max(manifold->mPenetrationDepth, inResult.mPenetrationDepth);
  845. break;
  846. }
  847. if (manifold == mManifolds.end())
  848. {
  849. // Check if array is full
  850. if (mManifolds.size() == mManifolds.capacity())
  851. {
  852. // Full, find manifold with least amount of penetration
  853. manifold = mManifolds.begin();
  854. for (Manifolds::iterator m = mManifolds.begin() + 1; m < mManifolds.end(); ++m)
  855. if (m->mPenetrationDepth < manifold->mPenetrationDepth)
  856. manifold = m;
  857. // If this contacts penetration is smaller than the smallest manifold, we skip this contact
  858. if (inResult.mPenetrationDepth < manifold->mPenetrationDepth)
  859. return;
  860. // Replace the manifold
  861. *manifold = { { mBody1->GetCenterOfMassPosition(), world_space_normal, inResult.mPenetrationDepth, inResult.mSubShapeID1, inResult.mSubShapeID2, { }, { } }, world_space_normal };
  862. }
  863. else
  864. {
  865. // Not full, create new manifold
  866. mManifolds.push_back({ { mBody1->GetCenterOfMassPosition(), world_space_normal, inResult.mPenetrationDepth, inResult.mSubShapeID1, inResult.mSubShapeID2, { }, { } }, world_space_normal });
  867. manifold = mManifolds.end() - 1;
  868. }
  869. }
  870. // Determine contact points
  871. const PhysicsSettings &settings = mSystem->mPhysicsSettings;
  872. ManifoldBetweenTwoFaces(inResult.mContactPointOn1, inResult.mContactPointOn2, inResult.mPenetrationAxis, Square(settings.mSpeculativeContactDistance) + settings.mManifoldToleranceSq, inResult.mShape1Face, inResult.mShape2Face, manifold->mRelativeContactPointsOn1, manifold->mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, mBody1->GetCenterOfMassPosition()));
  873. // Prune if we have more than 32 points (this means we could run out of space in the next iteration)
  874. if (manifold->mRelativeContactPointsOn1.size() > 32)
  875. PruneContactPoints(manifold->mFirstWorldSpaceNormal, manifold->mRelativeContactPointsOn1, manifold->mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold->mBaseOffset));
  876. }
  877. PhysicsSystem * mSystem;
  878. const Body * mBody1;
  879. const Body * mBody2;
  880. bool mValidateBodyPair = true;
  881. Manifolds mManifolds;
  882. };
  883. ReductionCollideShapeCollector collector(this, body1, body2);
  884. // Perform collision detection between the two shapes
  885. SubShapeIDCreator part1, part2;
  886. CollisionDispatch::sCollideShapeVsShape(body1->GetShape(), body2->GetShape(), Vec3::sReplicate(1.0f), Vec3::sReplicate(1.0f), transform1, transform2, part1, part2, settings, collector);
  887. // Add the contacts
  888. for (ContactManifold &manifold : collector.mManifolds)
  889. {
  890. // Normalize the normal (is a sum of all normals from merged manifolds)
  891. manifold.mWorldSpaceNormal = manifold.mWorldSpaceNormal.Normalized();
  892. // If we still have too many points, prune them now
  893. if (manifold.mRelativeContactPointsOn1.size() > 4)
  894. PruneContactPoints(manifold.mWorldSpaceNormal, manifold.mRelativeContactPointsOn1, manifold.mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold.mBaseOffset));
  895. // Actually add the contact points to the manager
  896. constraint_created |= mContactManager.AddContactConstraint(ioContactAllocator, body_pair_handle, *body1, *body2, manifold);
  897. }
  898. }
  899. else
  900. {
  901. // Version WITHOUT contact manifold reduction
  902. // Create collector
  903. class NonReductionCollideShapeCollector : public CollideShapeCollector
  904. {
  905. public:
  906. NonReductionCollideShapeCollector(PhysicsSystem *inSystem, ContactAllocator &ioContactAllocator, Body *inBody1, Body *inBody2, const ContactConstraintManager::BodyPairHandle &inPairHandle) :
  907. mSystem(inSystem),
  908. mContactAllocator(ioContactAllocator),
  909. mBody1(inBody1),
  910. mBody2(inBody2),
  911. mBodyPairHandle(inPairHandle)
  912. {
  913. }
  914. virtual void AddHit(const CollideShapeResult &inResult) override
  915. {
  916. // One of the following should be true:
  917. // - Body 1 is dynamic and body 2 may be dynamic, static or kinematic
  918. // - Body 1 is not dynamic in which case body 2 should be a sensor
  919. JPH_ASSERT(mBody1->IsDynamic() || mBody2->IsSensor());
  920. JPH_ASSERT(!ShouldEarlyOut());
  921. // Test if we want to accept this hit
  922. if (mValidateBodyPair)
  923. {
  924. switch (mSystem->mContactManager.ValidateContactPoint(*mBody1, *mBody2, mBody1->GetCenterOfMassPosition(), inResult))
  925. {
  926. case ValidateResult::AcceptContact:
  927. // We're just accepting this one, nothing to do
  928. break;
  929. case ValidateResult::AcceptAllContactsForThisBodyPair:
  930. // Accept and stop calling the validate callback
  931. mValidateBodyPair = false;
  932. break;
  933. case ValidateResult::RejectContact:
  934. // Skip this contact
  935. return;
  936. case ValidateResult::RejectAllContactsForThisBodyPair:
  937. // Skip this and early out
  938. ForceEarlyOut();
  939. return;
  940. }
  941. }
  942. // Determine contact points
  943. ContactManifold manifold;
  944. manifold.mBaseOffset = mBody1->GetCenterOfMassPosition();
  945. const PhysicsSettings &settings = mSystem->mPhysicsSettings;
  946. ManifoldBetweenTwoFaces(inResult.mContactPointOn1, inResult.mContactPointOn2, inResult.mPenetrationAxis, Square(settings.mSpeculativeContactDistance) + settings.mManifoldToleranceSq, inResult.mShape1Face, inResult.mShape2Face, manifold.mRelativeContactPointsOn1, manifold.mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold.mBaseOffset));
  947. // Calculate normal
  948. manifold.mWorldSpaceNormal = inResult.mPenetrationAxis.Normalized();
  949. // Store penetration depth
  950. manifold.mPenetrationDepth = inResult.mPenetrationDepth;
  951. // Prune if we have more than 4 points
  952. if (manifold.mRelativeContactPointsOn1.size() > 4)
  953. PruneContactPoints(manifold.mWorldSpaceNormal, manifold.mRelativeContactPointsOn1, manifold.mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold.mBaseOffset));
  954. // Set other properties
  955. manifold.mSubShapeID1 = inResult.mSubShapeID1;
  956. manifold.mSubShapeID2 = inResult.mSubShapeID2;
  957. // Actually add the contact points to the manager
  958. mConstraintCreated |= mSystem->mContactManager.AddContactConstraint(mContactAllocator, mBodyPairHandle, *mBody1, *mBody2, manifold);
  959. }
  960. PhysicsSystem * mSystem;
  961. ContactAllocator & mContactAllocator;
  962. Body * mBody1;
  963. Body * mBody2;
  964. ContactConstraintManager::BodyPairHandle mBodyPairHandle;
  965. bool mValidateBodyPair = true;
  966. bool mConstraintCreated = false;
  967. };
  968. NonReductionCollideShapeCollector collector(this, ioContactAllocator, body1, body2, body_pair_handle);
  969. // Perform collision detection between the two shapes
  970. SubShapeIDCreator part1, part2;
  971. CollisionDispatch::sCollideShapeVsShape(body1->GetShape(), body2->GetShape(), Vec3::sReplicate(1.0f), Vec3::sReplicate(1.0f), transform1, transform2, part1, part2, settings, collector);
  972. constraint_created = collector.mConstraintCreated;
  973. }
  974. }
  975. // If a contact constraint was created, we need to do some extra work
  976. if (constraint_created)
  977. {
  978. // Wake up sleeping bodies
  979. BodyID body_ids[2];
  980. int num_bodies = 0;
  981. if (body1->IsDynamic() && !body1->IsActive())
  982. body_ids[num_bodies++] = body1->GetID();
  983. if (body2->IsDynamic() && !body2->IsActive())
  984. body_ids[num_bodies++] = body2->GetID();
  985. if (num_bodies > 0)
  986. mBodyManager.ActivateBodies(body_ids, num_bodies);
  987. // Link the two bodies
  988. mIslandBuilder.LinkBodies(body1->GetIndexInActiveBodiesInternal(), body2->GetIndexInActiveBodiesInternal());
  989. }
  990. }
  991. void PhysicsSystem::JobFinalizeIslands(PhysicsUpdateContext *ioContext)
  992. {
  993. #ifdef JPH_ENABLE_ASSERTS
  994. // We only touch island data
  995. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  996. #endif
  997. // Finish collecting the islands, at this point the active body list doesn't change so it's safe to access
  998. mIslandBuilder.Finalize(mBodyManager.GetActiveBodiesUnsafe(), mBodyManager.GetNumActiveBodies(), mContactManager.GetNumConstraints(), ioContext->mTempAllocator);
  999. // Prepare the large island splitter
  1000. if (mPhysicsSettings.mUseLargeIslandSplitter)
  1001. mLargeIslandSplitter.Prepare(mIslandBuilder, mBodyManager.GetNumActiveBodies(), ioContext->mTempAllocator);
  1002. }
  1003. void PhysicsSystem::JobBodySetIslandIndex()
  1004. {
  1005. #ifdef JPH_ENABLE_ASSERTS
  1006. // We only touch island data
  1007. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  1008. #endif
  1009. // Loop through the result and tag all bodies with an island index
  1010. for (uint32 island_idx = 0, n = mIslandBuilder.GetNumIslands(); island_idx < n; ++island_idx)
  1011. {
  1012. BodyID *body_start, *body_end;
  1013. mIslandBuilder.GetBodiesInIsland(island_idx, body_start, body_end);
  1014. for (const BodyID *body = body_start; body < body_end; ++body)
  1015. mBodyManager.GetBody(*body).GetMotionProperties()->SetIslandIndexInternal(island_idx);
  1016. }
  1017. }
  1018. void PhysicsSystem::JobSolveVelocityConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  1019. {
  1020. #ifdef JPH_ENABLE_ASSERTS
  1021. // We update velocities and need to read positions to do so
  1022. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  1023. #endif
  1024. float delta_time = ioContext->mStepDeltaTime;
  1025. Constraint **active_constraints = ioContext->mActiveConstraints;
  1026. // Only the first step to correct for the delta time difference in the previous update
  1027. float warm_start_impulse_ratio = ioStep->mIsFirst? ioContext->mWarmStartImpulseRatio : 1.0f;
  1028. bool check_islands = true, check_split_islands = mPhysicsSettings.mUseLargeIslandSplitter;
  1029. do
  1030. {
  1031. // First try to get work from large islands
  1032. if (check_split_islands)
  1033. {
  1034. bool first_iteration;
  1035. uint split_island_index;
  1036. uint32 *constraints_begin, *constraints_end, *contacts_begin, *contacts_end;
  1037. switch (mLargeIslandSplitter.FetchNextBatch(split_island_index, constraints_begin, constraints_end, contacts_begin, contacts_end, first_iteration))
  1038. {
  1039. case LargeIslandSplitter::EStatus::BatchRetrieved:
  1040. {
  1041. if (first_iteration)
  1042. {
  1043. // Iteration 0 is used to warm start the batch (we added 1 to the number of iterations in LargeIslandSplitter::SplitIsland)
  1044. ConstraintManager::sWarmStartVelocityConstraints(active_constraints, constraints_begin, constraints_end, warm_start_impulse_ratio);
  1045. mContactManager.WarmStartVelocityConstraints(contacts_begin, contacts_end, warm_start_impulse_ratio);
  1046. }
  1047. else
  1048. {
  1049. // Solve velocity constraints
  1050. ConstraintManager::sSolveVelocityConstraints(active_constraints, constraints_begin, constraints_end, delta_time);
  1051. mContactManager.SolveVelocityConstraints(contacts_begin, contacts_end);
  1052. }
  1053. // Mark the batch as processed
  1054. bool last_iteration, final_batch;
  1055. mLargeIslandSplitter.MarkBatchProcessed(split_island_index, constraints_begin, constraints_end, contacts_begin, contacts_end, last_iteration, final_batch);
  1056. // Save back the lambdas in the contact cache for the warm start of the next physics update
  1057. if (last_iteration)
  1058. mContactManager.StoreAppliedImpulses(contacts_begin, contacts_end);
  1059. // We processed work, loop again
  1060. continue;
  1061. }
  1062. case LargeIslandSplitter::EStatus::WaitingForBatch:
  1063. break;
  1064. case LargeIslandSplitter::EStatus::AllBatchesDone:
  1065. check_split_islands = false;
  1066. break;
  1067. }
  1068. }
  1069. // If that didn't succeed try to process an island
  1070. if (check_islands)
  1071. {
  1072. // Next island
  1073. uint32 island_idx = ioStep->mSolveVelocityConstraintsNextIsland++;
  1074. if (island_idx >= mIslandBuilder.GetNumIslands())
  1075. {
  1076. // We processed all islands, stop checking islands
  1077. check_islands = false;
  1078. continue;
  1079. }
  1080. JPH_PROFILE("Island");
  1081. // Get iterators for this island
  1082. uint32 *constraints_begin, *constraints_end, *contacts_begin, *contacts_end;
  1083. bool has_constraints = mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end);
  1084. bool has_contacts = mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end);
  1085. // If we don't have any contacts or constraints, we know that none of the following islands have any contacts or constraints
  1086. // (because they're sorted by most constraints first). This means we're done.
  1087. if (!has_contacts && !has_constraints)
  1088. {
  1089. #ifdef JPH_ENABLE_ASSERTS
  1090. // Validate our assumption that the next islands don't have any constraints or contacts
  1091. for (; island_idx < mIslandBuilder.GetNumIslands(); ++island_idx)
  1092. {
  1093. JPH_ASSERT(!mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end));
  1094. JPH_ASSERT(!mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end));
  1095. }
  1096. #endif // JPH_ENABLE_ASSERTS
  1097. check_islands = false;
  1098. continue;
  1099. }
  1100. // Sorting is costly but needed for a deterministic simulation, allow the user to turn this off
  1101. if (mPhysicsSettings.mDeterministicSimulation)
  1102. {
  1103. // Sort constraints to give a deterministic simulation
  1104. ConstraintManager::sSortConstraints(active_constraints, constraints_begin, constraints_end);
  1105. // Sort contacts to give a deterministic simulation
  1106. mContactManager.SortContacts(contacts_begin, contacts_end);
  1107. }
  1108. // Split up large islands
  1109. int num_velocity_steps = mPhysicsSettings.mNumVelocitySteps;
  1110. if (mPhysicsSettings.mUseLargeIslandSplitter
  1111. && mLargeIslandSplitter.SplitIsland(island_idx, mIslandBuilder, mBodyManager, mContactManager, active_constraints, num_velocity_steps, mPhysicsSettings.mNumPositionSteps))
  1112. continue; // Loop again to try to fetch the newly split island
  1113. // We didn't create a split, just run the solver now for this entire island. Begin by warm starting.
  1114. ConstraintManager::sWarmStartVelocityConstraints(active_constraints, constraints_begin, constraints_end, warm_start_impulse_ratio, num_velocity_steps);
  1115. mContactManager.WarmStartVelocityConstraints(contacts_begin, contacts_end, warm_start_impulse_ratio);
  1116. // Solve velocity constraints
  1117. for (int velocity_step = 0; velocity_step < num_velocity_steps; ++velocity_step)
  1118. {
  1119. bool applied_impulse = ConstraintManager::sSolveVelocityConstraints(active_constraints, constraints_begin, constraints_end, delta_time);
  1120. applied_impulse |= mContactManager.SolveVelocityConstraints(contacts_begin, contacts_end);
  1121. if (!applied_impulse)
  1122. break;
  1123. }
  1124. // Save back the lambdas in the contact cache for the warm start of the next physics update
  1125. mContactManager.StoreAppliedImpulses(contacts_begin, contacts_end);
  1126. // We processed work, loop again
  1127. continue;
  1128. }
  1129. // If we didn't find any work, give up a time slice
  1130. std::this_thread::yield();
  1131. }
  1132. while (check_islands || check_split_islands);
  1133. }
  1134. void PhysicsSystem::JobPreIntegrateVelocity(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  1135. {
  1136. // Reserve enough space for all bodies that may need a cast
  1137. TempAllocator *temp_allocator = ioContext->mTempAllocator;
  1138. JPH_ASSERT(ioStep->mCCDBodies == nullptr);
  1139. ioStep->mCCDBodiesCapacity = mBodyManager.GetNumActiveCCDBodies();
  1140. ioStep->mCCDBodies = (CCDBody *)temp_allocator->Allocate(ioStep->mCCDBodiesCapacity * sizeof(CCDBody));
  1141. // Initialize the mapping table between active body and CCD body
  1142. JPH_ASSERT(ioStep->mActiveBodyToCCDBody == nullptr);
  1143. ioStep->mNumActiveBodyToCCDBody = mBodyManager.GetNumActiveBodies();
  1144. ioStep->mActiveBodyToCCDBody = (int *)temp_allocator->Allocate(ioStep->mNumActiveBodyToCCDBody * sizeof(int));
  1145. // Prepare the split island builder for solving the position constraints
  1146. mLargeIslandSplitter.PrepareForSolvePositions();
  1147. }
  1148. void PhysicsSystem::JobIntegrateVelocity(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  1149. {
  1150. #ifdef JPH_ENABLE_ASSERTS
  1151. // We update positions and need velocity to do so, we also clamp velocities so need to write to them
  1152. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::ReadWrite);
  1153. #endif
  1154. float delta_time = ioContext->mStepDeltaTime;
  1155. const BodyID *active_bodies = mBodyManager.GetActiveBodiesUnsafe();
  1156. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  1157. uint32 num_active_bodies_after_find_collisions = ioStep->mActiveBodyReadIdx;
  1158. // We can move bodies that are not part of an island. In this case we need to notify the broadphase of the movement.
  1159. static constexpr int cBodiesBatch = 64;
  1160. BodyID *bodies_to_update_bounds = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1161. int num_bodies_to_update_bounds = 0;
  1162. for (;;)
  1163. {
  1164. // Atomically fetch a batch of bodies
  1165. uint32 active_body_idx = ioStep->mIntegrateVelocityReadIdx.fetch_add(cIntegrateVelocityBatchSize);
  1166. if (active_body_idx >= num_active_bodies)
  1167. break;
  1168. // Calculate the end of the batch
  1169. uint32 active_body_idx_end = min(num_active_bodies, active_body_idx + cIntegrateVelocityBatchSize);
  1170. // Process the batch
  1171. while (active_body_idx < active_body_idx_end)
  1172. {
  1173. // Update the positions using an Symplectic Euler step (which integrates using the updated velocity v1' rather
  1174. // than the original velocity v1):
  1175. // x1' = x1 + h * v1'
  1176. // At this point the active bodies list does not change, so it is safe to access the array.
  1177. BodyID body_id = active_bodies[active_body_idx];
  1178. Body &body = mBodyManager.GetBody(body_id);
  1179. MotionProperties *mp = body.GetMotionProperties();
  1180. JPH_DET_LOG("JobIntegrateVelocity: id: " << body_id << " v: " << body.GetLinearVelocity() << " w: " << body.GetAngularVelocity());
  1181. // Clamp velocities (not for kinematic bodies)
  1182. if (body.IsDynamic())
  1183. {
  1184. mp->ClampLinearVelocity();
  1185. mp->ClampAngularVelocity();
  1186. }
  1187. // Update the rotation of the body according to the angular velocity
  1188. // For motion type discrete we need to do this anyway, for motion type linear cast we have multiple choices
  1189. // 1. Rotate the body first and then sweep
  1190. // 2. First sweep and then rotate the body at the end
  1191. // 3. Pick some inbetween rotation (e.g. half way), then sweep and finally rotate the remainder
  1192. // (1) has some clear advantages as when a long thin body hits a surface away from the center of mass, this will result in a large angular velocity and a limited reduction in linear velocity.
  1193. // When simulation the rotation first before doing the translation, the body will be able to rotate away from the contact point allowing the center of mass to approach the surface. When using
  1194. // approach (2) in this case what will happen is that we will immediately detect the same collision again (the body has not rotated and the body was already colliding at the end of the previous
  1195. // time step) resulting in a lot of stolen time and the body appearing to be frozen in an unnatural pose (like it is glued at an angle to the surface). (2) obviously has some negative side effects
  1196. // too as simulating the rotation first may cause it to tunnel through a small object that the linear cast might have otherwise dectected. In any case a linear cast is not good for detecting
  1197. // tunneling due to angular rotation, so we don't care about that too much (you'd need a full cast to take angular effects into account).
  1198. body.AddRotationStep(body.GetAngularVelocity() * delta_time);
  1199. // Get delta position
  1200. Vec3 delta_pos = body.GetLinearVelocity() * delta_time;
  1201. // If the position should be updated (or if it is delayed because of CCD)
  1202. bool update_position = true;
  1203. switch (mp->GetMotionQuality())
  1204. {
  1205. case EMotionQuality::Discrete:
  1206. // No additional collision checking to be done
  1207. break;
  1208. case EMotionQuality::LinearCast:
  1209. if (body.IsDynamic() // Kinematic bodies cannot be stopped
  1210. && !body.IsSensor()) // We don't support CCD sensors
  1211. {
  1212. // Determine inner radius (the smallest sphere that fits into the shape)
  1213. float inner_radius = body.GetShape()->GetInnerRadius();
  1214. JPH_ASSERT(inner_radius > 0.0f, "The shape has no inner radius, this makes the shape unsuitable for the linear cast motion quality as we cannot move it without risking tunneling.");
  1215. // Measure translation in this step and check if it above the treshold to perform a linear cast
  1216. float linear_cast_threshold_sq = Square(mPhysicsSettings.mLinearCastThreshold * inner_radius);
  1217. if (delta_pos.LengthSq() > linear_cast_threshold_sq)
  1218. {
  1219. // This body needs a cast
  1220. uint32 ccd_body_idx = ioStep->mNumCCDBodies++;
  1221. ioStep->mActiveBodyToCCDBody[active_body_idx] = ccd_body_idx;
  1222. new (&ioStep->mCCDBodies[ccd_body_idx]) CCDBody(body_id, delta_pos, linear_cast_threshold_sq, min(mPhysicsSettings.mPenetrationSlop, mPhysicsSettings.mLinearCastMaxPenetration * inner_radius));
  1223. update_position = false;
  1224. }
  1225. }
  1226. break;
  1227. }
  1228. if (update_position)
  1229. {
  1230. // Move the body now
  1231. body.AddPositionStep(delta_pos);
  1232. // If the body was activated due to an earlier CCD step it will have an index in the active
  1233. // body list that it higher than the highest one we processed during FindCollisions
  1234. // which means it hasn't been assigned an island and will not be updated by an island
  1235. // this means that we need to update its bounds manually
  1236. if (mp->GetIndexInActiveBodiesInternal() >= num_active_bodies_after_find_collisions)
  1237. {
  1238. body.CalculateWorldSpaceBoundsInternal();
  1239. bodies_to_update_bounds[num_bodies_to_update_bounds++] = body.GetID();
  1240. if (num_bodies_to_update_bounds == cBodiesBatch)
  1241. {
  1242. // Buffer full, flush now
  1243. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds);
  1244. num_bodies_to_update_bounds = 0;
  1245. }
  1246. }
  1247. // We did not create a CCD body
  1248. ioStep->mActiveBodyToCCDBody[active_body_idx] = -1;
  1249. }
  1250. active_body_idx++;
  1251. }
  1252. }
  1253. // Notify change bounds on requested bodies
  1254. if (num_bodies_to_update_bounds > 0)
  1255. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds, false);
  1256. }
  1257. void PhysicsSystem::JobPostIntegrateVelocity(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep) const
  1258. {
  1259. // Validate that our reservations were correct
  1260. JPH_ASSERT(ioStep->mNumCCDBodies <= mBodyManager.GetNumActiveCCDBodies());
  1261. if (ioStep->mNumCCDBodies == 0)
  1262. {
  1263. // No continous collision detection jobs -> kick the next job ourselves
  1264. ioStep->mContactRemovedCallbacks.RemoveDependency();
  1265. }
  1266. else
  1267. {
  1268. // Run the continous collision detection jobs
  1269. int num_continuous_collision_jobs = min(int(ioStep->mNumCCDBodies + cNumCCDBodiesPerJob - 1) / cNumCCDBodiesPerJob, ioContext->GetMaxConcurrency());
  1270. ioStep->mResolveCCDContacts.AddDependency(num_continuous_collision_jobs);
  1271. ioStep->mContactRemovedCallbacks.AddDependency(num_continuous_collision_jobs - 1); // Already had 1 dependency
  1272. for (int i = 0; i < num_continuous_collision_jobs; ++i)
  1273. {
  1274. JobHandle job = ioContext->mJobSystem->CreateJob("FindCCDContacts", cColorFindCCDContacts, [ioContext, ioStep]()
  1275. {
  1276. ioContext->mPhysicsSystem->JobFindCCDContacts(ioContext, ioStep);
  1277. ioStep->mResolveCCDContacts.RemoveDependency();
  1278. ioStep->mContactRemovedCallbacks.RemoveDependency();
  1279. });
  1280. ioContext->mBarrier->AddJob(job);
  1281. }
  1282. }
  1283. }
  1284. // Helper function to calculate the motion of a body during this CCD step
  1285. inline static Vec3 sCalculateBodyMotion(const Body &inBody, float inDeltaTime)
  1286. {
  1287. // If the body is linear casting, the body has not yet moved so we need to calculate its motion
  1288. if (inBody.IsDynamic() && inBody.GetMotionProperties()->GetMotionQuality() == EMotionQuality::LinearCast)
  1289. return inDeltaTime * inBody.GetLinearVelocity();
  1290. // Body has already moved, so we don't need to correct for anything
  1291. return Vec3::sZero();
  1292. }
  1293. // Helper function that finds the CCD body corresponding to a body (if it exists)
  1294. inline static PhysicsUpdateContext::Step::CCDBody *sGetCCDBody(const Body &inBody, PhysicsUpdateContext::Step *inStep)
  1295. {
  1296. // If the body has no motion properties it cannot have a CCD body
  1297. const MotionProperties *motion_properties = inBody.GetMotionPropertiesUnchecked();
  1298. if (motion_properties == nullptr)
  1299. return nullptr;
  1300. // If it is not active it cannot have a CCD body
  1301. uint32 active_index = motion_properties->GetIndexInActiveBodiesInternal();
  1302. if (active_index == Body::cInactiveIndex)
  1303. return nullptr;
  1304. // Check if the active body has a corresponding CCD body
  1305. JPH_ASSERT(active_index < inStep->mNumActiveBodyToCCDBody); // Ensure that the body has a mapping to CCD body
  1306. int ccd_index = inStep->mActiveBodyToCCDBody[active_index];
  1307. if (ccd_index < 0)
  1308. return nullptr;
  1309. PhysicsUpdateContext::Step::CCDBody *ccd_body = &inStep->mCCDBodies[ccd_index];
  1310. JPH_ASSERT(ccd_body->mBodyID1 == inBody.GetID(), "We found the wrong CCD body!");
  1311. return ccd_body;
  1312. }
  1313. void PhysicsSystem::JobFindCCDContacts(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  1314. {
  1315. #ifdef JPH_ENABLE_ASSERTS
  1316. // We only read positions, but the validate callback may read body positions and velocities
  1317. BodyAccess::Grant grant(BodyAccess::EAccess::Read, BodyAccess::EAccess::Read);
  1318. #endif
  1319. // Allocation context for allocating new contact points
  1320. ContactAllocator contact_allocator(mContactManager.GetContactAllocator());
  1321. // Settings
  1322. ShapeCastSettings settings;
  1323. settings.mUseShrunkenShapeAndConvexRadius = true;
  1324. settings.mBackFaceModeTriangles = EBackFaceMode::IgnoreBackFaces;
  1325. settings.mBackFaceModeConvex = EBackFaceMode::IgnoreBackFaces;
  1326. settings.mReturnDeepestPoint = true;
  1327. settings.mCollectFacesMode = ECollectFacesMode::CollectFaces;
  1328. settings.mActiveEdgeMode = mPhysicsSettings.mCheckActiveEdges? EActiveEdgeMode::CollideOnlyWithActive : EActiveEdgeMode::CollideWithAll;
  1329. for (;;)
  1330. {
  1331. // Fetch the next body to cast
  1332. uint32 idx = ioStep->mNextCCDBody++;
  1333. if (idx >= ioStep->mNumCCDBodies)
  1334. break;
  1335. CCDBody &ccd_body = ioStep->mCCDBodies[idx];
  1336. const Body &body = mBodyManager.GetBody(ccd_body.mBodyID1);
  1337. // Filter out layers
  1338. DefaultBroadPhaseLayerFilter broadphase_layer_filter = GetDefaultBroadPhaseLayerFilter(body.GetObjectLayer());
  1339. DefaultObjectLayerFilter object_layer_filter = GetDefaultLayerFilter(body.GetObjectLayer());
  1340. #ifdef JPH_DEBUG_RENDERER
  1341. // Draw start and end shape of cast
  1342. if (sDrawMotionQualityLinearCast)
  1343. {
  1344. RMat44 com = body.GetCenterOfMassTransform();
  1345. body.GetShape()->Draw(DebugRenderer::sInstance, com, Vec3::sReplicate(1.0f), Color::sGreen, false, true);
  1346. DebugRenderer::sInstance->DrawArrow(com.GetTranslation(), com.GetTranslation() + ccd_body.mDeltaPosition, Color::sGreen, 0.1f);
  1347. body.GetShape()->Draw(DebugRenderer::sInstance, com.PostTranslated(ccd_body.mDeltaPosition), Vec3::sReplicate(1.0f), Color::sRed, false, true);
  1348. }
  1349. #endif // JPH_DEBUG_RENDERER
  1350. // Create a collector that will find the maximum distance allowed to travel while not penetrating more than 'max penetration'
  1351. class CCDNarrowPhaseCollector : public CastShapeCollector
  1352. {
  1353. public:
  1354. CCDNarrowPhaseCollector(const BodyManager &inBodyManager, ContactConstraintManager &inContactConstraintManager, CCDBody &inCCDBody, ShapeCastResult &inResult, float inDeltaTime) :
  1355. mBodyManager(inBodyManager),
  1356. mContactConstraintManager(inContactConstraintManager),
  1357. mCCDBody(inCCDBody),
  1358. mResult(inResult),
  1359. mDeltaTime(inDeltaTime)
  1360. {
  1361. }
  1362. virtual void AddHit(const ShapeCastResult &inResult) override
  1363. {
  1364. JPH_PROFILE_FUNCTION();
  1365. // Check if this is a possible earlier hit than the one before
  1366. float fraction = inResult.mFraction;
  1367. if (fraction < mCCDBody.mFractionPlusSlop)
  1368. {
  1369. // Normalize normal
  1370. Vec3 normal = inResult.mPenetrationAxis.Normalized();
  1371. // Calculate how much we can add to the fraction to penetrate the collision point by mMaxPenetration.
  1372. // Note that the normal is pointing towards body 2!
  1373. // Let the extra distance that we can travel along delta_pos be 'dist': mMaxPenetration / dist = cos(angle between normal and delta_pos) = normal . delta_pos / |delta_pos|
  1374. // <=> dist = mMaxPenetration * |delta_pos| / normal . delta_pos
  1375. // Converting to a faction: delta_fraction = dist / |delta_pos| = mLinearCastTreshold / normal . delta_pos
  1376. float denominator = normal.Dot(mCCDBody.mDeltaPosition);
  1377. if (denominator > mCCDBody.mMaxPenetration) // Avoid dividing by zero, if extra hit fraction > 1 there's also no point in continuing
  1378. {
  1379. float fraction_plus_slop = fraction + mCCDBody.mMaxPenetration / denominator;
  1380. if (fraction_plus_slop < mCCDBody.mFractionPlusSlop)
  1381. {
  1382. const Body &body2 = mBodyManager.GetBody(inResult.mBodyID2);
  1383. // Check if we've already accepted all hits from this body
  1384. if (mValidateBodyPair)
  1385. {
  1386. // Validate the contact result
  1387. const Body &body1 = mBodyManager.GetBody(mCCDBody.mBodyID1);
  1388. ValidateResult validate_result = mContactConstraintManager.ValidateContactPoint(body1, body2, body1.GetCenterOfMassPosition(), inResult); // Note that the center of mass of body 1 is the start of the sweep and is used as base offset below
  1389. switch (validate_result)
  1390. {
  1391. case ValidateResult::AcceptContact:
  1392. // Just continue
  1393. break;
  1394. case ValidateResult::AcceptAllContactsForThisBodyPair:
  1395. // Accept this and all following contacts from this body
  1396. mValidateBodyPair = false;
  1397. break;
  1398. case ValidateResult::RejectContact:
  1399. return;
  1400. case ValidateResult::RejectAllContactsForThisBodyPair:
  1401. // Reject this and all following contacts from this body
  1402. mRejectAll = true;
  1403. ForceEarlyOut();
  1404. return;
  1405. }
  1406. }
  1407. // This is the earliest hit so far, store it
  1408. mCCDBody.mContactNormal = normal;
  1409. mCCDBody.mBodyID2 = inResult.mBodyID2;
  1410. mCCDBody.mFraction = fraction;
  1411. mCCDBody.mFractionPlusSlop = fraction_plus_slop;
  1412. mResult = inResult;
  1413. // Result was assuming body 2 is not moving, but it is, so we need to correct for it
  1414. Vec3 movement2 = fraction * sCalculateBodyMotion(body2, mDeltaTime);
  1415. if (!movement2.IsNearZero())
  1416. {
  1417. mResult.mContactPointOn1 += movement2;
  1418. mResult.mContactPointOn2 += movement2;
  1419. for (Vec3 &v : mResult.mShape1Face)
  1420. v += movement2;
  1421. for (Vec3 &v : mResult.mShape2Face)
  1422. v += movement2;
  1423. }
  1424. // Update early out fraction
  1425. UpdateEarlyOutFraction(fraction_plus_slop);
  1426. }
  1427. }
  1428. }
  1429. }
  1430. bool mValidateBodyPair; ///< If we still have to call the ValidateContactPoint for this body pair
  1431. bool mRejectAll; ///< Reject all further contacts between this body pair
  1432. private:
  1433. const BodyManager & mBodyManager;
  1434. ContactConstraintManager & mContactConstraintManager;
  1435. CCDBody & mCCDBody;
  1436. ShapeCastResult & mResult;
  1437. float mDeltaTime;
  1438. BodyID mAcceptedBodyID;
  1439. };
  1440. // Narrowphase collector
  1441. ShapeCastResult cast_shape_result;
  1442. CCDNarrowPhaseCollector np_collector(mBodyManager, mContactManager, ccd_body, cast_shape_result, ioContext->mStepDeltaTime);
  1443. // This collector wraps the narrowphase collector and collects the closest hit
  1444. class CCDBroadPhaseCollector : public CastShapeBodyCollector
  1445. {
  1446. public:
  1447. CCDBroadPhaseCollector(const CCDBody &inCCDBody, const Body &inBody1, const RShapeCast &inShapeCast, ShapeCastSettings &inShapeCastSettings, CCDNarrowPhaseCollector &ioCollector, const BodyManager &inBodyManager, PhysicsUpdateContext::Step *inStep, float inDeltaTime) :
  1448. mCCDBody(inCCDBody),
  1449. mBody1(inBody1),
  1450. mBody1Extent(inShapeCast.mShapeWorldBounds.GetExtent()),
  1451. mShapeCast(inShapeCast),
  1452. mShapeCastSettings(inShapeCastSettings),
  1453. mCollector(ioCollector),
  1454. mBodyManager(inBodyManager),
  1455. mStep(inStep),
  1456. mDeltaTime(inDeltaTime)
  1457. {
  1458. }
  1459. virtual void AddHit(const BroadPhaseCastResult &inResult) override
  1460. {
  1461. JPH_PROFILE_FUNCTION();
  1462. JPH_ASSERT(inResult.mFraction <= GetEarlyOutFraction(), "This hit should not have been passed on to the collector");
  1463. // Test if we're colliding with ourselves
  1464. if (mBody1.GetID() == inResult.mBodyID)
  1465. return;
  1466. // Avoid treating duplicates, if both bodies are doing CCD then only consider collision if body ID < other body ID
  1467. const Body &body2 = mBodyManager.GetBody(inResult.mBodyID);
  1468. const CCDBody *ccd_body2 = sGetCCDBody(body2, mStep);
  1469. if (ccd_body2 != nullptr && mCCDBody.mBodyID1 > ccd_body2->mBodyID1)
  1470. return;
  1471. // Test group filter
  1472. if (!mBody1.GetCollisionGroup().CanCollide(body2.GetCollisionGroup()))
  1473. return;
  1474. // TODO: For now we ignore sensors
  1475. if (body2.IsSensor())
  1476. return;
  1477. // Get relative movement of these two bodies
  1478. Vec3 direction = mShapeCast.mDirection - sCalculateBodyMotion(body2, mDeltaTime);
  1479. // Test if the remaining movement is less than our movement threshold
  1480. if (direction.LengthSq() < mCCDBody.mLinearCastThresholdSq)
  1481. return;
  1482. // Get the bounds of 2, widen it by the extent of 1 and test a ray to see if it hits earlier than the current early out fraction
  1483. AABox bounds = body2.GetWorldSpaceBounds();
  1484. bounds.mMin -= mBody1Extent;
  1485. bounds.mMax += mBody1Extent;
  1486. float hit_fraction = RayAABox(Vec3(mShapeCast.mCenterOfMassStart.GetTranslation()), RayInvDirection(direction), bounds.mMin, bounds.mMax);
  1487. if (hit_fraction > GetPositiveEarlyOutFraction()) // If early out fraction <= 0, we have the possibility of finding a deeper hit so we need to clamp the early out fraction
  1488. return;
  1489. // Reset collector (this is a new body pair)
  1490. mCollector.ResetEarlyOutFraction(GetEarlyOutFraction());
  1491. mCollector.mValidateBodyPair = true;
  1492. mCollector.mRejectAll = false;
  1493. // Provide direction as hint for the active edges algorithm
  1494. mShapeCastSettings.mActiveEdgeMovementDirection = direction;
  1495. // Do narrow phase collision check
  1496. RShapeCast relative_cast(mShapeCast.mShape, mShapeCast.mScale, mShapeCast.mCenterOfMassStart, direction, mShapeCast.mShapeWorldBounds);
  1497. body2.GetTransformedShape().CastShape(relative_cast, mShapeCastSettings, mShapeCast.mCenterOfMassStart.GetTranslation(), mCollector);
  1498. // Update early out fraction based on narrow phase collector
  1499. if (!mCollector.mRejectAll)
  1500. UpdateEarlyOutFraction(mCollector.GetEarlyOutFraction());
  1501. }
  1502. const CCDBody & mCCDBody;
  1503. const Body & mBody1;
  1504. Vec3 mBody1Extent;
  1505. RShapeCast mShapeCast;
  1506. ShapeCastSettings & mShapeCastSettings;
  1507. CCDNarrowPhaseCollector & mCollector;
  1508. const BodyManager & mBodyManager;
  1509. PhysicsUpdateContext::Step *mStep;
  1510. float mDeltaTime;
  1511. };
  1512. // Check if we collide with any other body. Note that we use the non-locking interface as we know the broadphase cannot be modified at this point.
  1513. RShapeCast shape_cast(body.GetShape(), Vec3::sReplicate(1.0f), body.GetCenterOfMassTransform(), ccd_body.mDeltaPosition);
  1514. CCDBroadPhaseCollector bp_collector(ccd_body, body, shape_cast, settings, np_collector, mBodyManager, ioStep, ioContext->mStepDeltaTime);
  1515. mBroadPhase->CastAABoxNoLock({ shape_cast.mShapeWorldBounds, shape_cast.mDirection }, bp_collector, broadphase_layer_filter, object_layer_filter);
  1516. // Check if there was a hit
  1517. if (ccd_body.mFractionPlusSlop < 1.0f)
  1518. {
  1519. const Body &body2 = mBodyManager.GetBody(ccd_body.mBodyID2);
  1520. // Determine contact manifold
  1521. ContactManifold manifold;
  1522. manifold.mBaseOffset = shape_cast.mCenterOfMassStart.GetTranslation();
  1523. ManifoldBetweenTwoFaces(cast_shape_result.mContactPointOn1, cast_shape_result.mContactPointOn2, cast_shape_result.mPenetrationAxis, mPhysicsSettings.mManifoldToleranceSq, cast_shape_result.mShape1Face, cast_shape_result.mShape2Face, manifold.mRelativeContactPointsOn1, manifold.mRelativeContactPointsOn2 JPH_IF_DEBUG_RENDERER(, manifold.mBaseOffset));
  1524. manifold.mSubShapeID1 = cast_shape_result.mSubShapeID1;
  1525. manifold.mSubShapeID2 = cast_shape_result.mSubShapeID2;
  1526. manifold.mPenetrationDepth = cast_shape_result.mPenetrationDepth;
  1527. manifold.mWorldSpaceNormal = ccd_body.mContactNormal;
  1528. // Call contact point callbacks
  1529. mContactManager.OnCCDContactAdded(contact_allocator, body, body2, manifold, ccd_body.mContactSettings);
  1530. // Calculate the average position from the manifold (this will result in the same impulse applied as when we apply impulses to all contact points)
  1531. if (manifold.mRelativeContactPointsOn2.size() > 1)
  1532. {
  1533. Vec3 average_contact_point = Vec3::sZero();
  1534. for (const Vec3 &v : manifold.mRelativeContactPointsOn2)
  1535. average_contact_point += v;
  1536. average_contact_point /= (float)manifold.mRelativeContactPointsOn2.size();
  1537. ccd_body.mContactPointOn2 = manifold.mBaseOffset + average_contact_point;
  1538. }
  1539. else
  1540. ccd_body.mContactPointOn2 = manifold.mBaseOffset + cast_shape_result.mContactPointOn2;
  1541. }
  1542. }
  1543. // Collect information from the contact allocator and accumulate it in the step.
  1544. sFinalizeContactAllocator(*ioStep, contact_allocator);
  1545. }
  1546. void PhysicsSystem::JobResolveCCDContacts(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  1547. {
  1548. #ifdef JPH_ENABLE_ASSERTS
  1549. // Read/write body access
  1550. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::ReadWrite);
  1551. // We activate bodies that we collide with
  1552. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  1553. #endif
  1554. uint32 num_active_bodies_after_find_collisions = ioStep->mActiveBodyReadIdx;
  1555. TempAllocator *temp_allocator = ioContext->mTempAllocator;
  1556. // Check if there's anything to do
  1557. uint num_ccd_bodies = ioStep->mNumCCDBodies;
  1558. if (num_ccd_bodies > 0)
  1559. {
  1560. // Sort on fraction so that we process earliest collisions first
  1561. // This is needed to make the simulation deterministic and also to be able to stop contact processing
  1562. // between body pairs if an earlier hit was found involving the body by another CCD body
  1563. // (if it's body ID < this CCD body's body ID - see filtering logic in CCDBroadPhaseCollector)
  1564. CCDBody **sorted_ccd_bodies = (CCDBody **)temp_allocator->Allocate(num_ccd_bodies * sizeof(CCDBody *));
  1565. {
  1566. JPH_PROFILE("Sort");
  1567. // We don't want to copy the entire struct (it's quite big), so we create a pointer array first
  1568. CCDBody *src_ccd_bodies = ioStep->mCCDBodies;
  1569. CCDBody **dst_ccd_bodies = sorted_ccd_bodies;
  1570. CCDBody **dst_ccd_bodies_end = dst_ccd_bodies + num_ccd_bodies;
  1571. while (dst_ccd_bodies < dst_ccd_bodies_end)
  1572. *(dst_ccd_bodies++) = src_ccd_bodies++;
  1573. // Which we then sort
  1574. QuickSort(sorted_ccd_bodies, sorted_ccd_bodies + num_ccd_bodies, [](const CCDBody *inBody1, const CCDBody *inBody2)
  1575. {
  1576. if (inBody1->mFractionPlusSlop != inBody2->mFractionPlusSlop)
  1577. return inBody1->mFractionPlusSlop < inBody2->mFractionPlusSlop;
  1578. return inBody1->mBodyID1 < inBody2->mBodyID1;
  1579. });
  1580. }
  1581. // We can collide with bodies that are not active, we track them here so we can activate them in one go at the end.
  1582. // This is also needed because we can't modify the active body array while we iterate it.
  1583. static constexpr int cBodiesBatch = 64;
  1584. BodyID *bodies_to_activate = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1585. int num_bodies_to_activate = 0;
  1586. // We can move bodies that are not part of an island. In this case we need to notify the broadphase of the movement.
  1587. BodyID *bodies_to_update_bounds = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1588. int num_bodies_to_update_bounds = 0;
  1589. for (uint i = 0; i < num_ccd_bodies; ++i)
  1590. {
  1591. const CCDBody *ccd_body = sorted_ccd_bodies[i];
  1592. Body &body1 = mBodyManager.GetBody(ccd_body->mBodyID1);
  1593. MotionProperties *body_mp = body1.GetMotionProperties();
  1594. // If there was a hit
  1595. if (!ccd_body->mBodyID2.IsInvalid())
  1596. {
  1597. Body &body2 = mBodyManager.GetBody(ccd_body->mBodyID2);
  1598. // Determine if the other body has a CCD body
  1599. CCDBody *ccd_body2 = sGetCCDBody(body2, ioStep);
  1600. if (ccd_body2 != nullptr)
  1601. {
  1602. JPH_ASSERT(ccd_body2->mBodyID2 != ccd_body->mBodyID1, "If we collided with another body, that other body should have ignored collisions with us!");
  1603. // Check if the other body found a hit that is further away
  1604. if (ccd_body2->mFraction > ccd_body->mFraction)
  1605. {
  1606. // Reset the colliding body of the other CCD body. The other body will shorten its distance travelled and will not do any collision response (we'll do that).
  1607. // This means that at this point we have triggered a contact point add/persist for our further hit by accident for the other body.
  1608. // We accept this as calling the contact point callbacks here would require persisting the manifolds up to this point and doing the callbacks single threaded.
  1609. ccd_body2->mBodyID2 = BodyID();
  1610. ccd_body2->mFractionPlusSlop = ccd_body->mFraction;
  1611. }
  1612. }
  1613. // If the other body moved less than us before hitting something, we're not colliding with it so we again have triggered contact point add/persist callbacks by accident.
  1614. // We'll just move to the collision position anyway (as that's the last position we know is good), but we won't do any collision response.
  1615. if (ccd_body2 == nullptr || ccd_body2->mFraction >= ccd_body->mFraction)
  1616. {
  1617. // Calculate contact points relative to center of mass of both bodies
  1618. Vec3 r1_plus_u = Vec3(ccd_body->mContactPointOn2 - (body1.GetCenterOfMassPosition() + ccd_body->mFraction * ccd_body->mDeltaPosition));
  1619. Vec3 r2 = Vec3(ccd_body->mContactPointOn2 - body2.GetCenterOfMassPosition());
  1620. // Calculate velocity of collision points
  1621. Vec3 v1 = body1.GetPointVelocityCOM(r1_plus_u);
  1622. Vec3 v2 = body2.GetPointVelocityCOM(r2);
  1623. Vec3 relative_velocity = v2 - v1;
  1624. float normal_velocity = relative_velocity.Dot(ccd_body->mContactNormal);
  1625. // Calculate velocity bias due to restitution
  1626. float normal_velocity_bias;
  1627. if (ccd_body->mContactSettings.mCombinedRestitution > 0.0f && normal_velocity < -mPhysicsSettings.mMinVelocityForRestitution)
  1628. normal_velocity_bias = ccd_body->mContactSettings.mCombinedRestitution * normal_velocity;
  1629. else
  1630. normal_velocity_bias = 0.0f;
  1631. // Solve contact constraint
  1632. AxisConstraintPart contact_constraint;
  1633. contact_constraint.CalculateConstraintProperties(body1, r1_plus_u, body2, r2, ccd_body->mContactNormal, normal_velocity_bias);
  1634. contact_constraint.SolveVelocityConstraint(body1, body2, ccd_body->mContactNormal, -FLT_MAX, FLT_MAX);
  1635. // Apply friction
  1636. if (ccd_body->mContactSettings.mCombinedFriction > 0.0f)
  1637. {
  1638. // Calculate friction direction by removing normal velocity from the relative velocity
  1639. Vec3 friction_direction = relative_velocity - normal_velocity * ccd_body->mContactNormal;
  1640. float friction_direction_len_sq = friction_direction.LengthSq();
  1641. if (friction_direction_len_sq > 1.0e-12f)
  1642. {
  1643. // Normalize friction direction
  1644. friction_direction /= sqrt(friction_direction_len_sq);
  1645. // Calculate max friction impulse
  1646. float max_lambda_f = ccd_body->mContactSettings.mCombinedFriction * contact_constraint.GetTotalLambda();
  1647. AxisConstraintPart friction;
  1648. friction.CalculateConstraintProperties(body1, r1_plus_u, body2, r2, friction_direction);
  1649. friction.SolveVelocityConstraint(body1, body2, friction_direction, -max_lambda_f, max_lambda_f);
  1650. }
  1651. }
  1652. // Clamp velocities
  1653. body_mp->ClampLinearVelocity();
  1654. body_mp->ClampAngularVelocity();
  1655. if (body2.IsDynamic())
  1656. {
  1657. MotionProperties *body2_mp = body2.GetMotionProperties();
  1658. body2_mp->ClampLinearVelocity();
  1659. body2_mp->ClampAngularVelocity();
  1660. // Activate the body if it is not already active
  1661. if (!body2.IsActive())
  1662. {
  1663. bodies_to_activate[num_bodies_to_activate++] = ccd_body->mBodyID2;
  1664. if (num_bodies_to_activate == cBodiesBatch)
  1665. {
  1666. // Batch is full, activate now
  1667. mBodyManager.ActivateBodies(bodies_to_activate, num_bodies_to_activate);
  1668. num_bodies_to_activate = 0;
  1669. }
  1670. }
  1671. }
  1672. #ifdef JPH_DEBUG_RENDERER
  1673. if (sDrawMotionQualityLinearCast)
  1674. {
  1675. // Draw the collision location
  1676. RMat44 collision_transform = body1.GetCenterOfMassTransform().PostTranslated(ccd_body->mFraction * ccd_body->mDeltaPosition);
  1677. body1.GetShape()->Draw(DebugRenderer::sInstance, collision_transform, Vec3::sReplicate(1.0f), Color::sYellow, false, true);
  1678. // Draw the collision location + slop
  1679. RMat44 collision_transform_plus_slop = body1.GetCenterOfMassTransform().PostTranslated(ccd_body->mFractionPlusSlop * ccd_body->mDeltaPosition);
  1680. body1.GetShape()->Draw(DebugRenderer::sInstance, collision_transform_plus_slop, Vec3::sReplicate(1.0f), Color::sOrange, false, true);
  1681. // Draw contact normal
  1682. DebugRenderer::sInstance->DrawArrow(ccd_body->mContactPointOn2, ccd_body->mContactPointOn2 - ccd_body->mContactNormal, Color::sYellow, 0.1f);
  1683. // Draw post contact velocity
  1684. DebugRenderer::sInstance->DrawArrow(collision_transform.GetTranslation(), collision_transform.GetTranslation() + body1.GetLinearVelocity(), Color::sOrange, 0.1f);
  1685. DebugRenderer::sInstance->DrawArrow(collision_transform.GetTranslation(), collision_transform.GetTranslation() + body1.GetAngularVelocity(), Color::sPurple, 0.1f);
  1686. }
  1687. #endif // JPH_DEBUG_RENDERER
  1688. }
  1689. }
  1690. // Update body position
  1691. body1.AddPositionStep(ccd_body->mDeltaPosition * ccd_body->mFractionPlusSlop);
  1692. // If the body was activated due to an earlier CCD step it will have an index in the active
  1693. // body list that it higher than the highest one we processed during FindCollisions
  1694. // which means it hasn't been assigned an island and will not be updated by an island
  1695. // this means that we need to update its bounds manually
  1696. if (body_mp->GetIndexInActiveBodiesInternal() >= num_active_bodies_after_find_collisions)
  1697. {
  1698. body1.CalculateWorldSpaceBoundsInternal();
  1699. bodies_to_update_bounds[num_bodies_to_update_bounds++] = body1.GetID();
  1700. if (num_bodies_to_update_bounds == cBodiesBatch)
  1701. {
  1702. // Buffer full, flush now
  1703. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds);
  1704. num_bodies_to_update_bounds = 0;
  1705. }
  1706. }
  1707. }
  1708. // Activate the requested bodies
  1709. if (num_bodies_to_activate > 0)
  1710. mBodyManager.ActivateBodies(bodies_to_activate, num_bodies_to_activate);
  1711. // Notify change bounds on requested bodies
  1712. if (num_bodies_to_update_bounds > 0)
  1713. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds, false);
  1714. // Free the sorted ccd bodies
  1715. temp_allocator->Free(sorted_ccd_bodies, num_ccd_bodies * sizeof(CCDBody *));
  1716. }
  1717. // Ensure we free the CCD bodies array now, will not call the destructor!
  1718. temp_allocator->Free(ioStep->mActiveBodyToCCDBody, ioStep->mNumActiveBodyToCCDBody * sizeof(int));
  1719. ioStep->mActiveBodyToCCDBody = nullptr;
  1720. ioStep->mNumActiveBodyToCCDBody = 0;
  1721. temp_allocator->Free(ioStep->mCCDBodies, ioStep->mCCDBodiesCapacity * sizeof(CCDBody));
  1722. ioStep->mCCDBodies = nullptr;
  1723. ioStep->mCCDBodiesCapacity = 0;
  1724. }
  1725. void PhysicsSystem::JobContactRemovedCallbacks(const PhysicsUpdateContext::Step *ioStep)
  1726. {
  1727. #ifdef JPH_ENABLE_ASSERTS
  1728. // We don't touch any bodies
  1729. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  1730. #endif
  1731. // Reset the Body::EFlags::InvalidateContactCache flag for all bodies
  1732. mBodyManager.ValidateContactCacheForAllBodies();
  1733. // Finalize the contact cache (this swaps the read and write versions of the contact cache)
  1734. // Trigger all contact removed callbacks by looking at last step contact points that have not been flagged as reused
  1735. mContactManager.FinalizeContactCacheAndCallContactPointRemovedCallbacks(ioStep->mNumBodyPairs, ioStep->mNumManifolds);
  1736. }
  1737. class PhysicsSystem::BodiesToSleep : public NonCopyable
  1738. {
  1739. public:
  1740. static constexpr int cBodiesToSleepSize = 512;
  1741. static constexpr int cMaxBodiesToPutInBuffer = 128;
  1742. inline BodiesToSleep(BodyManager &inBodyManager, BodyID *inBodiesToSleepBuffer) : mBodyManager(inBodyManager), mBodiesToSleepBuffer(inBodiesToSleepBuffer), mBodiesToSleepCur(inBodiesToSleepBuffer) { }
  1743. inline ~BodiesToSleep()
  1744. {
  1745. // Flush the bodies to sleep buffer
  1746. int num_bodies_in_buffer = int(mBodiesToSleepCur - mBodiesToSleepBuffer);
  1747. if (num_bodies_in_buffer > 0)
  1748. mBodyManager.DeactivateBodies(mBodiesToSleepBuffer, num_bodies_in_buffer);
  1749. }
  1750. inline void PutToSleep(const BodyID *inBegin, const BodyID *inEnd)
  1751. {
  1752. int num_bodies_to_sleep = int(inEnd - inBegin);
  1753. if (num_bodies_to_sleep > cMaxBodiesToPutInBuffer)
  1754. {
  1755. // Too many bodies, deactivate immediately
  1756. mBodyManager.DeactivateBodies(inBegin, num_bodies_to_sleep);
  1757. }
  1758. else
  1759. {
  1760. // Check if there's enough space in the bodies to sleep buffer
  1761. int num_bodies_in_buffer = int(mBodiesToSleepCur - mBodiesToSleepBuffer);
  1762. if (num_bodies_in_buffer + num_bodies_to_sleep > cBodiesToSleepSize)
  1763. {
  1764. // Flush the bodies to sleep buffer
  1765. mBodyManager.DeactivateBodies(mBodiesToSleepBuffer, num_bodies_in_buffer);
  1766. mBodiesToSleepCur = mBodiesToSleepBuffer;
  1767. }
  1768. // Copy the bodies in the buffer
  1769. memcpy(mBodiesToSleepCur, inBegin, num_bodies_to_sleep * sizeof(BodyID));
  1770. mBodiesToSleepCur += num_bodies_to_sleep;
  1771. }
  1772. }
  1773. private:
  1774. BodyManager & mBodyManager;
  1775. BodyID * mBodiesToSleepBuffer;
  1776. BodyID * mBodiesToSleepCur;
  1777. };
  1778. void PhysicsSystem::CheckSleepAndUpdateBounds(uint32 inIslandIndex, const PhysicsUpdateContext *ioContext, const PhysicsUpdateContext::Step *ioStep, BodiesToSleep &ioBodiesToSleep)
  1779. {
  1780. // Get the bodies that belong to this island
  1781. BodyID *bodies_begin, *bodies_end;
  1782. mIslandBuilder.GetBodiesInIsland(inIslandIndex, bodies_begin, bodies_end);
  1783. // Only check sleeping in the last step
  1784. // Also resets force and torque used during the apply gravity phase
  1785. if (ioStep->mIsLast)
  1786. {
  1787. JPH_PROFILE("Check Sleeping");
  1788. static_assert(int(Body::ECanSleep::CannotSleep) == 0 && int(Body::ECanSleep::CanSleep) == 1, "Loop below makes this assumption");
  1789. int all_can_sleep = mPhysicsSettings.mAllowSleeping? int(Body::ECanSleep::CanSleep) : int(Body::ECanSleep::CannotSleep);
  1790. float time_before_sleep = mPhysicsSettings.mTimeBeforeSleep;
  1791. float max_movement = mPhysicsSettings.mPointVelocitySleepThreshold * time_before_sleep;
  1792. for (const BodyID *body_id = bodies_begin; body_id < bodies_end; ++body_id)
  1793. {
  1794. Body &body = mBodyManager.GetBody(*body_id);
  1795. // Update bounding box
  1796. body.CalculateWorldSpaceBoundsInternal();
  1797. // Update sleeping
  1798. all_can_sleep &= int(body.UpdateSleepStateInternal(ioContext->mStepDeltaTime, max_movement, time_before_sleep));
  1799. // Reset force and torque
  1800. MotionProperties *mp = body.GetMotionProperties();
  1801. mp->ResetForce();
  1802. mp->ResetTorque();
  1803. }
  1804. // If all bodies indicate they can sleep we can deactivate them
  1805. if (all_can_sleep == int(Body::ECanSleep::CanSleep))
  1806. ioBodiesToSleep.PutToSleep(bodies_begin, bodies_end);
  1807. }
  1808. else
  1809. {
  1810. JPH_PROFILE("Update Bounds");
  1811. // Update bounding box only for all other steps
  1812. for (const BodyID *body_id = bodies_begin; body_id < bodies_end; ++body_id)
  1813. {
  1814. Body &body = mBodyManager.GetBody(*body_id);
  1815. body.CalculateWorldSpaceBoundsInternal();
  1816. }
  1817. }
  1818. // Notify broadphase of changed objects (find ccd contacts can do linear casts in the next step, so we need to do this every step)
  1819. // Note: Shuffles the BodyID's around!!!
  1820. mBroadPhase->NotifyBodiesAABBChanged(bodies_begin, int(bodies_end - bodies_begin), false);
  1821. }
  1822. void PhysicsSystem::JobSolvePositionConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  1823. {
  1824. #ifdef JPH_ENABLE_ASSERTS
  1825. // We fix up position errors
  1826. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::ReadWrite);
  1827. // Can only deactivate bodies
  1828. BodyManager::GrantActiveBodiesAccess grant_active(false, true);
  1829. #endif
  1830. float delta_time = ioContext->mStepDeltaTime;
  1831. float baumgarte = mPhysicsSettings.mBaumgarte;
  1832. Constraint **active_constraints = ioContext->mActiveConstraints;
  1833. // Keep a buffer of bodies that need to go to sleep in order to not constantly lock the active bodies mutex and create contention between all solving threads
  1834. BodiesToSleep bodies_to_sleep(mBodyManager, (BodyID *)JPH_STACK_ALLOC(BodiesToSleep::cBodiesToSleepSize * sizeof(BodyID)));
  1835. bool check_islands = true, check_split_islands = mPhysicsSettings.mUseLargeIslandSplitter;
  1836. do
  1837. {
  1838. // First try to get work from large islands
  1839. if (check_split_islands)
  1840. {
  1841. bool first_iteration;
  1842. uint split_island_index;
  1843. uint32 *constraints_begin, *constraints_end, *contacts_begin, *contacts_end;
  1844. switch (mLargeIslandSplitter.FetchNextBatch(split_island_index, constraints_begin, constraints_end, contacts_begin, contacts_end, first_iteration))
  1845. {
  1846. case LargeIslandSplitter::EStatus::BatchRetrieved:
  1847. // Solve the batch
  1848. ConstraintManager::sSolvePositionConstraints(active_constraints, constraints_begin, constraints_end, delta_time, baumgarte);
  1849. mContactManager.SolvePositionConstraints(contacts_begin, contacts_end);
  1850. // Mark the batch as processed
  1851. bool last_iteration, final_batch;
  1852. mLargeIslandSplitter.MarkBatchProcessed(split_island_index, constraints_begin, constraints_end, contacts_begin, contacts_end, last_iteration, final_batch);
  1853. // The final batch will update all bounds and check sleeping
  1854. if (final_batch)
  1855. CheckSleepAndUpdateBounds(mLargeIslandSplitter.GetIslandIndex(split_island_index), ioContext, ioStep, bodies_to_sleep);
  1856. // We processed work, loop again
  1857. continue;
  1858. case LargeIslandSplitter::EStatus::WaitingForBatch:
  1859. break;
  1860. case LargeIslandSplitter::EStatus::AllBatchesDone:
  1861. check_split_islands = false;
  1862. break;
  1863. }
  1864. }
  1865. // If that didn't succeed try to process an island
  1866. if (check_islands)
  1867. {
  1868. // Next island
  1869. uint32 island_idx = ioStep->mSolvePositionConstraintsNextIsland++;
  1870. if (island_idx >= mIslandBuilder.GetNumIslands())
  1871. {
  1872. // We processed all islands, stop checking islands
  1873. check_islands = false;
  1874. continue;
  1875. }
  1876. JPH_PROFILE("Island");
  1877. // Get iterators for this island
  1878. uint32 *constraints_begin, *constraints_end, *contacts_begin, *contacts_end;
  1879. mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end);
  1880. mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end);
  1881. // If this island is a large island, it will be picked up as a batch and we don't need to do anything here
  1882. uint num_items = uint(constraints_end - constraints_begin) + uint(contacts_end - contacts_begin);
  1883. if (mPhysicsSettings.mUseLargeIslandSplitter
  1884. && num_items >= LargeIslandSplitter::cLargeIslandTreshold)
  1885. continue;
  1886. // Check if this island needs solving
  1887. if (num_items > 0)
  1888. {
  1889. // First iteration
  1890. int num_position_steps = mPhysicsSettings.mNumPositionSteps;
  1891. if (num_position_steps > 0)
  1892. {
  1893. // In the first iteration also calculate the number of position steps (this way we avoid pulling all constraints into the cache twice)
  1894. bool applied_impulse = ConstraintManager::sSolvePositionConstraints(active_constraints, constraints_begin, constraints_end, delta_time, baumgarte, num_position_steps);
  1895. applied_impulse |= mContactManager.SolvePositionConstraints(contacts_begin, contacts_end);
  1896. // If no impulses were applied we can stop, otherwise we already did 1 iteration
  1897. if (!applied_impulse)
  1898. num_position_steps = 0;
  1899. else
  1900. --num_position_steps;
  1901. }
  1902. else
  1903. {
  1904. // Iterate the constraints to see if they override the number of position steps
  1905. for (const uint32 *c = constraints_begin; c < constraints_end; ++c)
  1906. num_position_steps = max(num_position_steps, active_constraints[*c]->GetNumPositionStepsOverride());
  1907. }
  1908. // Further iterations
  1909. for (int position_step = 0; position_step < num_position_steps; ++position_step)
  1910. {
  1911. bool applied_impulse = ConstraintManager::sSolvePositionConstraints(active_constraints, constraints_begin, constraints_end, delta_time, baumgarte);
  1912. applied_impulse |= mContactManager.SolvePositionConstraints(contacts_begin, contacts_end);
  1913. if (!applied_impulse)
  1914. break;
  1915. }
  1916. }
  1917. // After solving we will update all bounds and check sleeping
  1918. CheckSleepAndUpdateBounds(island_idx, ioContext, ioStep, bodies_to_sleep);
  1919. // We processed work, loop again
  1920. continue;
  1921. }
  1922. // If we didn't find any work, give up a time slice
  1923. std::this_thread::yield();
  1924. }
  1925. while (check_islands || check_split_islands);
  1926. }
  1927. void PhysicsSystem::SaveState(StateRecorder &inStream) const
  1928. {
  1929. JPH_PROFILE_FUNCTION();
  1930. inStream.Write(mPreviousStepDeltaTime);
  1931. inStream.Write(mGravity);
  1932. mBodyManager.SaveState(inStream);
  1933. mContactManager.SaveState(inStream);
  1934. mConstraintManager.SaveState(inStream);
  1935. }
  1936. bool PhysicsSystem::RestoreState(StateRecorder &inStream)
  1937. {
  1938. JPH_PROFILE_FUNCTION();
  1939. inStream.Read(mPreviousStepDeltaTime);
  1940. inStream.Read(mGravity);
  1941. if (!mBodyManager.RestoreState(inStream))
  1942. return false;
  1943. if (!mContactManager.RestoreState(inStream))
  1944. return false;
  1945. if (!mConstraintManager.RestoreState(inStream))
  1946. return false;
  1947. // Update bounding boxes for all bodies in the broadphase
  1948. Array<BodyID> bodies;
  1949. for (const Body *b : mBodyManager.GetBodies())
  1950. if (BodyManager::sIsValidBodyPointer(b) && b->IsInBroadPhase())
  1951. bodies.push_back(b->GetID());
  1952. if (!bodies.empty())
  1953. mBroadPhase->NotifyBodiesAABBChanged(&bodies[0], (int)bodies.size());
  1954. return true;
  1955. }
  1956. JPH_NAMESPACE_END