SliderConstraint.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/SliderConstraint.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. #include <Jolt/ObjectStream/TypeDeclarations.h>
  8. #include <Jolt/Core/StreamIn.h>
  9. #include <Jolt/Core/StreamOut.h>
  10. #ifdef JPH_DEBUG_RENDERER
  11. #include <Jolt/Renderer/DebugRenderer.h>
  12. #endif // JPH_DEBUG_RENDERER
  13. JPH_NAMESPACE_BEGIN
  14. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  15. {
  16. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  17. JPH_ADD_ENUM_ATTRIBUTE(SliderConstraintSettings, mSpace)
  18. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mAutoDetectPoint)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
  21. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
  22. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
  23. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
  24. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
  25. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  26. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  27. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mFrequency)
  28. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mDamping)
  29. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  30. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  31. }
  32. void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
  33. {
  34. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  35. mSliderAxis1 = mSliderAxis2 = inSliderAxis;
  36. mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
  37. }
  38. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  39. {
  40. ConstraintSettings::SaveBinaryState(inStream);
  41. inStream.Write(mSpace);
  42. inStream.Write(mAutoDetectPoint);
  43. inStream.Write(mPoint1);
  44. inStream.Write(mSliderAxis1);
  45. inStream.Write(mNormalAxis1);
  46. inStream.Write(mPoint2);
  47. inStream.Write(mSliderAxis2);
  48. inStream.Write(mNormalAxis2);
  49. inStream.Write(mLimitsMin);
  50. inStream.Write(mLimitsMax);
  51. inStream.Write(mFrequency);
  52. inStream.Write(mDamping);
  53. inStream.Write(mMaxFrictionForce);
  54. mMotorSettings.SaveBinaryState(inStream);
  55. }
  56. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  57. {
  58. ConstraintSettings::RestoreBinaryState(inStream);
  59. inStream.Read(mSpace);
  60. inStream.Read(mAutoDetectPoint);
  61. inStream.Read(mPoint1);
  62. inStream.Read(mSliderAxis1);
  63. inStream.Read(mNormalAxis1);
  64. inStream.Read(mPoint2);
  65. inStream.Read(mSliderAxis2);
  66. inStream.Read(mNormalAxis2);
  67. inStream.Read(mLimitsMin);
  68. inStream.Read(mLimitsMax);
  69. inStream.Read(mFrequency);
  70. inStream.Read(mDamping);
  71. inStream.Read(mMaxFrictionForce);
  72. mMotorSettings.RestoreBinaryState(inStream);
  73. }
  74. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  75. {
  76. return new SliderConstraint(inBody1, inBody2, *this);
  77. }
  78. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  79. TwoBodyConstraint(inBody1, inBody2, inSettings),
  80. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  81. mMotorSettings(inSettings.mMotorSettings)
  82. {
  83. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  84. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXY(inSettings.mSliderAxis1, inSettings.mNormalAxis1, inSettings.mSliderAxis2, inSettings.mNormalAxis2);
  85. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  86. {
  87. RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  88. RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  89. if (inSettings.mAutoDetectPoint)
  90. {
  91. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point
  92. RVec3 anchor;
  93. if (!inBody1.CanBeKinematicOrDynamic())
  94. anchor = inBody2.GetCenterOfMassPosition();
  95. else if (!inBody2.CanBeKinematicOrDynamic())
  96. anchor = inBody1.GetCenterOfMassPosition();
  97. else
  98. {
  99. // Otherwise use weighted anchor point towards the lightest body
  100. Real inv_m1 = Real(inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked());
  101. Real inv_m2 = Real(inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked());
  102. anchor = (inv_m1 * inBody1.GetCenterOfMassPosition() + inv_m2 * inBody2.GetCenterOfMassPosition()) / (inv_m1 + inv_m2);
  103. }
  104. // Store local positions
  105. mLocalSpacePosition1 = Vec3(inv_transform1 * anchor);
  106. mLocalSpacePosition2 = Vec3(inv_transform2 * anchor);
  107. }
  108. else
  109. {
  110. // Store local positions
  111. mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
  112. mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
  113. }
  114. // If all properties were specified in world space, take them to local space now
  115. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(inSettings.mSliderAxis1).Normalized();
  116. mLocalSpaceNormal1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
  117. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  118. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  119. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  120. }
  121. else
  122. {
  123. // Store local positions
  124. mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
  125. mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
  126. // Store local space axis
  127. mLocalSpaceSliderAxis1 = inSettings.mSliderAxis1;
  128. mLocalSpaceNormal1 = inSettings.mNormalAxis1;
  129. }
  130. // Calculate 2nd local space normal
  131. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  132. // Store limits
  133. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mFrequency > 0.0f, "Better use a fixed constraint");
  134. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  135. // Store frequency and damping
  136. SetFrequency(inSettings.mFrequency);
  137. SetDamping(inSettings.mDamping);
  138. }
  139. void SliderConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
  140. {
  141. if (mBody1->GetID() == inBodyID)
  142. mLocalSpacePosition1 -= inDeltaCOM;
  143. else if (mBody2->GetID() == inBodyID)
  144. mLocalSpacePosition2 -= inDeltaCOM;
  145. }
  146. float SliderConstraint::GetCurrentPosition() const
  147. {
  148. // See: CalculateR1R2U and CalculateSlidingAxisAndPosition
  149. Vec3 r1 = mBody1->GetRotation() * mLocalSpacePosition1;
  150. Vec3 r2 = mBody2->GetRotation() * mLocalSpacePosition2;
  151. Vec3 u = Vec3(mBody2->GetCenterOfMassPosition() - mBody1->GetCenterOfMassPosition()) + r2 - r1;
  152. return u.Dot(mBody1->GetRotation() * mLocalSpaceSliderAxis1);
  153. }
  154. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  155. {
  156. JPH_ASSERT(inLimitsMin <= 0.0f);
  157. JPH_ASSERT(inLimitsMax >= 0.0f);
  158. mLimitsMin = inLimitsMin;
  159. mLimitsMax = inLimitsMax;
  160. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  161. }
  162. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  163. {
  164. // Calculate points relative to body
  165. mR1 = inRotation1 * mLocalSpacePosition1;
  166. mR2 = inRotation2 * mLocalSpacePosition2;
  167. // Calculate X2 + R2 - X1 - R1
  168. mU = Vec3(mBody2->GetCenterOfMassPosition() - mBody1->GetCenterOfMassPosition()) + mR2 - mR1;
  169. }
  170. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  171. {
  172. // Calculate world space normals
  173. mN1 = inRotation1 * mLocalSpaceNormal1;
  174. mN2 = inRotation1 * mLocalSpaceNormal2;
  175. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  176. }
  177. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  178. {
  179. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  180. {
  181. // Calculate world space slider axis
  182. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  183. // Calculate slide distance along axis
  184. mD = mU.Dot(mWorldSpaceSliderAxis);
  185. }
  186. }
  187. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime)
  188. {
  189. // Check if distance is within limits
  190. bool below_min = mD <= mLimitsMin;
  191. if (mHasLimits && (below_min || mD >= mLimitsMax))
  192. mPositionLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - (below_min? mLimitsMin : mLimitsMax), mFrequency, mDamping);
  193. else
  194. mPositionLimitsConstraintPart.Deactivate();
  195. }
  196. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  197. {
  198. switch (mMotorState)
  199. {
  200. case EMotorState::Off:
  201. if (mMaxFrictionForce > 0.0f)
  202. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  203. else
  204. mMotorConstraintPart.Deactivate();
  205. break;
  206. case EMotorState::Velocity:
  207. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  208. break;
  209. case EMotorState::Position:
  210. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mFrequency, mMotorSettings.mDamping);
  211. break;
  212. }
  213. }
  214. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  215. {
  216. // Calculate constraint properties that are constant while bodies don't move
  217. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  218. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  219. CalculateR1R2U(rotation1, rotation2);
  220. CalculatePositionConstraintProperties(rotation1, rotation2);
  221. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  222. CalculateSlidingAxisAndPosition(rotation1);
  223. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  224. CalculateMotorConstraintProperties(inDeltaTime);
  225. }
  226. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  227. {
  228. // Warm starting: Apply previous frame impulse
  229. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  230. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  231. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  232. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  233. }
  234. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  235. {
  236. // Solve motor
  237. bool motor = false;
  238. if (mMotorConstraintPart.IsActive())
  239. {
  240. switch (mMotorState)
  241. {
  242. case EMotorState::Off:
  243. {
  244. float max_lambda = mMaxFrictionForce * inDeltaTime;
  245. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  246. break;
  247. }
  248. case EMotorState::Velocity:
  249. case EMotorState::Position:
  250. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  251. break;
  252. }
  253. }
  254. // Solve position constraint along 2 axis
  255. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  256. // Solve rotation constraint
  257. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  258. // Solve limits along slider axis
  259. bool limit = false;
  260. if (mPositionLimitsConstraintPart.IsActive())
  261. {
  262. if (mD <= mLimitsMin)
  263. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, 0, FLT_MAX);
  264. else
  265. {
  266. JPH_ASSERT(mD >= mLimitsMax);
  267. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -FLT_MAX, 0);
  268. }
  269. }
  270. return motor || pos || rot || limit;
  271. }
  272. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  273. {
  274. // Motor operates on velocities only, don't call SolvePositionConstraint
  275. // Solve position constraint along 2 axis
  276. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  277. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  278. CalculateR1R2U(rotation1, rotation2);
  279. CalculatePositionConstraintProperties(rotation1, rotation2);
  280. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  281. // Solve rotation constraint
  282. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  283. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  284. // Solve limits along slider axis
  285. bool limit = false;
  286. if (mHasLimits && mFrequency <= 0.0f)
  287. {
  288. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  289. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  290. CalculateR1R2U(rotation1, rotation2);
  291. CalculateSlidingAxisAndPosition(rotation1);
  292. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  293. if (mPositionLimitsConstraintPart.IsActive())
  294. {
  295. if (mD <= mLimitsMin)
  296. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  297. else
  298. {
  299. JPH_ASSERT(mD >= mLimitsMax);
  300. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  301. }
  302. }
  303. }
  304. return pos || rot || limit;
  305. }
  306. #ifdef JPH_DEBUG_RENDERER
  307. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  308. {
  309. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  310. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  311. // Transform the local positions into world space
  312. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  313. RVec3 position1 = transform1 * mLocalSpacePosition1;
  314. RVec3 position2 = transform2 * mLocalSpacePosition2;
  315. // Draw constraint
  316. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  317. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  318. inRenderer->DrawLine(position1, position2, Color::sGreen);
  319. // Draw motor
  320. switch (mMotorState)
  321. {
  322. case EMotorState::Position:
  323. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  324. break;
  325. case EMotorState::Velocity:
  326. {
  327. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  328. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  329. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  330. break;
  331. }
  332. case EMotorState::Off:
  333. break;
  334. }
  335. }
  336. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  337. {
  338. if (mHasLimits)
  339. {
  340. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  341. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  342. // Transform the local positions into world space
  343. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  344. RVec3 position1 = transform1 * mLocalSpacePosition1;
  345. RVec3 position2 = transform2 * mLocalSpacePosition2;
  346. // Calculate the limits in world space
  347. RVec3 limits_min = position1 + mLimitsMin * slider_axis;
  348. RVec3 limits_max = position1 + mLimitsMax * slider_axis;
  349. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  350. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  351. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  352. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  353. }
  354. }
  355. #endif // JPH_DEBUG_RENDERER
  356. void SliderConstraint::SaveState(StateRecorder &inStream) const
  357. {
  358. TwoBodyConstraint::SaveState(inStream);
  359. mMotorConstraintPart.SaveState(inStream);
  360. mPositionConstraintPart.SaveState(inStream);
  361. mRotationConstraintPart.SaveState(inStream);
  362. mPositionLimitsConstraintPart.SaveState(inStream);
  363. inStream.Write(mMotorState);
  364. inStream.Write(mTargetVelocity);
  365. inStream.Write(mTargetPosition);
  366. }
  367. void SliderConstraint::RestoreState(StateRecorder &inStream)
  368. {
  369. TwoBodyConstraint::RestoreState(inStream);
  370. mMotorConstraintPart.RestoreState(inStream);
  371. mPositionConstraintPart.RestoreState(inStream);
  372. mRotationConstraintPart.RestoreState(inStream);
  373. mPositionLimitsConstraintPart.RestoreState(inStream);
  374. inStream.Read(mMotorState);
  375. inStream.Read(mTargetVelocity);
  376. inStream.Read(mTargetPosition);
  377. }
  378. Ref<ConstraintSettings> SliderConstraint::GetConstraintSettings() const
  379. {
  380. SliderConstraintSettings *settings = new SliderConstraintSettings;
  381. ToConstraintSettings(*settings);
  382. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  383. settings->mPoint1 = RVec3(mLocalSpacePosition1);
  384. settings->mSliderAxis1 = mLocalSpaceSliderAxis1;
  385. settings->mNormalAxis1 = mLocalSpaceNormal1;
  386. settings->mPoint2 = RVec3(mLocalSpacePosition2);
  387. Mat44 inv_initial_rotation = Mat44::sRotation(mInvInitialOrientation);
  388. settings->mSliderAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceSliderAxis1);
  389. settings->mNormalAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceNormal1);
  390. settings->mLimitsMin = mLimitsMin;
  391. settings->mLimitsMax = mLimitsMax;
  392. settings->mFrequency = mFrequency;
  393. settings->mDamping = mDamping;
  394. settings->mMaxFrictionForce = mMaxFrictionForce;
  395. settings->mMotorSettings = mMotorSettings;
  396. return settings;
  397. }
  398. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  399. {
  400. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  401. }
  402. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  403. {
  404. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  405. mat.SetTranslation(mLocalSpacePosition2);
  406. return mat;
  407. }
  408. JPH_NAMESPACE_END