PhysicsSystem.cpp 93 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt/Jolt.h>
  4. #include <Jolt/Physics/PhysicsSystem.h>
  5. #include <Jolt/Physics/PhysicsSettings.h>
  6. #include <Jolt/Physics/PhysicsUpdateContext.h>
  7. #include <Jolt/Physics/PhysicsStepListener.h>
  8. #include <Jolt/Physics/Collision/BroadPhase/BroadPhaseBruteForce.h>
  9. #include <Jolt/Physics/Collision/BroadPhase/BroadPhaseQuadTree.h>
  10. #include <Jolt/Physics/Collision/CollisionDispatch.h>
  11. #include <Jolt/Physics/Collision/AABoxCast.h>
  12. #include <Jolt/Physics/Collision/ShapeCast.h>
  13. #include <Jolt/Physics/Collision/CollideShape.h>
  14. #include <Jolt/Physics/Collision/CollisionCollectorImpl.h>
  15. #include <Jolt/Physics/Collision/CastResult.h>
  16. #include <Jolt/Physics/Collision/CollideConvexVsTriangles.h>
  17. #include <Jolt/Physics/Collision/ManifoldBetweenTwoFaces.h>
  18. #include <Jolt/Physics/Collision/Shape/ConvexShape.h>
  19. #include <Jolt/Physics/Constraints/ConstraintPart/AxisConstraintPart.h>
  20. #include <Jolt/Geometry/RayAABox.h>
  21. #include <Jolt/Core/JobSystem.h>
  22. #include <Jolt/Core/TempAllocator.h>
  23. #ifdef JPH_DEBUG_RENDERER
  24. #include <Jolt/Renderer/DebugRenderer.h>
  25. #endif // JPH_DEBUG_RENDERER
  26. JPH_NAMESPACE_BEGIN
  27. #ifdef JPH_DEBUG_RENDERER
  28. bool PhysicsSystem::sDrawMotionQualityLinearCast = false;
  29. #endif // JPH_DEBUG_RENDERER
  30. //#define BROAD_PHASE BroadPhaseBruteForce
  31. #define BROAD_PHASE BroadPhaseQuadTree
  32. static const Color cColorUpdateBroadPhaseFinalize = Color::sGetDistinctColor(1);
  33. static const Color cColorUpdateBroadPhasePrepare = Color::sGetDistinctColor(2);
  34. static const Color cColorFindCollisions = Color::sGetDistinctColor(3);
  35. static const Color cColorApplyGravity = Color::sGetDistinctColor(4);
  36. static const Color cColorSetupVelocityConstraints = Color::sGetDistinctColor(5);
  37. static const Color cColorBuildIslandsFromConstraints = Color::sGetDistinctColor(6);
  38. static const Color cColorDetermineActiveConstraints = Color::sGetDistinctColor(7);
  39. static const Color cColorFinalizeIslands = Color::sGetDistinctColor(8);
  40. static const Color cColorContactRemovedCallbacks = Color::sGetDistinctColor(9);
  41. static const Color cColorBodySetIslandIndex = Color::sGetDistinctColor(10);
  42. static const Color cColorStartNextStep = Color::sGetDistinctColor(11);
  43. static const Color cColorSolveVelocityConstraints = Color::sGetDistinctColor(12);
  44. static const Color cColorPreIntegrateVelocity = Color::sGetDistinctColor(13);
  45. static const Color cColorIntegrateVelocity = Color::sGetDistinctColor(14);
  46. static const Color cColorPostIntegrateVelocity = Color::sGetDistinctColor(15);
  47. static const Color cColorResolveCCDContacts = Color::sGetDistinctColor(16);
  48. static const Color cColorSolvePositionConstraints = Color::sGetDistinctColor(17);
  49. static const Color cColorStartNextSubStep = Color::sGetDistinctColor(18);
  50. static const Color cColorFindCCDContacts = Color::sGetDistinctColor(19);
  51. static const Color cColorStepListeners = Color::sGetDistinctColor(20);
  52. PhysicsSystem::~PhysicsSystem()
  53. {
  54. // Remove broadphase
  55. delete mBroadPhase;
  56. }
  57. void PhysicsSystem::Init(uint inMaxBodies, uint inNumBodyMutexes, uint inMaxBodyPairs, uint inMaxContactConstraints, const BroadPhaseLayerInterface &inBroadPhaseLayerInterface, ObjectVsBroadPhaseLayerFilter inObjectVsBroadPhaseLayerFilter, ObjectLayerPairFilter inObjectLayerPairFilter)
  58. {
  59. mObjectVsBroadPhaseLayerFilter = inObjectVsBroadPhaseLayerFilter;
  60. mObjectLayerPairFilter = inObjectLayerPairFilter;
  61. // Initialize body manager
  62. mBodyManager.Init(inMaxBodies, inNumBodyMutexes, inBroadPhaseLayerInterface);
  63. // Create broadphase
  64. mBroadPhase = new BROAD_PHASE();
  65. mBroadPhase->Init(&mBodyManager, inBroadPhaseLayerInterface);
  66. // Init contact constraint manager
  67. mContactManager.Init(inMaxBodyPairs, inMaxContactConstraints);
  68. // Init islands builder
  69. mIslandBuilder.Init(inMaxBodies);
  70. // Initialize body interface
  71. mBodyInterfaceLocking.Init(mBodyLockInterfaceLocking, mBodyManager, *mBroadPhase);
  72. mBodyInterfaceNoLock.Init(mBodyLockInterfaceNoLock, mBodyManager, *mBroadPhase);
  73. // Initialize narrow phase query
  74. mNarrowPhaseQueryLocking.Init(mBodyLockInterfaceLocking, *mBroadPhase);
  75. mNarrowPhaseQueryNoLock.Init(mBodyLockInterfaceNoLock, *mBroadPhase);
  76. }
  77. void PhysicsSystem::OptimizeBroadPhase()
  78. {
  79. mBroadPhase->Optimize();
  80. }
  81. void PhysicsSystem::AddStepListener(PhysicsStepListener *inListener)
  82. {
  83. lock_guard lock(mStepListenersMutex);
  84. JPH_ASSERT(find(mStepListeners.begin(), mStepListeners.end(), inListener) == mStepListeners.end());
  85. mStepListeners.push_back(inListener);
  86. }
  87. void PhysicsSystem::RemoveStepListener(PhysicsStepListener *inListener)
  88. {
  89. lock_guard lock(mStepListenersMutex);
  90. StepListeners::iterator i = find(mStepListeners.begin(), mStepListeners.end(), inListener);
  91. JPH_ASSERT(i != mStepListeners.end());
  92. mStepListeners.erase(i);
  93. }
  94. void PhysicsSystem::Update(float inDeltaTime, int inCollisionSteps, int inIntegrationSubSteps, TempAllocator *inTempAllocator, JobSystem *inJobSystem)
  95. {
  96. JPH_PROFILE_FUNCTION();
  97. JPH_ASSERT(inDeltaTime >= 0.0f);
  98. JPH_ASSERT(inIntegrationSubSteps <= PhysicsUpdateContext::cMaxSubSteps);
  99. // Sync point for the broadphase. This will allow it to do clean up operations without having any mutexes locked yet.
  100. mBroadPhase->FrameSync();
  101. // If there are no active bodies or there's no time delta
  102. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  103. if (num_active_bodies == 0 || inDeltaTime <= 0.0f)
  104. {
  105. mBodyManager.LockAllBodies();
  106. // Update broadphase
  107. mBroadPhase->LockModifications();
  108. BroadPhase::UpdateState update_state = mBroadPhase->UpdatePrepare();
  109. mBroadPhase->UpdateFinalize(update_state);
  110. mBroadPhase->UnlockModifications();
  111. // Call contact removal callbacks from contacts that existed in the previous update
  112. mContactManager.ContactPointRemovedCallbacks();
  113. mContactManager.FinalizeContactCache(0, 0);
  114. mBodyManager.UnlockAllBodies();
  115. return;
  116. }
  117. // Calculate ratio between current and previous frame delta time to scale initial constraint forces
  118. float sub_step_delta_time = inDeltaTime / (inCollisionSteps * inIntegrationSubSteps);
  119. float warm_start_impulse_ratio = mPhysicsSettings.mConstraintWarmStart && mPreviousSubStepDeltaTime > 0.0f? sub_step_delta_time / mPreviousSubStepDeltaTime : 0.0f;
  120. mPreviousSubStepDeltaTime = sub_step_delta_time;
  121. // Create the context used for passing information between jobs
  122. PhysicsUpdateContext context(*inTempAllocator);
  123. context.mPhysicsSystem = this;
  124. context.mJobSystem = inJobSystem;
  125. context.mBarrier = inJobSystem->CreateBarrier();
  126. context.mIslandBuilder = &mIslandBuilder;
  127. context.mStepDeltaTime = inDeltaTime / inCollisionSteps;
  128. context.mSubStepDeltaTime = sub_step_delta_time;
  129. context.mWarmStartImpulseRatio = warm_start_impulse_ratio;
  130. context.mSteps.resize(inCollisionSteps);
  131. // Allocate space for body pairs
  132. JPH_ASSERT(context.mBodyPairs == nullptr);
  133. context.mBodyPairs = static_cast<BodyPair *>(inTempAllocator->Allocate(sizeof(BodyPair) * mPhysicsSettings.mMaxInFlightBodyPairs));
  134. // Lock all bodies for write so that we can freely touch them
  135. mStepListenersMutex.lock();
  136. mBodyManager.LockAllBodies();
  137. mBroadPhase->LockModifications();
  138. // Get max number of concurrent jobs
  139. int max_concurrency = context.GetMaxConcurrency();
  140. // Calculate how many step listener jobs we spawn
  141. int num_step_listener_jobs = mStepListeners.empty()? 0 : max(1, min((int)mStepListeners.size() / mPhysicsSettings.mStepListenersBatchSize / mPhysicsSettings.mStepListenerBatchesPerJob, max_concurrency));
  142. // Number of gravity jobs depends on the amount of active bodies.
  143. // Launch max 1 job per batch of active bodies
  144. // Leave 1 thread for update broadphase prepare and 1 for determine active constraints
  145. int num_apply_gravity_jobs = max(1, min(((int)num_active_bodies + cApplyGravityBatchSize - 1) / cApplyGravityBatchSize, max_concurrency - 2));
  146. // Number of determine active constraints jobs to run depends on number of constraints.
  147. // Leave 1 thread for update broadphase prepare and 1 for apply gravity
  148. int num_determine_active_constraints_jobs = max(1, min(((int)mConstraintManager.GetNumConstraints() + cDetermineActiveConstraintsBatchSize - 1) / cDetermineActiveConstraintsBatchSize, max_concurrency - 2));
  149. // Number of find collisions jobs to run depends on number of active bodies.
  150. int num_find_collisions_jobs = max(1, min(((int)num_active_bodies + cActiveBodiesBatchSize - 1) / cActiveBodiesBatchSize, max_concurrency));
  151. // Number of integrate velocity jobs depends on number of active bodies.
  152. int num_integrate_velocity_jobs = max(1, min(((int)num_active_bodies + cIntegrateVelocityBatchSize - 1) / cIntegrateVelocityBatchSize, max_concurrency));
  153. {
  154. JPH_PROFILE("Build Jobs");
  155. // Iterate over collision steps
  156. for (int step_idx = 0; step_idx < inCollisionSteps; ++step_idx)
  157. {
  158. bool is_first_step = step_idx == 0;
  159. bool is_last_step = step_idx == inCollisionSteps - 1;
  160. PhysicsUpdateContext::Step &step = context.mSteps[step_idx];
  161. step.mContext = &context;
  162. step.mSubSteps.resize(inIntegrationSubSteps);
  163. // Create job to do broadphase finalization
  164. // This job must finish before integrating velocities. Until then the positions will not be updated neither will bodies be added / removed.
  165. step.mUpdateBroadphaseFinalize = inJobSystem->CreateJob("UpdateBroadPhaseFinalize", cColorUpdateBroadPhaseFinalize, [&context, &step]()
  166. {
  167. // Validate that all find collision jobs have stopped
  168. JPH_ASSERT(step.mActiveFindCollisionJobs == 0);
  169. // Finalize the broadphase update
  170. context.mPhysicsSystem->mBroadPhase->UpdateFinalize(step.mBroadPhaseUpdateState);
  171. // Signal that it is done
  172. step.mSubSteps[0].mPreIntegrateVelocity.RemoveDependency();
  173. }, num_find_collisions_jobs + 2); // depends on: find collisions, broadphase prepare update, finish building jobs
  174. // The immediate jobs below are only immediate for the first step, the all finished job will kick them for the next step
  175. int previous_step_dependency_count = is_first_step? 0 : 1;
  176. // Start job immediately: Start the prepare broadphase
  177. // Must be done under body lock protection since the order is body locks then broadphase mutex
  178. // If this is turned around the RemoveBody call will hang since it locks in that order
  179. step.mBroadPhasePrepare = inJobSystem->CreateJob("UpdateBroadPhasePrepare", cColorUpdateBroadPhasePrepare, [&context, &step]()
  180. {
  181. // Prepare the broadphase update
  182. step.mBroadPhaseUpdateState = context.mPhysicsSystem->mBroadPhase->UpdatePrepare();
  183. // Now the finalize can run (if other dependencies are met too)
  184. step.mUpdateBroadphaseFinalize.RemoveDependency();
  185. }, previous_step_dependency_count);
  186. // This job will find all collisions
  187. step.mBodyPairQueues.resize(max_concurrency);
  188. step.mMaxBodyPairsPerQueue = mPhysicsSettings.mMaxInFlightBodyPairs / max_concurrency;
  189. step.mActiveFindCollisionJobs = ~PhysicsUpdateContext::JobMask(0) >> (sizeof(PhysicsUpdateContext::JobMask) * 8 - num_find_collisions_jobs);
  190. step.mFindCollisions.resize(num_find_collisions_jobs);
  191. for (int i = 0; i < num_find_collisions_jobs; ++i)
  192. {
  193. step.mFindCollisions[i] = inJobSystem->CreateJob("FindCollisions", cColorFindCollisions, [&step, i]()
  194. {
  195. step.mContext->mPhysicsSystem->JobFindCollisions(&step, i);
  196. }, num_apply_gravity_jobs + num_determine_active_constraints_jobs + 1); // depends on: apply gravity, determine active constraints, finish building jobs
  197. }
  198. if (is_first_step)
  199. {
  200. #ifdef JPH_ENABLE_ASSERTS
  201. // Don't allow write operations to the active bodies list
  202. mBodyManager.SetActiveBodiesLocked(true);
  203. #endif
  204. // Store the number of active bodies at the start of the step
  205. step.mNumActiveBodiesAtStepStart = mBodyManager.GetNumActiveBodies();
  206. // Lock all constraints
  207. mConstraintManager.LockAllConstraints();
  208. // Allocate memory for storing the active constraints
  209. JPH_ASSERT(context.mActiveConstraints == nullptr);
  210. context.mActiveConstraints = static_cast<Constraint **>(inTempAllocator->Allocate(mConstraintManager.GetNumConstraints() * sizeof(Constraint *)));
  211. // Prepare contact buffer
  212. mContactManager.PrepareConstraintBuffer(&context);
  213. // Setup island builder
  214. mIslandBuilder.PrepareContactConstraints(mContactManager.GetMaxConstraints(), context.mTempAllocator);
  215. }
  216. // This job applies gravity to all active bodies
  217. step.mApplyGravity.resize(num_apply_gravity_jobs);
  218. for (int i = 0; i < num_apply_gravity_jobs; ++i)
  219. step.mApplyGravity[i] = inJobSystem->CreateJob("ApplyGravity", cColorApplyGravity, [&context, &step]()
  220. {
  221. context.mPhysicsSystem->JobApplyGravity(&context, &step);
  222. JobHandle::sRemoveDependencies(step.mFindCollisions);
  223. }, num_step_listener_jobs > 0? num_step_listener_jobs : previous_step_dependency_count); // depends on: step listeners (or previous step if no step listeners)
  224. // This job will setup velocity constraints for non-collision constraints
  225. step.mSetupVelocityConstraints = inJobSystem->CreateJob("SetupVelocityConstraints", cColorSetupVelocityConstraints, [&context, &step]()
  226. {
  227. context.mPhysicsSystem->JobSetupVelocityConstraints(context.mSubStepDeltaTime, &step);
  228. JobHandle::sRemoveDependencies(step.mSubSteps[0].mSolveVelocityConstraints);
  229. }, num_determine_active_constraints_jobs + 1); // depends on: determine active constraints, finish building jobs
  230. // This job will build islands from constraints
  231. step.mBuildIslandsFromConstraints = inJobSystem->CreateJob("BuildIslandsFromConstraints", cColorBuildIslandsFromConstraints, [&context, &step]()
  232. {
  233. context.mPhysicsSystem->JobBuildIslandsFromConstraints(&context, &step);
  234. step.mFinalizeIslands.RemoveDependency();
  235. }, num_determine_active_constraints_jobs + 1); // depends on: determine active constraints, finish building jobs
  236. // This job determines active constraints
  237. step.mDetermineActiveConstraints.resize(num_determine_active_constraints_jobs);
  238. for (int i = 0; i < num_determine_active_constraints_jobs; ++i)
  239. step.mDetermineActiveConstraints[i] = inJobSystem->CreateJob("DetermineActiveConstraints", cColorDetermineActiveConstraints, [&context, &step]()
  240. {
  241. context.mPhysicsSystem->JobDetermineActiveConstraints(&step);
  242. step.mSetupVelocityConstraints.RemoveDependency();
  243. step.mBuildIslandsFromConstraints.RemoveDependency();
  244. // Kick find collisions last as they will use up all CPU cores leaving no space for the previous 2 jobs
  245. JobHandle::sRemoveDependencies(step.mFindCollisions);
  246. }, num_step_listener_jobs > 0? num_step_listener_jobs : previous_step_dependency_count); // depends on: step listeners (or previous step if no step listeners)
  247. // This job calls the step listeners
  248. step.mStepListeners.resize(num_step_listener_jobs);
  249. for (int i = 0; i < num_step_listener_jobs; ++i)
  250. step.mStepListeners[i] = inJobSystem->CreateJob("StepListeners", cColorStepListeners, [&context, &step]()
  251. {
  252. // Call the step listeners
  253. context.mPhysicsSystem->JobStepListeners(&step);
  254. // Kick apply gravity and determine active constraint jobs
  255. JobHandle::sRemoveDependencies(step.mApplyGravity);
  256. JobHandle::sRemoveDependencies(step.mDetermineActiveConstraints);
  257. }, previous_step_dependency_count);
  258. // Unblock the previous step
  259. if (!is_first_step)
  260. context.mSteps[step_idx - 1].mStartNextStep.RemoveDependency();
  261. // This job will finalize the simulation islands
  262. step.mFinalizeIslands = inJobSystem->CreateJob("FinalizeIslands", cColorFinalizeIslands, [&context, &step]()
  263. {
  264. // Validate that all find collision jobs have stopped
  265. JPH_ASSERT(step.mActiveFindCollisionJobs == 0);
  266. context.mPhysicsSystem->JobFinalizeIslands(&context);
  267. JobHandle::sRemoveDependencies(step.mSubSteps[0].mSolveVelocityConstraints);
  268. step.mBodySetIslandIndex.RemoveDependency();
  269. }, num_find_collisions_jobs + 2); // depends on: find collisions, build islands from constraints, finish building jobs
  270. // Unblock previous job
  271. // Note: technically we could release find collisions here but we don't want to because that could make them run before 'setup velocity constraints' which means that job won't have a thread left
  272. step.mBuildIslandsFromConstraints.RemoveDependency();
  273. // This job will call the contact removed callbacks
  274. step.mContactRemovedCallbacks = inJobSystem->CreateJob("ContactRemovedCallbacks", cColorContactRemovedCallbacks, [&context, &step]()
  275. {
  276. context.mPhysicsSystem->JobContactRemovedCallbacks(&step);
  277. if (step.mStartNextStep.IsValid())
  278. step.mStartNextStep.RemoveDependency();
  279. }, 1); // depends on the find ccd contacts of the last sub step
  280. // This job will set the island index on each body (only used for debug drawing purposes)
  281. // It will also delete any bodies that have been destroyed in the last frame
  282. step.mBodySetIslandIndex = inJobSystem->CreateJob("BodySetIslandIndex", cColorBodySetIslandIndex, [&context, &step]()
  283. {
  284. context.mPhysicsSystem->JobBodySetIslandIndex();
  285. if (step.mStartNextStep.IsValid())
  286. step.mStartNextStep.RemoveDependency();
  287. }, 1); // depends on: finalize islands
  288. // Job to start the next collision step
  289. if (!is_last_step)
  290. {
  291. PhysicsUpdateContext::Step *next_step = &context.mSteps[step_idx + 1];
  292. step.mStartNextStep = inJobSystem->CreateJob("StartNextStep", cColorStartNextStep, [this, next_step]()
  293. {
  294. #ifdef _DEBUG
  295. // Validate that the cached bounds are correct
  296. mBodyManager.ValidateActiveBodyBounds();
  297. #endif // _DEBUG
  298. // Store the number of active bodies at the start of the step
  299. next_step->mNumActiveBodiesAtStepStart = mBodyManager.GetNumActiveBodies();
  300. // Clear the island builder
  301. TempAllocator *temp_allocator = next_step->mContext->mTempAllocator;
  302. mIslandBuilder.ResetIslands(temp_allocator);
  303. // Setup island builder
  304. mIslandBuilder.PrepareContactConstraints(mContactManager.GetMaxConstraints(), temp_allocator);
  305. // Restart the contact manager
  306. mContactManager.RecycleConstraintBuffer();
  307. // Kick the jobs of the next step (in the same order as the first step)
  308. next_step->mBroadPhasePrepare.RemoveDependency();
  309. if (next_step->mStepListeners.empty())
  310. {
  311. // Kick the gravity and active constraints jobs immediately
  312. JobHandle::sRemoveDependencies(next_step->mApplyGravity);
  313. JobHandle::sRemoveDependencies(next_step->mDetermineActiveConstraints);
  314. }
  315. else
  316. {
  317. // Kick the step listeners job first
  318. JobHandle::sRemoveDependencies(next_step->mStepListeners);
  319. }
  320. }, max_concurrency + 3); // depends on: solve position constraints of the last step, body set island index, contact removed callbacks, finish building the previous step
  321. }
  322. // Create solve jobs for each of the integration sub steps
  323. for (int sub_step_idx = 0; sub_step_idx < inIntegrationSubSteps; ++sub_step_idx)
  324. {
  325. bool is_first_sub_step = sub_step_idx == 0;
  326. bool is_last_sub_step = sub_step_idx == inIntegrationSubSteps - 1;
  327. PhysicsUpdateContext::SubStep &sub_step = step.mSubSteps[sub_step_idx];
  328. sub_step.mStep = &step;
  329. sub_step.mIsFirst = is_first_sub_step;
  330. sub_step.mIsLast = is_last_sub_step;
  331. sub_step.mIsLastOfAll = is_last_step && is_last_sub_step;
  332. // This job will solve the velocity constraints
  333. int num_dependencies_solve_velocity_constraints = is_first_sub_step? 3 : 2; // in first sub step depends on: finalize islands, setup velocity constraints, in later sub steps depends on: previous sub step finished. For both: finish building jobs.
  334. sub_step.mSolveVelocityConstraints.resize(max_concurrency);
  335. for (int i = 0; i < max_concurrency; ++i)
  336. sub_step.mSolveVelocityConstraints[i] = inJobSystem->CreateJob("SolveVelocityConstraints", cColorSolveVelocityConstraints, [&context, &sub_step]()
  337. {
  338. context.mPhysicsSystem->JobSolveVelocityConstraints(&context, &sub_step);
  339. sub_step.mPreIntegrateVelocity.RemoveDependency();
  340. }, num_dependencies_solve_velocity_constraints);
  341. // Unblock previous jobs
  342. if (is_first_sub_step)
  343. {
  344. // Kick find collisions after setup velocity constraints because the former job will use up all CPU cores
  345. step.mSetupVelocityConstraints.RemoveDependency();
  346. JobHandle::sRemoveDependencies(step.mFindCollisions);
  347. // Finalize islands is a dependency on find collisions so it can go last
  348. step.mFinalizeIslands.RemoveDependency();
  349. }
  350. else
  351. {
  352. step.mSubSteps[sub_step_idx - 1].mStartNextSubStep.RemoveDependency();
  353. }
  354. // This job will prepare the position update of all active bodies
  355. int num_dependencies_integrate_velocity = is_first_sub_step? 2 + max_concurrency : 1 + max_concurrency; // depends on: broadphase update finalize in first step, solve velocity constraints in all steps. For both: finish building jobs.
  356. sub_step.mPreIntegrateVelocity = inJobSystem->CreateJob("PreIntegrateVelocity", cColorPreIntegrateVelocity, [&context, &sub_step]()
  357. {
  358. context.mPhysicsSystem->JobPreIntegrateVelocity(&context, &sub_step);
  359. JobHandle::sRemoveDependencies(sub_step.mIntegrateVelocity);
  360. }, num_dependencies_integrate_velocity);
  361. // Unblock previous jobs
  362. if (is_first_sub_step)
  363. step.mUpdateBroadphaseFinalize.RemoveDependency();
  364. JobHandle::sRemoveDependencies(sub_step.mSolveVelocityConstraints);
  365. // This job will update the positions of all active bodies
  366. sub_step.mIntegrateVelocity.resize(num_integrate_velocity_jobs);
  367. for (int i = 0; i < num_integrate_velocity_jobs; ++i)
  368. sub_step.mIntegrateVelocity[i] = inJobSystem->CreateJob("IntegrateVelocity", cColorIntegrateVelocity, [&context, &sub_step]()
  369. {
  370. context.mPhysicsSystem->JobIntegrateVelocity(&context, &sub_step);
  371. sub_step.mPostIntegrateVelocity.RemoveDependency();
  372. }, 2); // depends on: pre integrate velocity, finish building jobs.
  373. // Unblock previous job
  374. sub_step.mPreIntegrateVelocity.RemoveDependency();
  375. // This job will finish the position update of all active bodies
  376. sub_step.mPostIntegrateVelocity = inJobSystem->CreateJob("PostIntegrateVelocity", cColorPostIntegrateVelocity, [&context, &sub_step]()
  377. {
  378. context.mPhysicsSystem->JobPostIntegrateVelocity(&context, &sub_step);
  379. sub_step.mResolveCCDContacts.RemoveDependency();
  380. }, num_integrate_velocity_jobs + 1); // depends on: integrate velocity, finish building jobs
  381. // Unblock previous jobs
  382. JobHandle::sRemoveDependencies(sub_step.mIntegrateVelocity);
  383. // This job will update the positions and velocities for all bodies that need continuous collision detection
  384. sub_step.mResolveCCDContacts = inJobSystem->CreateJob("ResolveCCDContacts", cColorResolveCCDContacts, [&context, &sub_step]()
  385. {
  386. context.mPhysicsSystem->JobResolveCCDContacts(&context, &sub_step);
  387. JobHandle::sRemoveDependencies(sub_step.mSolvePositionConstraints);
  388. }, 2); // depends on: integrate velocities, detect ccd contacts (added dynamically), finish building jobs.
  389. // Unblock previous job
  390. sub_step.mPostIntegrateVelocity.RemoveDependency();
  391. // Fixes up drift in positions and updates the broadphase with new body positions
  392. sub_step.mSolvePositionConstraints.resize(max_concurrency);
  393. for (int i = 0; i < max_concurrency; ++i)
  394. sub_step.mSolvePositionConstraints[i] = inJobSystem->CreateJob("SolvePositionConstraints", cColorSolvePositionConstraints, [&context, &sub_step]()
  395. {
  396. context.mPhysicsSystem->JobSolvePositionConstraints(&context, &sub_step);
  397. // Kick the next sub step
  398. if (sub_step.mStartNextSubStep.IsValid())
  399. sub_step.mStartNextSubStep.RemoveDependency();
  400. }, 2); // depends on: resolve ccd contacts, finish building jobs.
  401. // Unblock previous job.
  402. sub_step.mResolveCCDContacts.RemoveDependency();
  403. // This job starts the next sub step
  404. if (!is_last_sub_step)
  405. {
  406. PhysicsUpdateContext::SubStep &next_sub_step = step.mSubSteps[sub_step_idx + 1];
  407. sub_step.mStartNextSubStep = inJobSystem->CreateJob("StartNextSubStep", cColorStartNextSubStep, [&next_sub_step]()
  408. {
  409. // Kick velocity constraint solving for the next sub step
  410. JobHandle::sRemoveDependencies(next_sub_step.mSolveVelocityConstraints);
  411. }, max_concurrency + 1); // depends on: solve position constraints, finish building jobs.
  412. }
  413. else
  414. sub_step.mStartNextSubStep = step.mStartNextStep;
  415. // Unblock previous jobs
  416. JobHandle::sRemoveDependencies(sub_step.mSolvePositionConstraints);
  417. }
  418. }
  419. }
  420. // Build the list of jobs to wait for
  421. JobSystem::Barrier *barrier = context.mBarrier;
  422. {
  423. JPH_PROFILE("Build job barrier");
  424. StaticArray<JobHandle, cMaxPhysicsJobs> handles;
  425. for (const PhysicsUpdateContext::Step &step : context.mSteps)
  426. {
  427. if (step.mBroadPhasePrepare.IsValid())
  428. handles.push_back(step.mBroadPhasePrepare);
  429. for (const JobHandle &h : step.mStepListeners)
  430. handles.push_back(h);
  431. for (const JobHandle &h : step.mDetermineActiveConstraints)
  432. handles.push_back(h);
  433. for (const JobHandle &h : step.mApplyGravity)
  434. handles.push_back(h);
  435. for (const JobHandle &h : step.mFindCollisions)
  436. handles.push_back(h);
  437. if (step.mUpdateBroadphaseFinalize.IsValid())
  438. handles.push_back(step.mUpdateBroadphaseFinalize);
  439. handles.push_back(step.mSetupVelocityConstraints);
  440. handles.push_back(step.mBuildIslandsFromConstraints);
  441. handles.push_back(step.mFinalizeIslands);
  442. handles.push_back(step.mBodySetIslandIndex);
  443. for (const PhysicsUpdateContext::SubStep &sub_step : step.mSubSteps)
  444. {
  445. for (const JobHandle &h : sub_step.mSolveVelocityConstraints)
  446. handles.push_back(h);
  447. handles.push_back(sub_step.mPreIntegrateVelocity);
  448. for (const JobHandle &h : sub_step.mIntegrateVelocity)
  449. handles.push_back(h);
  450. handles.push_back(sub_step.mPostIntegrateVelocity);
  451. handles.push_back(sub_step.mResolveCCDContacts);
  452. for (const JobHandle &h : sub_step.mSolvePositionConstraints)
  453. handles.push_back(h);
  454. if (sub_step.mStartNextSubStep.IsValid())
  455. handles.push_back(sub_step.mStartNextSubStep);
  456. }
  457. handles.push_back(step.mContactRemovedCallbacks);
  458. }
  459. barrier->AddJobs(handles.data(), handles.size());
  460. }
  461. // Wait until all jobs finish
  462. // Note we don't just wait for the last job. If we would and another job
  463. // would be scheduled in between there is the possibility of a deadlock.
  464. // The other job could try to e.g. add/remove a body which would try to
  465. // lock a body mutex while this thread has already locked the mutex
  466. inJobSystem->WaitForJobs(barrier);
  467. // We're done with the barrier for this update
  468. inJobSystem->DestroyBarrier(barrier);
  469. #ifdef _DEBUG
  470. // Validate that the cached bounds are correct
  471. mBodyManager.ValidateActiveBodyBounds();
  472. #endif // _DEBUG
  473. // Clear the island builder
  474. mIslandBuilder.ResetIslands(inTempAllocator);
  475. // Clear the contact manager
  476. mContactManager.FinishConstraintBuffer();
  477. // Free active constraints
  478. inTempAllocator->Free(context.mActiveConstraints, mConstraintManager.GetNumConstraints() * sizeof(Constraint *));
  479. context.mActiveConstraints = nullptr;
  480. // Free body pairs
  481. inTempAllocator->Free(context.mBodyPairs, sizeof(BodyPair) * mPhysicsSettings.mMaxInFlightBodyPairs);
  482. context.mBodyPairs = nullptr;
  483. // Unlock the broadphase
  484. mBroadPhase->UnlockModifications();
  485. // Unlock all constraints
  486. mConstraintManager.UnlockAllConstraints();
  487. #ifdef JPH_ENABLE_ASSERTS
  488. // Allow write operations to the active bodies list
  489. mBodyManager.SetActiveBodiesLocked(false);
  490. #endif
  491. // Unlock all bodies
  492. mBodyManager.UnlockAllBodies();
  493. // Unlock step listeners
  494. mStepListenersMutex.unlock();
  495. }
  496. void PhysicsSystem::JobStepListeners(PhysicsUpdateContext::Step *ioStep)
  497. {
  498. #ifdef JPH_ENABLE_ASSERTS
  499. // Read positions (broadphase updates concurrently so we can't write), read/write velocities
  500. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  501. // Can activate bodies only (we cache the amount of active bodies at the beginning of the step in mNumActiveBodiesAtStepStart so we cannot deactivate here)
  502. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  503. #endif
  504. float step_time = ioStep->mContext->mStepDeltaTime;
  505. uint32 batch_size = mPhysicsSettings.mStepListenersBatchSize;
  506. for (;;)
  507. {
  508. // Get the start of a new batch
  509. uint32 batch = ioStep->mStepListenerReadIdx.fetch_add(batch_size);
  510. if (batch >= mStepListeners.size())
  511. break;
  512. // Call the listeners
  513. for (uint32 i = batch, i_end = min((uint32)mStepListeners.size(), batch + batch_size); i < i_end; ++i)
  514. mStepListeners[i]->OnStep(step_time, *this);
  515. }
  516. }
  517. void PhysicsSystem::JobDetermineActiveConstraints(PhysicsUpdateContext::Step *ioStep) const
  518. {
  519. #ifdef JPH_ENABLE_ASSERTS
  520. // No body access
  521. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  522. #endif
  523. uint32 num_constraints = mConstraintManager.GetNumConstraints();
  524. uint32 num_active_constraints;
  525. Constraint **active_constraints = (Constraint **)JPH_STACK_ALLOC(cDetermineActiveConstraintsBatchSize * sizeof(Constraint *));
  526. for (;;)
  527. {
  528. // Atomically fetch a batch of constraints
  529. uint32 constraint_idx = ioStep->mConstraintReadIdx.fetch_add(cDetermineActiveConstraintsBatchSize);
  530. if (constraint_idx >= num_constraints)
  531. break;
  532. // Calculate the end of the batch
  533. uint32 constraint_idx_end = min(num_constraints, constraint_idx + cDetermineActiveConstraintsBatchSize);
  534. // Store the active constraints at the start of the step (bodies get activated during the step which in turn may activate constraints leading to an inconsistent shapshot)
  535. mConstraintManager.GetActiveConstraints(constraint_idx, constraint_idx_end, active_constraints, num_active_constraints);
  536. // Copy the block of active constraints to the global list of active constraints
  537. if (num_active_constraints > 0)
  538. {
  539. uint32 active_constraint_idx = ioStep->mNumActiveConstraints.fetch_add(num_active_constraints);
  540. memcpy(ioStep->mContext->mActiveConstraints + active_constraint_idx, active_constraints, num_active_constraints * sizeof(Constraint *));
  541. }
  542. }
  543. }
  544. void PhysicsSystem::JobApplyGravity(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  545. {
  546. #ifdef JPH_ENABLE_ASSERTS
  547. // We update velocities and need the rotation to do so
  548. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  549. #endif
  550. // Get list of active bodies that we had at the start of the physics update.
  551. // Any body that is activated as part of the simulation step does not receive gravity this frame.
  552. // Note that bodies may be activated during this job but not deactivated, this means that only elements
  553. // will be added to the array. Since the array is made to not reallocate, this is a safe operation.
  554. const BodyID *active_bodies = mBodyManager.GetActiveBodiesUnsafe();
  555. uint32 num_active_bodies_at_step_start = ioStep->mNumActiveBodiesAtStepStart;
  556. // Fetch delta time once outside the loop
  557. float delta_time = ioContext->mSubStepDeltaTime;
  558. // Update velocities from forces
  559. for (;;)
  560. {
  561. // Atomically fetch a batch of bodies
  562. uint32 active_body_idx = ioStep->mApplyGravityReadIdx.fetch_add(cApplyGravityBatchSize);
  563. if (active_body_idx >= num_active_bodies_at_step_start)
  564. break;
  565. // Calculate the end of the batch
  566. uint32 active_body_idx_end = min(num_active_bodies_at_step_start, active_body_idx + cApplyGravityBatchSize);
  567. // Process the batch
  568. while (active_body_idx < active_body_idx_end)
  569. {
  570. Body &body = mBodyManager.GetBody(active_bodies[active_body_idx]);
  571. if (body.IsDynamic())
  572. body.GetMotionProperties()->ApplyForceTorqueAndDragInternal(body.GetRotation(), mGravity, delta_time);
  573. active_body_idx++;
  574. }
  575. }
  576. }
  577. void PhysicsSystem::JobSetupVelocityConstraints(float inDeltaTime, PhysicsUpdateContext::Step *ioStep) const
  578. {
  579. #ifdef JPH_ENABLE_ASSERTS
  580. // We only read positions
  581. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::Read);
  582. #endif
  583. ConstraintManager::sSetupVelocityConstraints(ioStep->mContext->mActiveConstraints, ioStep->mNumActiveConstraints, inDeltaTime);
  584. }
  585. void PhysicsSystem::JobBuildIslandsFromConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::Step *ioStep)
  586. {
  587. #ifdef JPH_ENABLE_ASSERTS
  588. // We read constraints and positions
  589. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::Read);
  590. // Can only activate bodies
  591. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  592. #endif
  593. // Prepare the island builder
  594. mIslandBuilder.PrepareNonContactConstraints(ioStep->mNumActiveConstraints, ioContext->mTempAllocator);
  595. // Build the islands
  596. ConstraintManager::sBuildIslands(ioStep->mContext->mActiveConstraints, ioStep->mNumActiveConstraints, mIslandBuilder, mBodyManager);
  597. }
  598. void PhysicsSystem::TrySpawnJobFindCollisions(PhysicsUpdateContext::Step *ioStep) const
  599. {
  600. // Get how many jobs we can spawn and check if we can spawn more
  601. uint max_jobs = ioStep->mBodyPairQueues.size();
  602. if (CountBits(ioStep->mActiveFindCollisionJobs) >= max_jobs)
  603. return;
  604. // Count how many body pairs we have waiting
  605. uint32 num_body_pairs = 0;
  606. for (const PhysicsUpdateContext::BodyPairQueue &queue : ioStep->mBodyPairQueues)
  607. num_body_pairs += queue.mWriteIdx - queue.mReadIdx;
  608. // Count how many active bodies we have waiting
  609. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies() - ioStep->mActiveBodyReadIdx;
  610. // Calculate how many jobs we would like
  611. uint desired_num_jobs = min((num_body_pairs + cNarrowPhaseBatchSize - 1) / cNarrowPhaseBatchSize + (num_active_bodies + cActiveBodiesBatchSize - 1) / cActiveBodiesBatchSize, max_jobs);
  612. for (;;)
  613. {
  614. // Get the bit mask of active jobs and see if we can spawn more
  615. PhysicsUpdateContext::JobMask current_active_jobs = ioStep->mActiveFindCollisionJobs;
  616. if (CountBits(current_active_jobs) >= desired_num_jobs)
  617. break;
  618. // Loop through all possible job indices
  619. for (uint job_index = 0; job_index < max_jobs; ++job_index)
  620. {
  621. // Test if it has been started
  622. PhysicsUpdateContext::JobMask job_mask = PhysicsUpdateContext::JobMask(1) << job_index;
  623. if ((current_active_jobs & job_mask) == 0)
  624. {
  625. // Try to claim the job index
  626. PhysicsUpdateContext::JobMask prev_value = ioStep->mActiveFindCollisionJobs.fetch_or(job_mask);
  627. if ((prev_value & job_mask) == 0)
  628. {
  629. // Add dependencies from the find collisions job to the next jobs
  630. ioStep->mUpdateBroadphaseFinalize.AddDependency();
  631. ioStep->mFinalizeIslands.AddDependency();
  632. // Start the job
  633. JobHandle job = ioStep->mContext->mJobSystem->CreateJob("FindCollisions", cColorFindCollisions, [step = ioStep, job_index]()
  634. {
  635. step->mContext->mPhysicsSystem->JobFindCollisions(step, job_index);
  636. });
  637. // Add the job to the job barrier so the main updating thread can execute the job too
  638. ioStep->mContext->mBarrier->AddJob(job);
  639. // Spawn only 1 extra job at a time
  640. return;
  641. }
  642. }
  643. }
  644. }
  645. }
  646. void PhysicsSystem::JobFindCollisions(PhysicsUpdateContext::Step *ioStep, int inJobIndex)
  647. {
  648. #ifdef JPH_ENABLE_ASSERTS
  649. // We only read positions
  650. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::Read);
  651. #endif
  652. // Allocation context for allocating new contact points
  653. ContactAllocator contact_allocator(mContactManager.GetContactAllocator());
  654. // Determine initial queue to read pairs from if no broadphase work can be done
  655. // (always start looking at results from the next job)
  656. int read_queue_idx = (inJobIndex + 1) % ioStep->mBodyPairQueues.size();
  657. for (;;)
  658. {
  659. // Check if there are active bodies to be processed
  660. uint32 active_bodies_read_idx = ioStep->mActiveBodyReadIdx;
  661. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  662. if (active_bodies_read_idx < num_active_bodies)
  663. {
  664. // Take a batch of active bodies
  665. uint32 active_bodies_read_idx_end = min(num_active_bodies, active_bodies_read_idx + cActiveBodiesBatchSize);
  666. if (ioStep->mActiveBodyReadIdx.compare_exchange_strong(active_bodies_read_idx, active_bodies_read_idx_end))
  667. {
  668. // Callback when a new body pair is found
  669. class MyBodyPairCallback : public BodyPairCollector
  670. {
  671. public:
  672. // Constructor
  673. MyBodyPairCallback(PhysicsUpdateContext::Step *inStep, ContactAllocator &ioContactAllocator, int inJobIndex) :
  674. mStep(inStep),
  675. mContactAllocator(ioContactAllocator),
  676. mJobIndex(inJobIndex)
  677. {
  678. }
  679. // Callback function when a body pair is found
  680. virtual void AddHit(const BodyPair &inPair) override
  681. {
  682. // Check if we have space in our write queue
  683. PhysicsUpdateContext::BodyPairQueue &queue = mStep->mBodyPairQueues[mJobIndex];
  684. uint32 body_pairs_in_queue = queue.mWriteIdx - queue.mReadIdx;
  685. if (body_pairs_in_queue >= mStep->mMaxBodyPairsPerQueue)
  686. {
  687. // Buffer full, process the pair now
  688. mStep->mContext->mPhysicsSystem->ProcessBodyPair(mContactAllocator, inPair);
  689. }
  690. else
  691. {
  692. // Store the pair in our own queue
  693. mStep->mContext->mBodyPairs[mJobIndex * mStep->mMaxBodyPairsPerQueue + queue.mWriteIdx % mStep->mMaxBodyPairsPerQueue] = inPair;
  694. ++queue.mWriteIdx;
  695. }
  696. }
  697. private:
  698. PhysicsUpdateContext::Step * mStep;
  699. ContactAllocator & mContactAllocator;
  700. int mJobIndex;
  701. };
  702. MyBodyPairCallback add_pair(ioStep, contact_allocator, inJobIndex);
  703. // Copy active bodies to temporary array, broadphase will reorder them
  704. uint32 batch_size = active_bodies_read_idx_end - active_bodies_read_idx;
  705. BodyID *active_bodies = (BodyID *)JPH_STACK_ALLOC(batch_size * sizeof(BodyID));
  706. memcpy(active_bodies, mBodyManager.GetActiveBodiesUnsafe() + active_bodies_read_idx, batch_size * sizeof(BodyID));
  707. // Find pairs in the broadphase
  708. mBroadPhase->FindCollidingPairs(active_bodies, batch_size, mPhysicsSettings.mSpeculativeContactDistance, mObjectVsBroadPhaseLayerFilter, mObjectLayerPairFilter, add_pair);
  709. // Check if we have enough pairs in the buffer to start a new job
  710. const PhysicsUpdateContext::BodyPairQueue &queue = ioStep->mBodyPairQueues[inJobIndex];
  711. uint32 body_pairs_in_queue = queue.mWriteIdx - queue.mReadIdx;
  712. if (body_pairs_in_queue >= cNarrowPhaseBatchSize)
  713. TrySpawnJobFindCollisions(ioStep);
  714. }
  715. }
  716. else
  717. {
  718. // Lockless loop to get the next body pair from the pairs buffer
  719. const PhysicsUpdateContext *context = ioStep->mContext;
  720. int first_read_queue_idx = read_queue_idx;
  721. for (;;)
  722. {
  723. PhysicsUpdateContext::BodyPairQueue &queue = ioStep->mBodyPairQueues[read_queue_idx];
  724. // Get the next pair to process
  725. uint32 pair_idx = queue.mReadIdx;
  726. // If the pair hasn't been written yet
  727. if (pair_idx >= queue.mWriteIdx)
  728. {
  729. // Go to the next queue
  730. read_queue_idx = (read_queue_idx + 1) % ioStep->mBodyPairQueues.size();
  731. // If we're back at the first queue, we've looked at all of them and found nothing
  732. if (read_queue_idx == first_read_queue_idx)
  733. {
  734. // Atomically accumulate the number of found manifolds and body pairs
  735. ioStep->mNumBodyPairs += contact_allocator.mNumBodyPairs;
  736. ioStep->mNumManifolds += contact_allocator.mNumManifolds;
  737. // Mark this job as inactive
  738. ioStep->mActiveFindCollisionJobs.fetch_and(~PhysicsUpdateContext::JobMask(1 << inJobIndex));
  739. // Trigger the next jobs
  740. ioStep->mUpdateBroadphaseFinalize.RemoveDependency();
  741. ioStep->mFinalizeIslands.RemoveDependency();
  742. return;
  743. }
  744. // Try again reading from the next queue
  745. continue;
  746. }
  747. // Copy the body pair out of the buffer
  748. const BodyPair bp = context->mBodyPairs[read_queue_idx * ioStep->mMaxBodyPairsPerQueue + pair_idx % ioStep->mMaxBodyPairsPerQueue];
  749. // Mark this pair as taken
  750. if (queue.mReadIdx.compare_exchange_strong(pair_idx, pair_idx + 1))
  751. {
  752. // Process the actual body pair
  753. ProcessBodyPair(contact_allocator, bp);
  754. break;
  755. }
  756. }
  757. }
  758. }
  759. }
  760. void PhysicsSystem::ProcessBodyPair(ContactAllocator &ioContactAllocator, const BodyPair &inBodyPair)
  761. {
  762. JPH_PROFILE_FUNCTION();
  763. #ifdef JPH_ENABLE_ASSERTS
  764. // We read positions and read velocities (for elastic collisions)
  765. BodyAccess::Grant grant(BodyAccess::EAccess::Read, BodyAccess::EAccess::Read);
  766. // Can only activate bodies
  767. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  768. #endif
  769. // Fetch body pair
  770. Body *body1 = &mBodyManager.GetBody(inBodyPair.mBodyA);
  771. Body *body2 = &mBodyManager.GetBody(inBodyPair.mBodyB);
  772. JPH_ASSERT(body1->IsActive());
  773. // Ensure that body1 is dynamic, this ensures that we do the collision detection in the space of a moving body, which avoids accuracy problems when testing a very large static object against a small dynamic object
  774. // Ensure that body1 id < body2 id for dynamic vs dynamic
  775. // Keep body order unchanged when colliding with a sensor
  776. if ((!body1->IsDynamic() || (body2->IsDynamic() && inBodyPair.mBodyB < inBodyPair.mBodyA))
  777. && !body2->IsSensor())
  778. swap(body1, body2);
  779. JPH_ASSERT(body1->IsDynamic() || (body1->IsKinematic() && body2->IsSensor()));
  780. // Check if the contact points from the previous frame are reusable and if so copy them
  781. bool pair_handled = false, constraint_created = false;
  782. if (mPhysicsSettings.mUseBodyPairContactCache && !(body1->IsCollisionCacheInvalid() || body2->IsCollisionCacheInvalid()))
  783. mContactManager.GetContactsFromCache(ioContactAllocator, *body1, *body2, pair_handled, constraint_created);
  784. // If the cache hasn't handled this body pair do actual collision detection
  785. if (!pair_handled)
  786. {
  787. // Create entry in the cache for this body pair
  788. // Needs to happen irrespective if we found a collision or not (we want to remember that no collision was found too)
  789. ContactConstraintManager::BodyPairHandle body_pair_handle = mContactManager.AddBodyPair(ioContactAllocator, *body1, *body2);
  790. if (body_pair_handle == nullptr)
  791. return; // Out of cache space
  792. // Create the query settings
  793. CollideShapeSettings settings;
  794. settings.mCollectFacesMode = ECollectFacesMode::CollectFaces;
  795. settings.mActiveEdgeMode = mPhysicsSettings.mCheckActiveEdges? EActiveEdgeMode::CollideOnlyWithActive : EActiveEdgeMode::CollideWithAll;
  796. settings.mMaxSeparationDistance = mPhysicsSettings.mSpeculativeContactDistance;
  797. settings.mActiveEdgeMovementDirection = body1->GetLinearVelocity() - body2->GetLinearVelocity();
  798. if (mPhysicsSettings.mUseManifoldReduction)
  799. {
  800. // Version WITH contact manifold reduction
  801. class MyManifold : public ContactManifold
  802. {
  803. public:
  804. Vec3 mFirstWorldSpaceNormal;
  805. };
  806. // A temporary structure that allows us to keep track of the all manifolds between this body pair
  807. using Manifolds = StaticArray<MyManifold, 32>;
  808. // Create collector
  809. class ReductionCollideShapeCollector : public CollideShapeCollector
  810. {
  811. public:
  812. ReductionCollideShapeCollector(PhysicsSystem *inSystem, const Body *inBody1, const Body *inBody2) :
  813. mSystem(inSystem),
  814. mBody1(inBody1),
  815. mBody2(inBody2)
  816. {
  817. }
  818. virtual void AddHit(const CollideShapeResult &inResult) override
  819. {
  820. // One of the following should be true:
  821. // - Body 1 is dynamic and body 2 may be dynamic, static or kinematic
  822. // - Body 1 is kinematic in which case body 2 should be a sensor
  823. JPH_ASSERT(mBody1->IsDynamic() || (mBody1->IsKinematic() && mBody2->IsSensor()));
  824. JPH_ASSERT(!ShouldEarlyOut());
  825. // Test if we want to accept this hit
  826. if (mValidateBodyPair)
  827. {
  828. switch (mSystem->mContactManager.ValidateContactPoint(*mBody1, *mBody2, inResult))
  829. {
  830. case ValidateResult::AcceptContact:
  831. // We're just accepting this one, nothing to do
  832. break;
  833. case ValidateResult::AcceptAllContactsForThisBodyPair:
  834. // Accept and stop calling the validate callback
  835. mValidateBodyPair = false;
  836. break;
  837. case ValidateResult::RejectContact:
  838. // Skip this contact
  839. return;
  840. case ValidateResult::RejectAllContactsForThisBodyPair:
  841. // Skip this and early out
  842. ForceEarlyOut();
  843. return;
  844. }
  845. }
  846. // Calculate normal
  847. Vec3 world_space_normal = inResult.mPenetrationAxis.Normalized();
  848. // Check if we can add it to an existing manifold
  849. Manifolds::iterator manifold;
  850. float contact_normal_cos_max_delta_rot = mSystem->mPhysicsSettings.mContactNormalCosMaxDeltaRotation;
  851. for (manifold = mManifolds.begin(); manifold != mManifolds.end(); ++manifold)
  852. if (world_space_normal.Dot(manifold->mFirstWorldSpaceNormal) >= contact_normal_cos_max_delta_rot)
  853. {
  854. // Update average normal
  855. manifold->mWorldSpaceNormal += world_space_normal;
  856. manifold->mPenetrationDepth = max(manifold->mPenetrationDepth, inResult.mPenetrationDepth);
  857. break;
  858. }
  859. if (manifold == mManifolds.end())
  860. {
  861. // Check if array is full
  862. if (mManifolds.size() == mManifolds.capacity())
  863. {
  864. // Full, find manifold with least amount of penetration
  865. manifold = mManifolds.begin();
  866. for (Manifolds::iterator m = mManifolds.begin() + 1; m < mManifolds.end(); ++m)
  867. if (m->mPenetrationDepth < manifold->mPenetrationDepth)
  868. manifold = m;
  869. // If this contacts penetration is smaller than the smallest manifold, we skip this contact
  870. if (inResult.mPenetrationDepth < manifold->mPenetrationDepth)
  871. return;
  872. // Replace the manifold
  873. *manifold = { { world_space_normal, inResult.mPenetrationDepth, inResult.mSubShapeID1, inResult.mSubShapeID2, { }, { } }, world_space_normal };
  874. }
  875. else
  876. {
  877. // Not full, create new manifold
  878. mManifolds.push_back({ { world_space_normal, inResult.mPenetrationDepth, inResult.mSubShapeID1, inResult.mSubShapeID2, { }, { } }, world_space_normal });
  879. manifold = mManifolds.end() - 1;
  880. }
  881. }
  882. // Determine contact points
  883. const PhysicsSettings &settings = mSystem->mPhysicsSettings;
  884. ManifoldBetweenTwoFaces(inResult.mContactPointOn1, inResult.mContactPointOn2, inResult.mPenetrationAxis, Square(settings.mSpeculativeContactDistance) + settings.mManifoldToleranceSq, inResult.mShape1Face, inResult.mShape2Face, manifold->mWorldSpaceContactPointsOn1, manifold->mWorldSpaceContactPointsOn2);
  885. // Prune if we have more than 32 points (this means we could run out of space in the next iteration)
  886. if (manifold->mWorldSpaceContactPointsOn1.size() > 32)
  887. PruneContactPoints(mBody1->GetCenterOfMassPosition(), manifold->mFirstWorldSpaceNormal, manifold->mWorldSpaceContactPointsOn1, manifold->mWorldSpaceContactPointsOn2);
  888. }
  889. PhysicsSystem * mSystem;
  890. const Body * mBody1;
  891. const Body * mBody2;
  892. bool mValidateBodyPair = true;
  893. Manifolds mManifolds;
  894. };
  895. ReductionCollideShapeCollector collector(this, body1, body2);
  896. // Perform collision detection between the two shapes
  897. SubShapeIDCreator part1, part2;
  898. CollisionDispatch::sCollideShapeVsShape(body1->GetShape(), body2->GetShape(), Vec3::sReplicate(1.0f), Vec3::sReplicate(1.0f), body1->GetCenterOfMassTransform(), body2->GetCenterOfMassTransform(), part1, part2, settings, collector);
  899. // Add the contacts
  900. for (ContactManifold &manifold : collector.mManifolds)
  901. {
  902. // Normalize the normal (is a sum of all normals from merged manifolds)
  903. manifold.mWorldSpaceNormal = manifold.mWorldSpaceNormal.Normalized();
  904. // If we still have too many points, prune them now
  905. if (manifold.mWorldSpaceContactPointsOn1.size() > 4)
  906. PruneContactPoints(body1->GetCenterOfMassPosition(), manifold.mWorldSpaceNormal, manifold.mWorldSpaceContactPointsOn1, manifold.mWorldSpaceContactPointsOn2);
  907. // Actually add the contact points to the manager
  908. constraint_created |= mContactManager.AddContactConstraint(ioContactAllocator, body_pair_handle, *body1, *body2, manifold);
  909. }
  910. }
  911. else
  912. {
  913. // Version WITHOUT contact manifold reduction
  914. // Create collector
  915. class NonReductionCollideShapeCollector : public CollideShapeCollector
  916. {
  917. public:
  918. NonReductionCollideShapeCollector(PhysicsSystem *inSystem, ContactAllocator &ioContactAllocator, Body *inBody1, Body *inBody2, const ContactConstraintManager::BodyPairHandle &inPairHandle) :
  919. mSystem(inSystem),
  920. mContactAllocator(ioContactAllocator),
  921. mBody1(inBody1),
  922. mBody2(inBody2),
  923. mBodyPairHandle(inPairHandle)
  924. {
  925. }
  926. virtual void AddHit(const CollideShapeResult &inResult) override
  927. {
  928. // Body 1 should always be dynamic, body 2 may be static / kinematic
  929. JPH_ASSERT(mBody1->IsDynamic());
  930. JPH_ASSERT(!ShouldEarlyOut());
  931. // Test if we want to accept this hit
  932. if (mValidateBodyPair)
  933. {
  934. switch (mSystem->mContactManager.ValidateContactPoint(*mBody1, *mBody2, inResult))
  935. {
  936. case ValidateResult::AcceptContact:
  937. // We're just accepting this one, nothing to do
  938. break;
  939. case ValidateResult::AcceptAllContactsForThisBodyPair:
  940. // Accept and stop calling the validate callback
  941. mValidateBodyPair = false;
  942. break;
  943. case ValidateResult::RejectContact:
  944. // Skip this contact
  945. return;
  946. case ValidateResult::RejectAllContactsForThisBodyPair:
  947. // Skip this and early out
  948. ForceEarlyOut();
  949. return;
  950. }
  951. }
  952. // Determine contact points
  953. ContactManifold manifold;
  954. const PhysicsSettings &settings = mSystem->mPhysicsSettings;
  955. ManifoldBetweenTwoFaces(inResult.mContactPointOn1, inResult.mContactPointOn2, inResult.mPenetrationAxis, Square(settings.mSpeculativeContactDistance) + settings.mManifoldToleranceSq, inResult.mShape1Face, inResult.mShape2Face, manifold.mWorldSpaceContactPointsOn1, manifold.mWorldSpaceContactPointsOn2);
  956. // Calculate normal
  957. manifold.mWorldSpaceNormal = inResult.mPenetrationAxis.Normalized();
  958. // Store penetration depth
  959. manifold.mPenetrationDepth = inResult.mPenetrationDepth;
  960. // Prune if we have more than 4 points
  961. if (manifold.mWorldSpaceContactPointsOn1.size() > 4)
  962. PruneContactPoints(mBody1->GetCenterOfMassPosition(), manifold.mWorldSpaceNormal, manifold.mWorldSpaceContactPointsOn1, manifold.mWorldSpaceContactPointsOn2);
  963. // Set other properties
  964. manifold.mSubShapeID1 = inResult.mSubShapeID1;
  965. manifold.mSubShapeID2 = inResult.mSubShapeID2;
  966. // Actually add the contact points to the manager
  967. mConstraintCreated |= mSystem->mContactManager.AddContactConstraint(mContactAllocator, mBodyPairHandle, *mBody1, *mBody2, manifold);
  968. }
  969. PhysicsSystem * mSystem;
  970. ContactAllocator & mContactAllocator;
  971. Body * mBody1;
  972. Body * mBody2;
  973. ContactConstraintManager::BodyPairHandle mBodyPairHandle;
  974. bool mValidateBodyPair = true;
  975. bool mConstraintCreated = false;
  976. };
  977. NonReductionCollideShapeCollector collector(this, ioContactAllocator, body1, body2, body_pair_handle);
  978. // Perform collision detection between the two shapes
  979. SubShapeIDCreator part1, part2;
  980. CollisionDispatch::sCollideShapeVsShape(body1->GetShape(), body2->GetShape(), Vec3::sReplicate(1.0f), Vec3::sReplicate(1.0f), body1->GetCenterOfMassTransform(), body2->GetCenterOfMassTransform(), part1, part2, settings, collector);
  981. constraint_created = collector.mConstraintCreated;
  982. }
  983. }
  984. // If a contact constraint was created, we need to do some extra work
  985. if (constraint_created)
  986. {
  987. // Wake up sleeping bodies
  988. BodyID body_ids[2];
  989. int num_bodies = 0;
  990. if (body1->IsDynamic() && !body1->IsActive())
  991. body_ids[num_bodies++] = body1->GetID();
  992. if (body2->IsDynamic() && !body2->IsActive())
  993. body_ids[num_bodies++] = body2->GetID();
  994. if (num_bodies > 0)
  995. mBodyManager.ActivateBodies(body_ids, num_bodies);
  996. // Link the two bodies
  997. mIslandBuilder.LinkBodies(body1->GetIndexInActiveBodiesInternal(), body2->GetIndexInActiveBodiesInternal());
  998. }
  999. }
  1000. void PhysicsSystem::JobFinalizeIslands(PhysicsUpdateContext *ioContext)
  1001. {
  1002. #ifdef JPH_ENABLE_ASSERTS
  1003. // We only touch island data
  1004. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  1005. #endif
  1006. // Finish collecting the islands, at this point the active body list doesn't change so it's safe to access
  1007. mIslandBuilder.Finalize(mBodyManager.GetActiveBodiesUnsafe(), mBodyManager.GetNumActiveBodies(), mContactManager.GetNumConstraints(), ioContext->mTempAllocator);
  1008. }
  1009. void PhysicsSystem::JobBodySetIslandIndex()
  1010. {
  1011. #ifdef JPH_ENABLE_ASSERTS
  1012. // We only touch island data
  1013. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  1014. #endif
  1015. // Loop through the result and tag all bodies with an island index
  1016. for (uint32 island_idx = 0, n = mIslandBuilder.GetNumIslands(); island_idx < n; ++island_idx)
  1017. {
  1018. BodyID *body_start, *body_end;
  1019. mIslandBuilder.GetBodiesInIsland(island_idx, body_start, body_end);
  1020. for (const BodyID *body = body_start; body < body_end; ++body)
  1021. mBodyManager.GetBody(*body).GetMotionProperties()->SetIslandIndexInternal(island_idx);
  1022. }
  1023. }
  1024. void PhysicsSystem::JobSolveVelocityConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1025. {
  1026. #ifdef JPH_ENABLE_ASSERTS
  1027. // We update velocities and need to read positions to do so
  1028. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::Read);
  1029. #endif
  1030. float delta_time = ioContext->mSubStepDeltaTime;
  1031. float warm_start_impulse_ratio = ioContext->mWarmStartImpulseRatio;
  1032. Constraint **active_constraints = ioContext->mActiveConstraints;
  1033. bool first_sub_step = ioSubStep->mIsFirst;
  1034. bool last_sub_step = ioSubStep->mIsLast;
  1035. for (;;)
  1036. {
  1037. // Next island
  1038. uint32 island_idx = ioSubStep->mSolveVelocityConstraintsNextIsland++;
  1039. if (island_idx >= mIslandBuilder.GetNumIslands())
  1040. break;
  1041. JPH_PROFILE("Island");
  1042. // Get iterators
  1043. uint32 *constraints_begin, *constraints_end;
  1044. bool has_constraints = mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end);
  1045. uint32 *contacts_begin, *contacts_end;
  1046. bool has_contacts = mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end);
  1047. if (first_sub_step)
  1048. {
  1049. // If we don't have any contacts or constraints, we know that none of the following islands have any contacts or constraints
  1050. // (because they're sorted by most constraints first). This means we're done.
  1051. if (!has_contacts && !has_constraints)
  1052. {
  1053. #ifdef JPH_ENABLE_ASSERTS
  1054. // Validate our assumption that the next islands don't have any constraints or contacts
  1055. for (; island_idx < mIslandBuilder.GetNumIslands(); ++island_idx)
  1056. {
  1057. JPH_ASSERT(!mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end));
  1058. JPH_ASSERT(!mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end));
  1059. }
  1060. #endif // JPH_ENABLE_ASSERTS
  1061. return;
  1062. }
  1063. // Sort constraints to give a deterministic simulation
  1064. ConstraintManager::sSortConstraints(active_constraints, constraints_begin, constraints_end);
  1065. // Sort contacts to give a deterministic simulation
  1066. mContactManager.SortContacts(contacts_begin, contacts_end);
  1067. }
  1068. else
  1069. {
  1070. {
  1071. JPH_PROFILE("Apply Gravity");
  1072. // Get bodies in this island
  1073. BodyID *bodies_begin, *bodies_end;
  1074. mIslandBuilder.GetBodiesInIsland(island_idx, bodies_begin, bodies_end);
  1075. // Apply gravity. In the first step this is done in a separate job.
  1076. for (const BodyID *body_id = bodies_begin; body_id < bodies_end; ++body_id)
  1077. {
  1078. Body &body = mBodyManager.GetBody(*body_id);
  1079. if (body.IsDynamic())
  1080. body.GetMotionProperties()->ApplyForceTorqueAndDragInternal(body.GetRotation(), mGravity, delta_time);
  1081. }
  1082. }
  1083. // If we don't have any contacts or constraints, we don't need to run the solver, but we do need to process
  1084. // the next island in order to apply gravity
  1085. if (!has_contacts && !has_constraints)
  1086. continue;
  1087. // Prepare velocity constraints. In the first step this is done when adding the contact constraints.
  1088. ConstraintManager::sSetupVelocityConstraints(active_constraints, constraints_begin, constraints_end, delta_time);
  1089. mContactManager.SetupVelocityConstraints(contacts_begin, contacts_end, delta_time);
  1090. }
  1091. // Warm start
  1092. ConstraintManager::sWarmStartVelocityConstraints(active_constraints, constraints_begin, constraints_end, warm_start_impulse_ratio);
  1093. mContactManager.WarmStartVelocityConstraints(contacts_begin, contacts_end, warm_start_impulse_ratio);
  1094. // Solve
  1095. for (int velocity_step = 0; velocity_step < mPhysicsSettings.mNumVelocitySteps; ++velocity_step)
  1096. {
  1097. bool constraint_impulse = ConstraintManager::sSolveVelocityConstraints(active_constraints, constraints_begin, constraints_end, delta_time);
  1098. bool contact_impulse = mContactManager.SolveVelocityConstraints(contacts_begin, contacts_end);
  1099. if (!constraint_impulse && !contact_impulse)
  1100. break;
  1101. }
  1102. // Save back the lambdas in the contact cache for the warm start of the next physics update
  1103. if (last_sub_step)
  1104. mContactManager.StoreAppliedImpulses(contacts_begin, contacts_end);
  1105. }
  1106. }
  1107. void PhysicsSystem::JobPreIntegrateVelocity(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep) const
  1108. {
  1109. // Reserve enough space for all bodies that may need a cast
  1110. TempAllocator *temp_allocator = ioContext->mTempAllocator;
  1111. JPH_ASSERT(ioSubStep->mCCDBodies == nullptr);
  1112. ioSubStep->mCCDBodiesCapacity = mBodyManager.GetNumActiveCCDBodies();
  1113. ioSubStep->mCCDBodies = (CCDBody *)temp_allocator->Allocate(ioSubStep->mCCDBodiesCapacity * sizeof(CCDBody));
  1114. // Initialize the mapping table between active body and CCD body
  1115. JPH_ASSERT(ioSubStep->mActiveBodyToCCDBody == nullptr);
  1116. ioSubStep->mNumActiveBodyToCCDBody = mBodyManager.GetNumActiveBodies();
  1117. ioSubStep->mActiveBodyToCCDBody = (int *)temp_allocator->Allocate(ioSubStep->mNumActiveBodyToCCDBody * sizeof(int));
  1118. }
  1119. void PhysicsSystem::JobIntegrateVelocity(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1120. {
  1121. #ifdef JPH_ENABLE_ASSERTS
  1122. // We update positions and need velocity to do so, we also clamp velocities so need to write to them
  1123. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::ReadWrite);
  1124. #endif
  1125. float delta_time = ioContext->mSubStepDeltaTime;
  1126. const BodyID *active_bodies = mBodyManager.GetActiveBodiesUnsafe();
  1127. uint32 num_active_bodies = mBodyManager.GetNumActiveBodies();
  1128. uint32 num_active_bodies_after_find_collisions = ioSubStep->mStep->mActiveBodyReadIdx;
  1129. // We can move bodies that are not part of an island. In this case we need to notify the broadphase of the movement.
  1130. static constexpr int cBodiesBatch = 64;
  1131. BodyID *bodies_to_update_bounds = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1132. int num_bodies_to_update_bounds = 0;
  1133. for (;;)
  1134. {
  1135. // Atomically fetch a batch of bodies
  1136. uint32 active_body_idx = ioSubStep->mIntegrateVelocityReadIdx.fetch_add(cIntegrateVelocityBatchSize);
  1137. if (active_body_idx >= num_active_bodies)
  1138. break;
  1139. // Calculate the end of the batch
  1140. uint32 active_body_idx_end = min(num_active_bodies, active_body_idx + cIntegrateVelocityBatchSize);
  1141. // Process the batch
  1142. while (active_body_idx < active_body_idx_end)
  1143. {
  1144. // Update the positions using an Symplectic Euler step (which integrates using the updated velocity v1' rather
  1145. // than the original velocity v1):
  1146. // x1' = x1 + h * v1'
  1147. // At this point the active bodies list does not change, so it is safe to access the array.
  1148. BodyID body_id = active_bodies[active_body_idx];
  1149. Body &body = mBodyManager.GetBody(body_id);
  1150. MotionProperties *mp = body.GetMotionProperties();
  1151. // Clamp velocities (not for kinematic bodies)
  1152. if (body.IsDynamic())
  1153. {
  1154. mp->ClampLinearVelocity();
  1155. mp->ClampAngularVelocity();
  1156. }
  1157. // Update the rotation of the body according to the angular velocity
  1158. // For motion type discrete we need to do this anyway, for motion type linear cast we have multiple choices
  1159. // 1. Rotate the body first and then sweep
  1160. // 2. First sweep and then rotate the body at the end
  1161. // 3. Pick some inbetween rotation (e.g. half way), then sweep and finally rotate the remainder
  1162. // (1) has some clear advantages as when a long thin body hits a surface away from the center of mass, this will result in a large angular velocity and a limited reduction in linear velocity.
  1163. // When simulation the rotation first before doing the translation, the body will be able to rotate away from the contact point allowing the center of mass to approach the surface. When using
  1164. // approach (2) in this case what will happen is that we will immediately detect the same collision again (the body has not rotated and the body was already colliding at the end of the previous
  1165. // time step) resulting in a lot of stolen time and the body appearing to be frozen in an unnatural pose (like it is glued at an angle to the surface). (2) obviously has some negative side effects
  1166. // too as simulating the rotation first may cause it to tunnel through a small object that the linear cast might have otherwise dectected. In any case a linear cast is not good for detecting
  1167. // tunneling due to angular rotation, so we don't care about that too much (you'd need a full cast to take angular effects into account).
  1168. body.AddRotationStep(body.GetAngularVelocity() * delta_time);
  1169. // Get delta position
  1170. Vec3 delta_pos = body.GetLinearVelocity() * delta_time;
  1171. // If the position should be updated (or if it is delayed because of CCD)
  1172. bool update_position = true;
  1173. switch (mp->GetMotionQuality())
  1174. {
  1175. case EMotionQuality::Discrete:
  1176. // No additional collision checking to be done
  1177. break;
  1178. case EMotionQuality::LinearCast:
  1179. if (body.IsDynamic() // Kinematic bodies cannot be stopped
  1180. && !body.IsSensor()) // We don't support CCD sensors
  1181. {
  1182. // Determine inner radius (the smallest sphere that fits into the shape)
  1183. float inner_radius = body.GetShape()->GetInnerRadius();
  1184. JPH_ASSERT(inner_radius > 0.0f, "The shape has no inner radius, this makes the shape unsuitable for the linear cast motion quality as we cannot move it without risking tunneling.");
  1185. // Measure translation in this step and check if it above the treshold to perform a linear cast
  1186. float linear_cast_threshold_sq = Square(mPhysicsSettings.mLinearCastThreshold * inner_radius);
  1187. if (delta_pos.LengthSq() > linear_cast_threshold_sq)
  1188. {
  1189. // This body needs a cast
  1190. uint32 ccd_body_idx = ioSubStep->mNumCCDBodies++;
  1191. ioSubStep->mActiveBodyToCCDBody[active_body_idx] = ccd_body_idx;
  1192. new (&ioSubStep->mCCDBodies[ccd_body_idx]) CCDBody(body_id, delta_pos, linear_cast_threshold_sq, min(mPhysicsSettings.mPenetrationSlop, mPhysicsSettings.mLinearCastMaxPenetration * inner_radius));
  1193. update_position = false;
  1194. }
  1195. }
  1196. break;
  1197. }
  1198. if (update_position)
  1199. {
  1200. // Move the body now
  1201. body.AddPositionStep(delta_pos);
  1202. // If the body was activated due to an earlier CCD step it will have an index in the active
  1203. // body list that it higher than the highest one we processed during FindCollisions
  1204. // which means it hasn't been assigned an island and will not be updated by an island
  1205. // this means that we need to update its bounds manually
  1206. if (mp->GetIndexInActiveBodiesInternal() >= num_active_bodies_after_find_collisions)
  1207. {
  1208. body.CalculateWorldSpaceBoundsInternal();
  1209. bodies_to_update_bounds[num_bodies_to_update_bounds++] = body.GetID();
  1210. if (num_bodies_to_update_bounds == cBodiesBatch)
  1211. {
  1212. // Buffer full, flush now
  1213. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds);
  1214. num_bodies_to_update_bounds = 0;
  1215. }
  1216. }
  1217. // We did not create a CCD body
  1218. ioSubStep->mActiveBodyToCCDBody[active_body_idx] = -1;
  1219. }
  1220. active_body_idx++;
  1221. }
  1222. }
  1223. // Notify change bounds on requested bodies
  1224. if (num_bodies_to_update_bounds > 0)
  1225. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds, false);
  1226. }
  1227. void PhysicsSystem::JobPostIntegrateVelocity(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep) const
  1228. {
  1229. // Validate that our reservations were correct
  1230. JPH_ASSERT(ioSubStep->mNumCCDBodies <= mBodyManager.GetNumActiveCCDBodies());
  1231. if (ioSubStep->mNumCCDBodies == 0)
  1232. {
  1233. // No continous collision detection jobs -> kick the next job ourselves
  1234. if (ioSubStep->mIsLast)
  1235. ioSubStep->mStep->mContactRemovedCallbacks.RemoveDependency();
  1236. }
  1237. else
  1238. {
  1239. // Run the continous collision detection jobs
  1240. int num_continuous_collision_jobs = min(int(ioSubStep->mNumCCDBodies + cNumCCDBodiesPerJob - 1) / cNumCCDBodiesPerJob, ioContext->GetMaxConcurrency());
  1241. ioSubStep->mResolveCCDContacts.AddDependency(num_continuous_collision_jobs);
  1242. if (ioSubStep->mIsLast)
  1243. ioSubStep->mStep->mContactRemovedCallbacks.AddDependency(num_continuous_collision_jobs - 1); // Already had 1 dependency
  1244. for (int i = 0; i < num_continuous_collision_jobs; ++i)
  1245. {
  1246. JobHandle job = ioContext->mJobSystem->CreateJob("FindCCDContacts", cColorFindCCDContacts, [ioContext, ioSubStep]()
  1247. {
  1248. ioContext->mPhysicsSystem->JobFindCCDContacts(ioContext, ioSubStep);
  1249. ioSubStep->mResolveCCDContacts.RemoveDependency();
  1250. if (ioSubStep->mIsLast)
  1251. ioSubStep->mStep->mContactRemovedCallbacks.RemoveDependency();
  1252. });
  1253. ioContext->mBarrier->AddJob(job);
  1254. }
  1255. }
  1256. }
  1257. // Helper function to calculate the motion of a body during this CCD step
  1258. inline static Vec3 sCalculateBodyMotion(const Body &inBody, float inDeltaTime)
  1259. {
  1260. // If the body is linear casting, the body has not yet moved so we need to calculate its motion
  1261. if (inBody.IsDynamic() && inBody.GetMotionProperties()->GetMotionQuality() == EMotionQuality::LinearCast)
  1262. return inDeltaTime * inBody.GetLinearVelocity();
  1263. // Body has already moved, so we don't need to correct for anything
  1264. return Vec3::sZero();
  1265. }
  1266. // Helper function that finds the CCD body corresponding to a body (if it exists)
  1267. inline static PhysicsUpdateContext::SubStep::CCDBody *sGetCCDBody(const Body &inBody, PhysicsUpdateContext::SubStep *inSubStep)
  1268. {
  1269. // If the body has no motion properties it cannot have a CCD body
  1270. const MotionProperties *motion_properties = inBody.GetMotionPropertiesUnchecked();
  1271. if (motion_properties == nullptr)
  1272. return nullptr;
  1273. // If it is not active it cannot have a CCD body
  1274. uint32 active_index = motion_properties->GetIndexInActiveBodiesInternal();
  1275. if (active_index == Body::cInactiveIndex)
  1276. return nullptr;
  1277. // Check if the active body has a corresponding CCD body
  1278. JPH_ASSERT(active_index < inSubStep->mNumActiveBodyToCCDBody); // Ensure that the body has a mapping to CCD body
  1279. int ccd_index = inSubStep->mActiveBodyToCCDBody[active_index];
  1280. if (ccd_index < 0)
  1281. return nullptr;
  1282. PhysicsUpdateContext::SubStep::CCDBody *ccd_body = &inSubStep->mCCDBodies[ccd_index];
  1283. JPH_ASSERT(ccd_body->mBodyID1 == inBody.GetID(), "We found the wrong CCD body!");
  1284. return ccd_body;
  1285. }
  1286. void PhysicsSystem::JobFindCCDContacts(const PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1287. {
  1288. #ifdef JPH_ENABLE_ASSERTS
  1289. // We only read positions, but the validate callback may read body positions and velocities
  1290. BodyAccess::Grant grant(BodyAccess::EAccess::Read, BodyAccess::EAccess::Read);
  1291. #endif
  1292. // Allocation context for allocating new contact points
  1293. ContactAllocator contact_allocator(mContactManager.GetContactAllocator());
  1294. // Settings
  1295. ShapeCastSettings settings;
  1296. settings.mUseShrunkenShapeAndConvexRadius = true;
  1297. settings.mBackFaceModeTriangles = EBackFaceMode::IgnoreBackFaces;
  1298. settings.mBackFaceModeConvex = EBackFaceMode::IgnoreBackFaces;
  1299. settings.mReturnDeepestPoint = true;
  1300. settings.mCollectFacesMode = ECollectFacesMode::CollectFaces;
  1301. settings.mActiveEdgeMode = mPhysicsSettings.mCheckActiveEdges? EActiveEdgeMode::CollideOnlyWithActive : EActiveEdgeMode::CollideWithAll;
  1302. for (;;)
  1303. {
  1304. // Fetch the next body to cast
  1305. uint32 idx = ioSubStep->mNextCCDBody++;
  1306. if (idx >= ioSubStep->mNumCCDBodies)
  1307. break;
  1308. CCDBody &ccd_body = ioSubStep->mCCDBodies[idx];
  1309. const Body &body = mBodyManager.GetBody(ccd_body.mBodyID1);
  1310. // Filter out layers
  1311. DefaultBroadPhaseLayerFilter broadphase_layer_filter = GetDefaultBroadPhaseLayerFilter(body.GetObjectLayer());
  1312. DefaultObjectLayerFilter object_layer_filter = GetDefaultLayerFilter(body.GetObjectLayer());
  1313. #ifdef JPH_DEBUG_RENDERER
  1314. // Draw start and end shape of cast
  1315. if (sDrawMotionQualityLinearCast)
  1316. {
  1317. Mat44 com = body.GetCenterOfMassTransform();
  1318. body.GetShape()->Draw(DebugRenderer::sInstance, com, Vec3::sReplicate(1.0f), Color::sGreen, false, true);
  1319. DebugRenderer::sInstance->DrawArrow(com.GetTranslation(), com.GetTranslation() + ccd_body.mDeltaPosition, Color::sGreen, 0.1f);
  1320. body.GetShape()->Draw(DebugRenderer::sInstance, Mat44::sTranslation(ccd_body.mDeltaPosition) * com, Vec3::sReplicate(1.0f), Color::sRed, false, true);
  1321. }
  1322. #endif // JPH_DEBUG_RENDERER
  1323. // Create a collector that will find the maximum distance allowed to travel while not penetrating more than 'max penetration'
  1324. class CCDNarrowPhaseCollector : public CastShapeCollector
  1325. {
  1326. public:
  1327. CCDNarrowPhaseCollector(const BodyManager &inBodyManager, ContactConstraintManager &inContactConstraintManager, CCDBody &inCCDBody, ShapeCastResult &inResult, float inDeltaTime) :
  1328. mBodyManager(inBodyManager),
  1329. mContactConstraintManager(inContactConstraintManager),
  1330. mCCDBody(inCCDBody),
  1331. mResult(inResult),
  1332. mDeltaTime(inDeltaTime)
  1333. {
  1334. }
  1335. virtual void AddHit(const ShapeCastResult &inResult) override
  1336. {
  1337. JPH_PROFILE_FUNCTION();
  1338. // Check if this is a possible earlier hit than the one before
  1339. float fraction = inResult.mFraction;
  1340. if (fraction < mCCDBody.mFractionPlusSlop)
  1341. {
  1342. // Normalize normal
  1343. Vec3 normal = inResult.mPenetrationAxis.Normalized();
  1344. // Calculate how much we can add to the fraction to penetrate the collision point by mMaxPenetration.
  1345. // Note that the normal is pointing towards body 2!
  1346. // Let the extra distance that we can travel along delta_pos be 'dist': mMaxPenetration / dist = cos(angle between normal and delta_pos) = normal . delta_pos / |delta_pos|
  1347. // <=> dist = mMaxPenetration * |delta_pos| / normal . delta_pos
  1348. // Converting to a faction: delta_fraction = dist / |delta_pos| = mLinearCastTreshold / normal . delta_pos
  1349. float denominator = normal.Dot(mCCDBody.mDeltaPosition);
  1350. if (denominator > mCCDBody.mMaxPenetration) // Avoid dividing by zero, if extra hit fraction > 1 there's also no point in continuing
  1351. {
  1352. float fraction_plus_slop = fraction + mCCDBody.mMaxPenetration / denominator;
  1353. if (fraction_plus_slop < mCCDBody.mFractionPlusSlop)
  1354. {
  1355. const Body &body2 = mBodyManager.GetBody(inResult.mBodyID2);
  1356. // Check if we've already accepted all hits from this body
  1357. if (mValidateBodyPair)
  1358. {
  1359. // Validate the contact result
  1360. ValidateResult validate_result = mContactConstraintManager.ValidateContactPoint(mBodyManager.GetBody(mCCDBody.mBodyID1), body2, inResult);
  1361. switch (validate_result)
  1362. {
  1363. case ValidateResult::AcceptContact:
  1364. // Just continue
  1365. break;
  1366. case ValidateResult::AcceptAllContactsForThisBodyPair:
  1367. // Accept this and all following contacts from this body
  1368. mValidateBodyPair = false;
  1369. break;
  1370. case ValidateResult::RejectContact:
  1371. return;
  1372. case ValidateResult::RejectAllContactsForThisBodyPair:
  1373. // Reject this and all following contacts from this body
  1374. mRejectAll = true;
  1375. ForceEarlyOut();
  1376. return;
  1377. }
  1378. }
  1379. // This is the earliest hit so far, store it
  1380. mCCDBody.mContactNormal = normal;
  1381. mCCDBody.mBodyID2 = inResult.mBodyID2;
  1382. mCCDBody.mFraction = fraction;
  1383. mCCDBody.mFractionPlusSlop = fraction_plus_slop;
  1384. mResult = inResult;
  1385. // Result was assuming body 2 is not moving, but it is, so we need to correct for it
  1386. Vec3 movement2 = fraction * sCalculateBodyMotion(body2, mDeltaTime);
  1387. if (!movement2.IsNearZero())
  1388. {
  1389. mResult.mContactPointOn1 += movement2;
  1390. mResult.mContactPointOn2 += movement2;
  1391. for (Vec3 &v : mResult.mShape1Face)
  1392. v += movement2;
  1393. for (Vec3 &v : mResult.mShape2Face)
  1394. v += movement2;
  1395. }
  1396. // Update early out fraction
  1397. CastShapeCollector::UpdateEarlyOutFraction(fraction_plus_slop);
  1398. }
  1399. }
  1400. }
  1401. }
  1402. bool mValidateBodyPair; ///< If we still have to call the ValidateContactPoint for this body pair
  1403. bool mRejectAll; ///< Reject all further contacts between this body pair
  1404. private:
  1405. const BodyManager & mBodyManager;
  1406. ContactConstraintManager & mContactConstraintManager;
  1407. CCDBody & mCCDBody;
  1408. ShapeCastResult & mResult;
  1409. float mDeltaTime;
  1410. BodyID mAcceptedBodyID;
  1411. };
  1412. // Narrowphase collector
  1413. ShapeCastResult cast_shape_result;
  1414. CCDNarrowPhaseCollector np_collector(mBodyManager, mContactManager, ccd_body, cast_shape_result, ioContext->mSubStepDeltaTime);
  1415. // This collector wraps the narrowphase collector and collects the closest hit
  1416. class CCDBroadPhaseCollector : public CastShapeBodyCollector
  1417. {
  1418. public:
  1419. CCDBroadPhaseCollector(const CCDBody &inCCDBody, const Body &inBody1, const ShapeCast &inShapeCast, ShapeCastSettings &inShapeCastSettings, CCDNarrowPhaseCollector &ioCollector, const BodyManager &inBodyManager, PhysicsUpdateContext::SubStep *inSubStep, float inDeltaTime) :
  1420. mCCDBody(inCCDBody),
  1421. mBody1(inBody1),
  1422. mBody1Extent(inShapeCast.mShapeWorldBounds.GetExtent()),
  1423. mShapeCast(inShapeCast),
  1424. mShapeCastSettings(inShapeCastSettings),
  1425. mCollector(ioCollector),
  1426. mBodyManager(inBodyManager),
  1427. mSubStep(inSubStep),
  1428. mDeltaTime(inDeltaTime)
  1429. {
  1430. }
  1431. virtual void AddHit(const BroadPhaseCastResult &inResult) override
  1432. {
  1433. JPH_PROFILE_FUNCTION();
  1434. JPH_ASSERT(inResult.mFraction <= GetEarlyOutFraction(), "This hit should not have been passed on to the collector");
  1435. // Test if we're colliding with ourselves
  1436. if (mBody1.GetID() == inResult.mBodyID)
  1437. return;
  1438. // Avoid treating duplicates, if both bodies are doing CCD then only consider collision if body ID < other body ID
  1439. const Body &body2 = mBodyManager.GetBody(inResult.mBodyID);
  1440. const CCDBody *ccd_body2 = sGetCCDBody(body2, mSubStep);
  1441. if (ccd_body2 != nullptr && mCCDBody.mBodyID1 > ccd_body2->mBodyID1)
  1442. return;
  1443. // Test group filter
  1444. if (!mBody1.GetCollisionGroup().CanCollide(body2.GetCollisionGroup()))
  1445. return;
  1446. // TODO: For now we ignore sensors
  1447. if (body2.IsSensor())
  1448. return;
  1449. // Get relative movement of these two bodies
  1450. Vec3 direction = mShapeCast.mDirection - sCalculateBodyMotion(body2, mDeltaTime);
  1451. // Test if the remaining movement is less than our movement threshold
  1452. if (direction.LengthSq() < mCCDBody.mLinearCastThresholdSq)
  1453. return;
  1454. // Get the bounds of 2, widen it by the extent of 1 and test a ray to see if it hits earlier than the current early out fraction
  1455. AABox bounds = body2.GetWorldSpaceBounds();
  1456. bounds.mMin -= mBody1Extent;
  1457. bounds.mMax += mBody1Extent;
  1458. float hit_fraction = RayAABox(mShapeCast.mCenterOfMassStart.GetTranslation(), RayInvDirection(direction), bounds.mMin, bounds.mMax);
  1459. if (hit_fraction > max(FLT_MIN, GetEarlyOutFraction())) // If early out fraction <= 0, we have the possibility of finding a deeper hit so we need to clamp the early out fraction
  1460. return;
  1461. // Reset collector (this is a new body pair)
  1462. mCollector.ResetEarlyOutFraction(GetEarlyOutFraction());
  1463. mCollector.mValidateBodyPair = true;
  1464. mCollector.mRejectAll = false;
  1465. // Provide direction as hint for the active edges algorithm
  1466. mShapeCastSettings.mActiveEdgeMovementDirection = direction;
  1467. // Do narrow phase collision check
  1468. ShapeCast relative_cast(mShapeCast.mShape, mShapeCast.mScale, mShapeCast.mCenterOfMassStart, direction, mShapeCast.mShapeWorldBounds);
  1469. body2.GetTransformedShape().CastShape(relative_cast, mShapeCastSettings, mCollector);
  1470. // Update early out fraction based on narrow phase collector
  1471. if (!mCollector.mRejectAll)
  1472. UpdateEarlyOutFraction(mCollector.GetEarlyOutFraction());
  1473. }
  1474. const CCDBody & mCCDBody;
  1475. const Body & mBody1;
  1476. Vec3 mBody1Extent;
  1477. ShapeCast mShapeCast;
  1478. ShapeCastSettings & mShapeCastSettings;
  1479. CCDNarrowPhaseCollector & mCollector;
  1480. const BodyManager & mBodyManager;
  1481. PhysicsUpdateContext::SubStep *mSubStep;
  1482. float mDeltaTime;
  1483. };
  1484. // Check if we collide with any other body. Note that we use the non-locking interface as we know the broadphase cannot be modified at this point.
  1485. ShapeCast shape_cast(body.GetShape(), Vec3::sReplicate(1.0f), body.GetCenterOfMassTransform(), ccd_body.mDeltaPosition);
  1486. CCDBroadPhaseCollector bp_collector(ccd_body, body, shape_cast, settings, np_collector, mBodyManager, ioSubStep, ioContext->mSubStepDeltaTime);
  1487. mBroadPhase->CastAABoxNoLock({ shape_cast.mShapeWorldBounds, shape_cast.mDirection }, bp_collector, broadphase_layer_filter, object_layer_filter);
  1488. // Check if there was a hit
  1489. if (ccd_body.mFractionPlusSlop < 1.0f)
  1490. {
  1491. const Body &body2 = mBodyManager.GetBody(ccd_body.mBodyID2);
  1492. // Determine contact manifold
  1493. ContactManifold manifold;
  1494. ManifoldBetweenTwoFaces(cast_shape_result.mContactPointOn1, cast_shape_result.mContactPointOn2, cast_shape_result.mPenetrationAxis, mPhysicsSettings.mManifoldToleranceSq, cast_shape_result.mShape1Face, cast_shape_result.mShape2Face, manifold.mWorldSpaceContactPointsOn1, manifold.mWorldSpaceContactPointsOn2);
  1495. manifold.mSubShapeID1 = cast_shape_result.mSubShapeID1;
  1496. manifold.mSubShapeID2 = cast_shape_result.mSubShapeID2;
  1497. manifold.mPenetrationDepth = cast_shape_result.mPenetrationDepth;
  1498. manifold.mWorldSpaceNormal = ccd_body.mContactNormal;
  1499. // Call contact point callbacks
  1500. mContactManager.OnCCDContactAdded(contact_allocator, body, body2, manifold, ccd_body.mContactSettings);
  1501. // Calculate the average position from the manifold (this will result in the same impulse applied as when we apply impulses to all contact points)
  1502. if (manifold.mWorldSpaceContactPointsOn2.size() > 1)
  1503. {
  1504. Vec3 average_contact_point = Vec3::sZero();
  1505. for (const Vec3 &v : manifold.mWorldSpaceContactPointsOn2)
  1506. average_contact_point += v;
  1507. average_contact_point /= (float)manifold.mWorldSpaceContactPointsOn2.size();
  1508. ccd_body.mContactPointOn2 = average_contact_point;
  1509. }
  1510. else
  1511. ccd_body.mContactPointOn2 = cast_shape_result.mContactPointOn2;
  1512. }
  1513. }
  1514. // Atomically accumulate the number of found manifolds and body pairs
  1515. ioSubStep->mStep->mNumBodyPairs += contact_allocator.mNumBodyPairs;
  1516. ioSubStep->mStep->mNumManifolds += contact_allocator.mNumManifolds;
  1517. }
  1518. void PhysicsSystem::JobResolveCCDContacts(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1519. {
  1520. #ifdef JPH_ENABLE_ASSERTS
  1521. // Read/write body access
  1522. BodyAccess::Grant grant(BodyAccess::EAccess::ReadWrite, BodyAccess::EAccess::ReadWrite);
  1523. // We activate bodies that we collide with
  1524. BodyManager::GrantActiveBodiesAccess grant_active(true, false);
  1525. #endif
  1526. uint32 num_active_bodies_after_find_collisions = ioSubStep->mStep->mActiveBodyReadIdx;
  1527. TempAllocator *temp_allocator = ioContext->mTempAllocator;
  1528. // Check if there's anything to do
  1529. uint num_ccd_bodies = ioSubStep->mNumCCDBodies;
  1530. if (num_ccd_bodies > 0)
  1531. {
  1532. // Sort on fraction so that we process earliest collisions first
  1533. // This is needed to make the simulation deterministic and also to be able to stop contact processing
  1534. // between body pairs if an earlier hit was found involving the body by another CCD body
  1535. // (if it's body ID < this CCD body's body ID - see filtering logic in CCDBroadPhaseCollector)
  1536. CCDBody **sorted_ccd_bodies = (CCDBody **)temp_allocator->Allocate(num_ccd_bodies * sizeof(CCDBody *));
  1537. {
  1538. JPH_PROFILE("Sort");
  1539. // We don't want to copy the entire struct (it's quite big), so we create a pointer array first
  1540. CCDBody *src_ccd_bodies = ioSubStep->mCCDBodies;
  1541. CCDBody **dst_ccd_bodies = sorted_ccd_bodies;
  1542. CCDBody **dst_ccd_bodies_end = dst_ccd_bodies + num_ccd_bodies;
  1543. while (dst_ccd_bodies < dst_ccd_bodies_end)
  1544. *(dst_ccd_bodies++) = src_ccd_bodies++;
  1545. // Which we then sort
  1546. sort(sorted_ccd_bodies, sorted_ccd_bodies + num_ccd_bodies, [](const CCDBody *inBody1, const CCDBody *inBody2)
  1547. {
  1548. if (inBody1->mFractionPlusSlop != inBody2->mFractionPlusSlop)
  1549. return inBody1->mFractionPlusSlop < inBody2->mFractionPlusSlop;
  1550. return inBody1->mBodyID1 < inBody2->mBodyID1;
  1551. });
  1552. }
  1553. // We can collide with bodies that are not active, we track them here so we can activate them in one go at the end.
  1554. // This is also needed because we can't modify the active body array while we iterate it.
  1555. static constexpr int cBodiesBatch = 64;
  1556. BodyID *bodies_to_activate = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1557. int num_bodies_to_activate = 0;
  1558. // We can move bodies that are not part of an island. In this case we need to notify the broadphase of the movement.
  1559. BodyID *bodies_to_update_bounds = (BodyID *)JPH_STACK_ALLOC(cBodiesBatch * sizeof(BodyID));
  1560. int num_bodies_to_update_bounds = 0;
  1561. for (uint i = 0; i < num_ccd_bodies; ++i)
  1562. {
  1563. const CCDBody *ccd_body = sorted_ccd_bodies[i];
  1564. Body &body1 = mBodyManager.GetBody(ccd_body->mBodyID1);
  1565. MotionProperties *body_mp = body1.GetMotionProperties();
  1566. // If there was a hit
  1567. if (!ccd_body->mBodyID2.IsInvalid())
  1568. {
  1569. Body &body2 = mBodyManager.GetBody(ccd_body->mBodyID2);
  1570. // Determine if the other body has a CCD body
  1571. CCDBody *ccd_body2 = sGetCCDBody(body2, ioSubStep);
  1572. if (ccd_body2 != nullptr)
  1573. {
  1574. JPH_ASSERT(ccd_body2->mBodyID2 != ccd_body->mBodyID1, "If we collided with another body, that other body should have ignored collisions with us!");
  1575. // Check if the other body found a hit that is further away
  1576. if (ccd_body2->mFraction > ccd_body->mFraction)
  1577. {
  1578. // Reset the colliding body of the other CCD body. The other body will shorten its distance travelled and will not do any collision response (we'll do that).
  1579. // This means that at this point we have triggered a contact point add/persist for our further hit by accident for the other body.
  1580. // We accept this as calling the contact point callbacks here would require persisting the manifolds up to this point and doing the callbacks single threaded.
  1581. ccd_body2->mBodyID2 = BodyID();
  1582. ccd_body2->mFractionPlusSlop = ccd_body->mFraction;
  1583. }
  1584. }
  1585. // If the other body moved less than us before hitting something, we're not colliding with it so we again have triggered contact point add/persist callbacks by accident.
  1586. // We'll just move to the collision position anyway (as that's the last position we know is good), but we won't do any collision response.
  1587. if (ccd_body2 == nullptr || ccd_body2->mFraction >= ccd_body->mFraction)
  1588. {
  1589. // Calculate contact points relative to center of mass of both bodies
  1590. Vec3 r1_plus_u = ccd_body->mContactPointOn2 - (body1.GetCenterOfMassPosition() + ccd_body->mFraction * ccd_body->mDeltaPosition);
  1591. Vec3 r2 = ccd_body->mContactPointOn2 - body2.GetCenterOfMassPosition();
  1592. // Calculate velocity of collision points
  1593. Vec3 v1 = body1.GetPointVelocityCOM(r1_plus_u);
  1594. Vec3 v2 = body2.GetPointVelocityCOM(r2);
  1595. Vec3 relative_velocity = v2 - v1;
  1596. float normal_velocity = relative_velocity.Dot(ccd_body->mContactNormal);
  1597. // Calculate velocity bias due to restitution
  1598. float normal_velocity_bias;
  1599. if (ccd_body->mContactSettings.mCombinedRestitution > 0.0f && normal_velocity < -mPhysicsSettings.mMinVelocityForRestitution)
  1600. normal_velocity_bias = ccd_body->mContactSettings.mCombinedRestitution * normal_velocity;
  1601. else
  1602. normal_velocity_bias = 0.0f;
  1603. // Solve contact constraint
  1604. AxisConstraintPart contact_constraint;
  1605. contact_constraint.CalculateConstraintProperties(ioContext->mSubStepDeltaTime, body1, r1_plus_u, body2, r2, ccd_body->mContactNormal, normal_velocity_bias);
  1606. contact_constraint.SolveVelocityConstraint(body1, body2, ccd_body->mContactNormal, -FLT_MAX, FLT_MAX);
  1607. // Apply friction
  1608. if (ccd_body->mContactSettings.mCombinedFriction > 0.0f)
  1609. {
  1610. Vec3 tangent1 = ccd_body->mContactNormal.GetNormalizedPerpendicular();
  1611. Vec3 tangent2 = ccd_body->mContactNormal.Cross(tangent1);
  1612. float max_lambda_f = ccd_body->mContactSettings.mCombinedFriction * contact_constraint.GetTotalLambda();
  1613. AxisConstraintPart friction1;
  1614. friction1.CalculateConstraintProperties(ioContext->mSubStepDeltaTime, body1, r1_plus_u, body2, r2, tangent1, 0.0f);
  1615. friction1.SolveVelocityConstraint(body1, body2, tangent1, -max_lambda_f, max_lambda_f);
  1616. AxisConstraintPart friction2;
  1617. friction2.CalculateConstraintProperties(ioContext->mSubStepDeltaTime, body1, r1_plus_u, body2, r2, tangent2, 0.0f);
  1618. friction2.SolveVelocityConstraint(body1, body2, tangent2, -max_lambda_f, max_lambda_f);
  1619. }
  1620. // Clamp velocities
  1621. body_mp->ClampLinearVelocity();
  1622. body_mp->ClampAngularVelocity();
  1623. if (body2.IsDynamic())
  1624. {
  1625. MotionProperties *body2_mp = body2.GetMotionProperties();
  1626. body2_mp->ClampLinearVelocity();
  1627. body2_mp->ClampAngularVelocity();
  1628. // Activate the body if it is not already active
  1629. if (!body2.IsActive())
  1630. {
  1631. bodies_to_activate[num_bodies_to_activate++] = ccd_body->mBodyID2;
  1632. if (num_bodies_to_activate == cBodiesBatch)
  1633. {
  1634. // Batch is full, activate now
  1635. mBodyManager.ActivateBodies(bodies_to_activate, num_bodies_to_activate);
  1636. num_bodies_to_activate = 0;
  1637. }
  1638. }
  1639. }
  1640. #ifdef JPH_DEBUG_RENDERER
  1641. if (sDrawMotionQualityLinearCast)
  1642. {
  1643. // Draw the collision location
  1644. Mat44 collision_transform = Mat44::sTranslation(ccd_body->mFraction * ccd_body->mDeltaPosition) * body1.GetCenterOfMassTransform();
  1645. body1.GetShape()->Draw(DebugRenderer::sInstance, collision_transform, Vec3::sReplicate(1.0f), Color::sYellow, false, true);
  1646. // Draw the collision location + slop
  1647. Mat44 collision_transform_plus_slop = Mat44::sTranslation(ccd_body->mFractionPlusSlop * ccd_body->mDeltaPosition) * body1.GetCenterOfMassTransform();
  1648. body1.GetShape()->Draw(DebugRenderer::sInstance, collision_transform_plus_slop, Vec3::sReplicate(1.0f), Color::sOrange, false, true);
  1649. // Draw contact normal
  1650. DebugRenderer::sInstance->DrawArrow(ccd_body->mContactPointOn2, ccd_body->mContactPointOn2 - ccd_body->mContactNormal, Color::sYellow, 0.1f);
  1651. // Draw post contact velocity
  1652. DebugRenderer::sInstance->DrawArrow(collision_transform.GetTranslation(), collision_transform.GetTranslation() + body1.GetLinearVelocity(), Color::sOrange, 0.1f);
  1653. DebugRenderer::sInstance->DrawArrow(collision_transform.GetTranslation(), collision_transform.GetTranslation() + body1.GetAngularVelocity(), Color::sPurple, 0.1f);
  1654. }
  1655. #endif // JPH_DEBUG_RENDERER
  1656. }
  1657. }
  1658. // Update body position
  1659. body1.AddPositionStep(ccd_body->mDeltaPosition * ccd_body->mFractionPlusSlop);
  1660. // If the body was activated due to an earlier CCD step it will have an index in the active
  1661. // body list that it higher than the highest one we processed during FindCollisions
  1662. // which means it hasn't been assigned an island and will not be updated by an island
  1663. // this means that we need to update its bounds manually
  1664. if (body_mp->GetIndexInActiveBodiesInternal() >= num_active_bodies_after_find_collisions)
  1665. {
  1666. body1.CalculateWorldSpaceBoundsInternal();
  1667. bodies_to_update_bounds[num_bodies_to_update_bounds++] = body1.GetID();
  1668. if (num_bodies_to_update_bounds == cBodiesBatch)
  1669. {
  1670. // Buffer full, flush now
  1671. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds);
  1672. num_bodies_to_update_bounds = 0;
  1673. }
  1674. }
  1675. }
  1676. // Activate the requested bodies
  1677. if (num_bodies_to_activate > 0)
  1678. mBodyManager.ActivateBodies(bodies_to_activate, num_bodies_to_activate);
  1679. // Notify change bounds on requested bodies
  1680. if (num_bodies_to_update_bounds > 0)
  1681. mBroadPhase->NotifyBodiesAABBChanged(bodies_to_update_bounds, num_bodies_to_update_bounds, false);
  1682. // Free the sorted ccd bodies
  1683. temp_allocator->Free(sorted_ccd_bodies, num_ccd_bodies * sizeof(CCDBody *));
  1684. }
  1685. // Ensure we free the CCD bodies array now, will not call the destructor!
  1686. temp_allocator->Free(ioSubStep->mActiveBodyToCCDBody, ioSubStep->mNumActiveBodyToCCDBody * sizeof(int));
  1687. ioSubStep->mActiveBodyToCCDBody = nullptr;
  1688. ioSubStep->mNumActiveBodyToCCDBody = 0;
  1689. temp_allocator->Free(ioSubStep->mCCDBodies, ioSubStep->mCCDBodiesCapacity * sizeof(CCDBody));
  1690. ioSubStep->mCCDBodies = nullptr;
  1691. ioSubStep->mCCDBodiesCapacity = 0;
  1692. }
  1693. void PhysicsSystem::JobContactRemovedCallbacks(const PhysicsUpdateContext::Step *ioStep)
  1694. {
  1695. #ifdef JPH_ENABLE_ASSERTS
  1696. // We don't touch any bodies
  1697. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::None);
  1698. #endif
  1699. // Reset the Body::EFlags::InvalidateContactCache flag for all bodies
  1700. mBodyManager.ValidateContactCacheForAllBodies();
  1701. // Trigger all contact removed callbacks by looking at last step contact points that have not been flagged as reused
  1702. mContactManager.ContactPointRemovedCallbacks();
  1703. // Finalize the contact cache (this swaps the read and write versions of the contact cache)
  1704. mContactManager.FinalizeContactCache(ioStep->mNumBodyPairs, ioStep->mNumManifolds);
  1705. }
  1706. void PhysicsSystem::JobSolvePositionConstraints(PhysicsUpdateContext *ioContext, PhysicsUpdateContext::SubStep *ioSubStep)
  1707. {
  1708. #ifdef JPH_ENABLE_ASSERTS
  1709. // We fix up position errors
  1710. BodyAccess::Grant grant(BodyAccess::EAccess::None, BodyAccess::EAccess::ReadWrite);
  1711. // Can only deactivate bodies
  1712. BodyManager::GrantActiveBodiesAccess grant_active(false, true);
  1713. #endif
  1714. float delta_time = ioContext->mSubStepDeltaTime;
  1715. Constraint **active_constraints = ioContext->mActiveConstraints;
  1716. for (;;)
  1717. {
  1718. // Next island
  1719. uint32 island_idx = ioSubStep->mSolvePositionConstraintsNextIsland++;
  1720. if (island_idx >= mIslandBuilder.GetNumIslands())
  1721. break;
  1722. JPH_PROFILE("Island");
  1723. // Get iterators for this island
  1724. BodyID *bodies_begin, *bodies_end;
  1725. mIslandBuilder.GetBodiesInIsland(island_idx, bodies_begin, bodies_end);
  1726. uint32 *constraints_begin, *constraints_end;
  1727. bool has_constraints = mIslandBuilder.GetConstraintsInIsland(island_idx, constraints_begin, constraints_end);
  1728. uint32 *contacts_begin, *contacts_end;
  1729. bool has_contacts = mIslandBuilder.GetContactsInIsland(island_idx, contacts_begin, contacts_end);
  1730. // Correct positions
  1731. if (has_contacts || has_constraints)
  1732. {
  1733. float baumgarte = mPhysicsSettings.mBaumgarte;
  1734. for (int position_step = 0; position_step < mPhysicsSettings.mNumPositionSteps; ++position_step)
  1735. {
  1736. bool constraint_impulse = ConstraintManager::sSolvePositionConstraints(active_constraints, constraints_begin, constraints_end, delta_time, baumgarte);
  1737. bool contact_impulse = mContactManager.SolvePositionConstraints(contacts_begin, contacts_end);
  1738. if (!constraint_impulse && !contact_impulse)
  1739. break;
  1740. }
  1741. }
  1742. // Only check sleeping in the last sub step of the last step
  1743. // Also resets force and torque used during the apply gravity phase
  1744. if (ioSubStep->mIsLastOfAll)
  1745. {
  1746. JPH_PROFILE("Check Sleeping");
  1747. static_assert(int(Body::ECanSleep::CannotSleep) == 0 && int(Body::ECanSleep::CanSleep) == 1, "Loop below makes this assumption");
  1748. int all_can_sleep = mPhysicsSettings.mAllowSleeping? int(Body::ECanSleep::CanSleep) : int(Body::ECanSleep::CannotSleep);
  1749. float time_before_sleep = mPhysicsSettings.mTimeBeforeSleep;
  1750. float max_movement = mPhysicsSettings.mPointVelocitySleepThreshold * time_before_sleep;
  1751. for (const BodyID *body_id = bodies_begin; body_id < bodies_end; ++body_id)
  1752. {
  1753. Body &body = mBodyManager.GetBody(*body_id);
  1754. // Update bounding box
  1755. body.CalculateWorldSpaceBoundsInternal();
  1756. // Update sleeping
  1757. all_can_sleep &= int(body.UpdateSleepStateInternal(ioContext->mSubStepDeltaTime, max_movement, time_before_sleep));
  1758. // Reset force and torque
  1759. body.GetMotionProperties()->ResetForceAndTorqueInternal();
  1760. }
  1761. // If all bodies indicate they can sleep we can deactivate them
  1762. if (all_can_sleep == int(Body::ECanSleep::CanSleep))
  1763. mBodyManager.DeactivateBodies(bodies_begin, int(bodies_end - bodies_begin));
  1764. }
  1765. else
  1766. {
  1767. JPH_PROFILE("Update Bounds");
  1768. // Update bounding box only for all other sub steps
  1769. for (const BodyID *body_id = bodies_begin; body_id < bodies_end; ++body_id)
  1770. {
  1771. Body &body = mBodyManager.GetBody(*body_id);
  1772. body.CalculateWorldSpaceBoundsInternal();
  1773. }
  1774. }
  1775. // Notify broadphase of changed objects (find ccd contacts can do linear casts in the next step, so
  1776. // we need to do this every sub step)
  1777. // Note: Shuffles the BodyID's around!!!
  1778. mBroadPhase->NotifyBodiesAABBChanged(bodies_begin, int(bodies_end - bodies_begin), false);
  1779. }
  1780. }
  1781. void PhysicsSystem::SaveState(StateRecorder &inStream) const
  1782. {
  1783. JPH_PROFILE_FUNCTION();
  1784. inStream.Write(mPreviousSubStepDeltaTime);
  1785. inStream.Write(mGravity);
  1786. mBodyManager.SaveState(inStream);
  1787. mContactManager.SaveState(inStream);
  1788. mConstraintManager.SaveState(inStream);
  1789. }
  1790. bool PhysicsSystem::RestoreState(StateRecorder &inStream)
  1791. {
  1792. JPH_PROFILE_FUNCTION();
  1793. inStream.Read(mPreviousSubStepDeltaTime);
  1794. inStream.Read(mGravity);
  1795. if (!mBodyManager.RestoreState(inStream))
  1796. return false;
  1797. if (!mContactManager.RestoreState(inStream))
  1798. return false;
  1799. if (!mConstraintManager.RestoreState(inStream))
  1800. return false;
  1801. // Update bounding boxes for all bodies in the broadphase
  1802. Array<BodyID> bodies;
  1803. for (const Body *b : mBodyManager.GetBodies())
  1804. if (BodyManager::sIsValidBodyPointer(b) && b->IsInBroadPhase())
  1805. bodies.push_back(b->GetID());
  1806. if (!bodies.empty())
  1807. mBroadPhase->NotifyBodiesAABBChanged(&bodies[0], (int)bodies.size());
  1808. return true;
  1809. }
  1810. JPH_NAMESPACE_END