123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #include <Jolt/Jolt.h>
- #include <Jolt/Physics/Collision/CastSphereVsTriangles.h>
- #include <Jolt/Physics/Collision/TransformedShape.h>
- #include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
- #include <Jolt/Physics/Collision/Shape/SphereShape.h>
- #include <Jolt/Physics/Collision/ActiveEdges.h>
- #include <Jolt/Physics/Collision/NarrowPhaseStats.h>
- #include <Jolt/Geometry/ClosestPoint.h>
- #include <Jolt/Geometry/RaySphere.h>
- #include <Jolt/Core/Profiler.h>
- JPH_NAMESPACE_BEGIN
- CastSphereVsTriangles::CastSphereVsTriangles(const ShapeCast &inShapeCast, const ShapeCastSettings &inShapeCastSettings, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, CastShapeCollector &ioCollector) :
- mStart(inShapeCast.mCenterOfMassStart.GetTranslation()),
- mDirection(inShapeCast.mDirection),
- mShapeCastSettings(inShapeCastSettings),
- mCenterOfMassTransform2(inCenterOfMassTransform2),
- mScale(inScale),
- mSubShapeIDCreator1(inSubShapeIDCreator1),
- mCollector(ioCollector)
- {
- // Cast to sphere shape
- JPH_ASSERT(inShapeCast.mShape->GetSubType() == EShapeSubType::Sphere);
- const SphereShape *sphere = static_cast<const SphereShape *>(inShapeCast.mShape);
- // Scale the radius
- mRadius = sphere->GetRadius() * abs(inShapeCast.mScale.GetX());
- // Determine if shape is inside out or not
- mScaleSign = ScaleHelpers::IsInsideOut(inScale)? -1.0f : 1.0f;
- }
- void CastSphereVsTriangles::AddHit(bool inBackFacing, const SubShapeID &inSubShapeID2, float inFraction, Vec3Arg inContactPointA, Vec3Arg inContactPointB, Vec3Arg inContactNormal)
- {
- // Convert to world space
- Vec3 contact_point_a = mCenterOfMassTransform2 * (mStart + inContactPointA);
- Vec3 contact_point_b = mCenterOfMassTransform2 * (mStart + inContactPointB);
- Vec3 contact_normal_world = mCenterOfMassTransform2.Multiply3x3(inContactNormal);
-
- // Its a hit, store the sub shape id's
- ShapeCastResult result(inFraction, contact_point_a, contact_point_b, contact_normal_world, inBackFacing, mSubShapeIDCreator1.GetID(), inSubShapeID2, TransformedShape::sGetBodyID(mCollector.GetContext()));
- // Note: We don't gather faces here because that's only useful if both shapes have a face. Since the sphere always has only 1 contact point, the manifold is always a point.
- JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
- mCollector.AddHit(result);
- }
- void CastSphereVsTriangles::AddHitWithActiveEdgeDetection(Vec3Arg inV0, Vec3Arg inV1, Vec3Arg inV2, bool inBackFacing, Vec3Arg inTriangleNormal, uint8 inActiveEdges, const SubShapeID &inSubShapeID2, float inFraction, Vec3Arg inContactPointA, Vec3Arg inContactPointB, Vec3Arg inContactNormal)
- {
- // Check if we have enabled active edge detection
- Vec3 contact_normal = inContactNormal;
- if (mShapeCastSettings.mActiveEdgeMode == EActiveEdgeMode::CollideOnlyWithActive && inActiveEdges != 0b111)
- {
- // Convert the active edge velocity hint to local space
- Vec3 active_edge_movement_direction = mCenterOfMassTransform2.Multiply3x3Transposed(mShapeCastSettings.mActiveEdgeMovementDirection);
- // Update the contact normal to account for active edges
- // Note that we flip the triangle normal as the penetration axis is pointing towards the triangle instead of away
- contact_normal = ActiveEdges::FixNormal(inV0, inV1, inV2, inBackFacing? inTriangleNormal : -inTriangleNormal, inActiveEdges, inContactPointB, inContactNormal, active_edge_movement_direction);
- }
- AddHit(inBackFacing, inSubShapeID2, inFraction, inContactPointA, inContactPointB, contact_normal);
- }
- // This is a simplified version of the ray cylinder test from: Real Time Collision Detection - Christer Ericson
- // Chapter 5.3.7, page 194-197. Some conditions have been removed as we're not interested in hitting the caps of the cylinder.
- // Note that the ray origin is assumed to be the origin here.
- float CastSphereVsTriangles::RayCylinder(Vec3Arg inRayDirection, Vec3Arg inCylinderA, Vec3Arg inCylinderB, float inRadius) const
- {
- // Calculate cylinder axis
- Vec3 axis = inCylinderB - inCylinderA;
- // Make ray start relative to cylinder side A (moving cylinder A to the origin)
- Vec3 start = -inCylinderA;
- // Test if segment is fully on the A side of the cylinder
- float start_dot_axis = start.Dot(axis);
- float direction_dot_axis = inRayDirection.Dot(axis);
- float end_dot_axis = start_dot_axis + direction_dot_axis;
- if (start_dot_axis < 0.0f && end_dot_axis < 0.0f)
- return FLT_MAX;
- // Test if segment is fully on the B side of the cylinder
- float axis_len_sq = axis.LengthSq();
- if (start_dot_axis > axis_len_sq && end_dot_axis > axis_len_sq)
- return FLT_MAX;
- // Calculate a, b and c, the factors for quadratic equation
- // We're basically solving the ray: x = start + direction * t
- // The closest point to x on the segment A B is: w = (x . axis) * axis / (axis . axis)
- // The distance between x and w should be radius: (x - w) . (x - w) = radius^2
- // Solving this gives the following:
- float a = axis_len_sq * inRayDirection.LengthSq() - Square(direction_dot_axis);
- if (abs(a) < 1.0e-6f)
- return FLT_MAX; // Segment runs parallel to cylinder axis, stop processing, we will either hit at fraction = 0 or we'll hit a vertex
- float b = axis_len_sq * start.Dot(inRayDirection) - direction_dot_axis * start_dot_axis; // should be multiplied by 2, instead we'll divide a and c by 2 when we solve the quadratic equation
- float c = axis_len_sq * (start.LengthSq() - Square(inRadius)) - Square(start_dot_axis);
- float det = Square(b) - a * c; // normally 4 * a * c but since both a and c need to be divided by 2 we lose the 4
- if (det < 0.0f)
- return FLT_MAX; // No solution to quadractic equation
-
- // Solve fraction t where the ray hits the cylinder
- float t = -(b + sqrt(det)) / a; // normally divided by 2 * a but since a should be divided by 2 we lose the 2
- if (t < 0.0f || t > 1.0f)
- return FLT_MAX; // Intersection lies outside segment
- if (start_dot_axis + t * direction_dot_axis < 0.0f || start_dot_axis + t * direction_dot_axis > axis_len_sq)
- return FLT_MAX; // Intersection outside the end point of the cyclinder, stop processing, we will possibly hit a vertex
- return t;
- }
- void CastSphereVsTriangles::Cast(Vec3Arg inV0, Vec3Arg inV1, Vec3Arg inV2, uint8 inActiveEdges, const SubShapeID &inSubShapeID2)
- {
- JPH_PROFILE_FUNCTION();
- // Scale triangle and make it relative to the start of the cast
- Vec3 v0 = mScale * inV0 - mStart;
- Vec3 v1 = mScale * inV1 - mStart;
- Vec3 v2 = mScale * inV2 - mStart;
- // Calculate triangle normal
- Vec3 triangle_normal = mScaleSign * (v1 - v0).Cross(v2 - v0).Normalized();
- // Backface check
- float normal_dot_direction = triangle_normal.Dot(mDirection);
- bool back_facing = normal_dot_direction > 0.0f;
- if (mShapeCastSettings.mBackFaceModeTriangles == EBackFaceMode::IgnoreBackFaces && back_facing)
- return;
- // Test if distance between the sphere and plane of triangle is smaller or equal than the radius
- if (abs(v0.Dot(triangle_normal)) <= mRadius)
- {
- // Check if the sphere intersects at the start of the cast
- uint32 closest_feature;
- Vec3 q = ClosestPoint::GetClosestPointOnTriangle(v0, v1, v2, closest_feature);
- float q_len_sq = q.LengthSq();
- if (q_len_sq <= Square(mRadius))
- {
- // Yes it does, generate contacts now
- float q_len = sqrt(q_len_sq);
- Vec3 contact_normal = q_len > 0.0f? q / q_len : Vec3::sAxisY();
- Vec3 contact_point_a = q + contact_normal * (mRadius - q_len);
- Vec3 contact_point_b = q;
- AddHitWithActiveEdgeDetection(v0, v1, v2, back_facing, triangle_normal, inActiveEdges, inSubShapeID2, 0.0f, contact_point_a, contact_point_b, contact_normal);
- return;
- }
- }
- else
- {
- // Check if cast is not parallel to the plane of the triangle
- float abs_normal_dot_direction = abs(normal_dot_direction);
- if (abs_normal_dot_direction > 1.0e-6f)
- {
- // Calculate the point on the sphere that will hit the triangle's plane first and calculate a fraction where it will do so
- Vec3 d = Sign(normal_dot_direction) * mRadius * triangle_normal;
- float plane_intersection = (v0 - d).Dot(triangle_normal) / normal_dot_direction;
- // Check if sphere will hit in the interval that we're interested in
- if (plane_intersection * abs_normal_dot_direction < -mRadius // Sphere hits the plane before the sweep, cannot intersect
- || plane_intersection >= mCollector.GetEarlyOutFraction()) // Sphere hits the plane after the sweep / early out fraction, cannot intersect
- return;
- // We can only report an interior hit if we're hitting the plane during our sweep and not before
- if (plane_intersection >= 0.0f)
- {
- // Calculate the point of contact on the plane
- Vec3 p = d + plane_intersection * mDirection;
- // Check if this is an interior point
- float u, v, w;
- ClosestPoint::GetBaryCentricCoordinates(v0 - p, v1 - p, v2 - p, u, v, w);
- if (u >= 0.0f && v >= 0.0f && w >= 0.0f)
- {
- // Interior point, we found the collision point. We don't need to check active edges.
- AddHit(back_facing, inSubShapeID2, plane_intersection, p, p, back_facing? triangle_normal : -triangle_normal);
- return;
- }
- }
- }
- }
- // Test 3 edges
- float fraction = RayCylinder(mDirection, v0, v1, mRadius);
- fraction = min(fraction, RayCylinder(mDirection, v1, v2, mRadius));
- fraction = min(fraction, RayCylinder(mDirection, v2, v0, mRadius));
- // Test 3 vertices
- fraction = min(fraction, RaySphere(Vec3::sZero(), mDirection, v0, mRadius));
- fraction = min(fraction, RaySphere(Vec3::sZero(), mDirection, v1, mRadius));
- fraction = min(fraction, RaySphere(Vec3::sZero(), mDirection, v2, mRadius));
- // Check if we have a collision
- JPH_ASSERT(fraction >= 0.0f);
- if (fraction < mCollector.GetEarlyOutFraction())
- {
- // Calculate the center of the sphere at the point of contact
- Vec3 p = fraction * mDirection;
- // Get contact point and normal
- uint32 closest_feature;
- Vec3 q = ClosestPoint::GetClosestPointOnTriangle(v0 - p, v1 - p, v2 - p, closest_feature);
- Vec3 contact_normal = q.Normalized();
- Vec3 contact_point_ab = p + q;
- AddHitWithActiveEdgeDetection(v0, v1, v2, back_facing, triangle_normal, inActiveEdges, inSubShapeID2, fraction, contact_point_ab, contact_point_ab, contact_normal);
- }
- }
- JPH_NAMESPACE_END
|