HelloWorld.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. // The Jolt headers don't include Jolt.h. Always include Jolt.h before including any other Jolt header.
  4. // You can use Jolt.h in your precompiled header to speed up compilation.
  5. #include <Jolt/Jolt.h>
  6. // Jolt includes
  7. #include <Jolt/RegisterTypes.h>
  8. #include <Jolt/Core/Factory.h>
  9. #include <Jolt/Core/TempAllocator.h>
  10. #include <Jolt/Core/JobSystemThreadPool.h>
  11. #include <Jolt/Physics/PhysicsSettings.h>
  12. #include <Jolt/Physics/PhysicsSystem.h>
  13. #include <Jolt/Physics/Collision/Shape/BoxShape.h>
  14. #include <Jolt/Physics/Collision/Shape/SphereShape.h>
  15. #include <Jolt/Physics/Body/BodyCreationSettings.h>
  16. #include <Jolt/Physics/Body/BodyActivationListener.h>
  17. // STL includes
  18. #include <iostream>
  19. #include <cstdarg>
  20. #include <thread>
  21. // Disable common warnings triggered by Jolt, you can use JPH_SUPPRESS_WARNING_PUSH / JPH_SUPPRESS_WARNING_POP to store and restore the warning state
  22. JPH_SUPPRESS_WARNINGS
  23. // All Jolt symbols are in the JPH namespace
  24. using namespace JPH;
  25. // If you want your code to compile using single or double precision write 0.0_r to get a Real value that compiles to double or float depending if JPH_DOUBLE_PRECISION is set or not.
  26. using namespace JPH::literals;
  27. // We're also using STL classes in this example
  28. using namespace std;
  29. // Callback for traces, connect this to your own trace function if you have one
  30. static void TraceImpl(const char *inFMT, ...)
  31. {
  32. // Format the message
  33. va_list list;
  34. va_start(list, inFMT);
  35. char buffer[1024];
  36. vsnprintf(buffer, sizeof(buffer), inFMT, list);
  37. va_end(list);
  38. // Print to the TTY
  39. cout << buffer << endl;
  40. }
  41. #ifdef JPH_ENABLE_ASSERTS
  42. // Callback for asserts, connect this to your own assert handler if you have one
  43. static bool AssertFailedImpl(const char *inExpression, const char *inMessage, const char *inFile, uint inLine)
  44. {
  45. // Print to the TTY
  46. cout << inFile << ":" << inLine << ": (" << inExpression << ") " << (inMessage != nullptr? inMessage : "") << endl;
  47. // Breakpoint
  48. return true;
  49. };
  50. #endif // JPH_ENABLE_ASSERTS
  51. // Layer that objects can be in, determines which other objects it can collide with
  52. // Typically you at least want to have 1 layer for moving bodies and 1 layer for static bodies, but you can have more
  53. // layers if you want. E.g. you could have a layer for high detail collision (which is not used by the physics simulation
  54. // but only if you do collision testing).
  55. namespace Layers
  56. {
  57. static constexpr uint8 NON_MOVING = 0;
  58. static constexpr uint8 MOVING = 1;
  59. static constexpr uint8 NUM_LAYERS = 2;
  60. };
  61. // Function that determines if two object layers can collide
  62. static bool MyObjectCanCollide(ObjectLayer inObject1, ObjectLayer inObject2)
  63. {
  64. switch (inObject1)
  65. {
  66. case Layers::NON_MOVING:
  67. return inObject2 == Layers::MOVING; // Non moving only collides with moving
  68. case Layers::MOVING:
  69. return true; // Moving collides with everything
  70. default:
  71. JPH_ASSERT(false);
  72. return false;
  73. }
  74. };
  75. // Each broadphase layer results in a separate bounding volume tree in the broad phase. You at least want to have
  76. // a layer for non-moving and moving objects to avoid having to update a tree full of static objects every frame.
  77. // You can have a 1-on-1 mapping between object layers and broadphase layers (like in this case) but if you have
  78. // many object layers you'll be creating many broad phase trees, which is not efficient. If you want to fine tune
  79. // your broadphase layers define JPH_TRACK_BROADPHASE_STATS and look at the stats reported on the TTY.
  80. namespace BroadPhaseLayers
  81. {
  82. static constexpr BroadPhaseLayer NON_MOVING(0);
  83. static constexpr BroadPhaseLayer MOVING(1);
  84. static constexpr uint NUM_LAYERS(2);
  85. };
  86. // BroadPhaseLayerInterface implementation
  87. // This defines a mapping between object and broadphase layers.
  88. class BPLayerInterfaceImpl final : public BroadPhaseLayerInterface
  89. {
  90. public:
  91. BPLayerInterfaceImpl()
  92. {
  93. // Create a mapping table from object to broad phase layer
  94. mObjectToBroadPhase[Layers::NON_MOVING] = BroadPhaseLayers::NON_MOVING;
  95. mObjectToBroadPhase[Layers::MOVING] = BroadPhaseLayers::MOVING;
  96. }
  97. virtual uint GetNumBroadPhaseLayers() const override
  98. {
  99. return BroadPhaseLayers::NUM_LAYERS;
  100. }
  101. virtual BroadPhaseLayer GetBroadPhaseLayer(ObjectLayer inLayer) const override
  102. {
  103. JPH_ASSERT(inLayer < Layers::NUM_LAYERS);
  104. return mObjectToBroadPhase[inLayer];
  105. }
  106. #if defined(JPH_EXTERNAL_PROFILE) || defined(JPH_PROFILE_ENABLED)
  107. virtual const char * GetBroadPhaseLayerName(BroadPhaseLayer inLayer) const override
  108. {
  109. switch ((BroadPhaseLayer::Type)inLayer)
  110. {
  111. case (BroadPhaseLayer::Type)BroadPhaseLayers::NON_MOVING: return "NON_MOVING";
  112. case (BroadPhaseLayer::Type)BroadPhaseLayers::MOVING: return "MOVING";
  113. default: JPH_ASSERT(false); return "INVALID";
  114. }
  115. }
  116. #endif // JPH_EXTERNAL_PROFILE || JPH_PROFILE_ENABLED
  117. private:
  118. BroadPhaseLayer mObjectToBroadPhase[Layers::NUM_LAYERS];
  119. };
  120. // Function that determines if two broadphase layers can collide
  121. static bool MyBroadPhaseCanCollide(ObjectLayer inLayer1, BroadPhaseLayer inLayer2)
  122. {
  123. switch (inLayer1)
  124. {
  125. case Layers::NON_MOVING:
  126. return inLayer2 == BroadPhaseLayers::MOVING;
  127. case Layers::MOVING:
  128. return true;
  129. default:
  130. JPH_ASSERT(false);
  131. return false;
  132. }
  133. }
  134. // An example contact listener
  135. class MyContactListener : public ContactListener
  136. {
  137. public:
  138. // See: ContactListener
  139. virtual ValidateResult OnContactValidate(const Body &inBody1, const Body &inBody2, const CollideShapeResult &inCollisionResult) override
  140. {
  141. cout << "Contact validate callback" << endl;
  142. // Allows you to ignore a contact before it is created (using layers to not make objects collide is cheaper!)
  143. return ValidateResult::AcceptAllContactsForThisBodyPair;
  144. }
  145. virtual void OnContactAdded(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  146. {
  147. cout << "A contact was added" << endl;
  148. }
  149. virtual void OnContactPersisted(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  150. {
  151. cout << "A contact was persisted" << endl;
  152. }
  153. virtual void OnContactRemoved(const SubShapeIDPair &inSubShapePair) override
  154. {
  155. cout << "A contact was removed" << endl;
  156. }
  157. };
  158. // An example activation listener
  159. class MyBodyActivationListener : public BodyActivationListener
  160. {
  161. public:
  162. virtual void OnBodyActivated(const BodyID &inBodyID, uint64 inBodyUserData) override
  163. {
  164. cout << "A body got activated" << endl;
  165. }
  166. virtual void OnBodyDeactivated(const BodyID &inBodyID, uint64 inBodyUserData) override
  167. {
  168. cout << "A body went to sleep" << endl;
  169. }
  170. };
  171. // Program entry point
  172. int main(int argc, char** argv)
  173. {
  174. // Register allocation hook
  175. RegisterDefaultAllocator();
  176. // Install callbacks
  177. Trace = TraceImpl;
  178. JPH_IF_ENABLE_ASSERTS(AssertFailed = AssertFailedImpl;)
  179. // Create a factory
  180. Factory::sInstance = new Factory();
  181. // Register all Jolt physics types
  182. RegisterTypes();
  183. // We need a temp allocator for temporary allocations during the physics update. We're
  184. // pre-allocating 10 MB to avoid having to do allocations during the physics update.
  185. // B.t.w. 10 MB is way too much for this example but it is a typical value you can use.
  186. // If you don't want to pre-allocate you can also use TempAllocatorMalloc to fall back to
  187. // malloc / free.
  188. TempAllocatorImpl temp_allocator(10 * 1024 * 1024);
  189. // We need a job system that will execute physics jobs on multiple threads. Typically
  190. // you would implement the JobSystem interface yourself and let Jolt Physics run on top
  191. // of your own job scheduler. JobSystemThreadPool is an example implementation.
  192. JobSystemThreadPool job_system(cMaxPhysicsJobs, cMaxPhysicsBarriers, thread::hardware_concurrency() - 1);
  193. // This is the max amount of rigid bodies that you can add to the physics system. If you try to add more you'll get an error.
  194. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  195. const uint cMaxBodies = 1024;
  196. // This determines how many mutexes to allocate to protect rigid bodies from concurrent access. Set it to 0 for the default settings.
  197. const uint cNumBodyMutexes = 0;
  198. // This is the max amount of body pairs that can be queued at any time (the broad phase will detect overlapping
  199. // body pairs based on their bounding boxes and will insert them into a queue for the narrowphase). If you make this buffer
  200. // too small the queue will fill up and the broad phase jobs will start to do narrow phase work. This is slightly less efficient.
  201. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  202. const uint cMaxBodyPairs = 1024;
  203. // This is the maximum size of the contact constraint buffer. If more contacts (collisions between bodies) are detected than this
  204. // number then these contacts will be ignored and bodies will start interpenetrating / fall through the world.
  205. // Note: This value is low because this is a simple test. For a real project use something in the order of 10240.
  206. const uint cMaxContactConstraints = 1024;
  207. // Create mapping table from object layer to broadphase layer
  208. // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
  209. BPLayerInterfaceImpl broad_phase_layer_interface;
  210. // Now we can create the actual physics system.
  211. PhysicsSystem physics_system;
  212. physics_system.Init(cMaxBodies, cNumBodyMutexes, cMaxBodyPairs, cMaxContactConstraints, broad_phase_layer_interface, MyBroadPhaseCanCollide, MyObjectCanCollide);
  213. // A body activation listener gets notified when bodies activate and go to sleep
  214. // Note that this is called from a job so whatever you do here needs to be thread safe.
  215. // Registering one is entirely optional.
  216. MyBodyActivationListener body_activation_listener;
  217. physics_system.SetBodyActivationListener(&body_activation_listener);
  218. // A contact listener gets notified when bodies (are about to) collide, and when they separate again.
  219. // Note that this is called from a job so whatever you do here needs to be thread safe.
  220. // Registering one is entirely optional.
  221. MyContactListener contact_listener;
  222. physics_system.SetContactListener(&contact_listener);
  223. // The main way to interact with the bodies in the physics system is through the body interface. There is a locking and a non-locking
  224. // variant of this. We're going to use the locking version (even though we're not planning to access bodies from multiple threads)
  225. BodyInterface &body_interface = physics_system.GetBodyInterface();
  226. // Next we can create a rigid body to serve as the floor, we make a large box
  227. // Create the settings for the collision volume (the shape).
  228. // Note that for simple shapes (like boxes) you can also directly construct a BoxShape.
  229. BoxShapeSettings floor_shape_settings(Vec3(100.0f, 1.0f, 100.0f));
  230. // Create the shape
  231. ShapeSettings::ShapeResult floor_shape_result = floor_shape_settings.Create();
  232. ShapeRefC floor_shape = floor_shape_result.Get(); // We don't expect an error here, but you can check floor_shape_result for HasError() / GetError()
  233. // Create the settings for the body itself. Note that here you can also set other properties like the restitution / friction.
  234. BodyCreationSettings floor_settings(floor_shape, RVec3(0.0_r, -1.0_r, 0.0_r), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING);
  235. // Create the actual rigid body
  236. Body *floor = body_interface.CreateBody(floor_settings); // Note that if we run out of bodies this can return nullptr
  237. // Add it to the world
  238. body_interface.AddBody(floor->GetID(), EActivation::DontActivate);
  239. // Now create a dynamic body to bounce on the floor
  240. // Note that this uses the shorthand version of creating and adding a body to the world
  241. BodyCreationSettings sphere_settings(new SphereShape(0.5f), RVec3(0.0_r, 2.0_r, 0.0_r), Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING);
  242. BodyID sphere_id = body_interface.CreateAndAddBody(sphere_settings, EActivation::Activate);
  243. // Now you can interact with the dynamic body, in this case we're going to give it a velocity.
  244. // (note that if we had used CreateBody then we could have set the velocity straight on the body before adding it to the physics system)
  245. body_interface.SetLinearVelocity(sphere_id, Vec3(0.0f, -5.0f, 0.0f));
  246. // We simulate the physics world in discrete time steps. 60 Hz is a good rate to update the physics system.
  247. const float cDeltaTime = 1.0f / 60.0f;
  248. // Optional step: Before starting the physics simulation you can optimize the broad phase. This improves collision detection performance (it's pointless here because we only have 2 bodies).
  249. // You should definitely not call this every frame or when e.g. streaming in a new level section as it is an expensive operation.
  250. // Instead insert all new objects in batches instead of 1 at a time to keep the broad phase efficient.
  251. physics_system.OptimizeBroadPhase();
  252. // Now we're ready to simulate the body, keep simulating until it goes to sleep
  253. uint step = 0;
  254. while (body_interface.IsActive(sphere_id))
  255. {
  256. // Next step
  257. ++step;
  258. // Output current position and velocity of the sphere
  259. RVec3 position = body_interface.GetCenterOfMassPosition(sphere_id);
  260. Vec3 velocity = body_interface.GetLinearVelocity(sphere_id);
  261. cout << "Step " << step << ": Position = (" << position.GetX() << ", " << position.GetY() << ", " << position.GetZ() << "), Velocity = (" << velocity.GetX() << ", " << velocity.GetY() << ", " << velocity.GetZ() << ")" << endl;
  262. // If you take larger steps than 1 / 60th of a second you need to do multiple collision steps in order to keep the simulation stable. Do 1 collision step per 1 / 60th of a second (round up).
  263. const int cCollisionSteps = 1;
  264. // If you want more accurate step results you can do multiple sub steps within a collision step. Usually you would set this to 1.
  265. const int cIntegrationSubSteps = 1;
  266. // Step the world
  267. physics_system.Update(cDeltaTime, cCollisionSteps, cIntegrationSubSteps, &temp_allocator, &job_system);
  268. }
  269. // Remove the sphere from the physics system. Note that the sphere itself keeps all of its state and can be re-added at any time.
  270. body_interface.RemoveBody(sphere_id);
  271. // Destroy the sphere. After this the sphere ID is no longer valid.
  272. body_interface.DestroyBody(sphere_id);
  273. // Remove and destroy the floor
  274. body_interface.RemoveBody(floor->GetID());
  275. body_interface.DestroyBody(floor->GetID());
  276. // Destroy the factory
  277. delete Factory::sInstance;
  278. Factory::sInstance = nullptr;
  279. return 0;
  280. }