123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/Body/Body.h>
- #include <Jolt/Physics/StateRecorder.h>
- JPH_NAMESPACE_BEGIN
- /// Quaternion based constraint that constrains rotation around all axis so that only translation is allowed.
- ///
- /// NOTE: This constraint part is more expensive than the RotationEulerConstraintPart and slightly more correct since
- /// RotationEulerConstraintPart::SolvePositionConstraint contains an approximation. In practice the difference
- /// is small, so the RotationEulerConstraintPart is probably the better choice.
- ///
- /// Rotation is fixed between bodies like this:
- ///
- /// q2 = q1 r0
- ///
- /// Where:
- /// q1, q2 = world space quaternions representing rotation of body 1 and 2.
- /// r0 = initial rotation between bodies in local space of body 1, this can be calculated by:
- ///
- /// q20 = q10 r0
- /// <=> r0 = q10^* q20
- ///
- /// Where:
- /// q10, q20 = initial world space rotations of body 1 and 2.
- /// q10^* = conjugate of quaternion q10 (which is the same as the inverse for a unit quaternion)
- ///
- /// We exclusively use the conjugate below:
- ///
- /// r0^* = q20^* q10
- ///
- /// The error in the rotation is (in local space of body 1):
- ///
- /// q2 = q1 error r0
- /// <=> error = q1^* q2 r0^*
- ///
- /// The imaginary part of the quaternion represents the rotation axis * sin(angle / 2). The real part of the quaternion
- /// does not add any additional information (we know the quaternion in normalized) and we're removing 3 degrees of freedom
- /// so we want 3 parameters. Therefore we define the constraint equation like:
- ///
- /// C = A q1^* q2 r0^* = 0
- ///
- /// Where (if you write a quaternion as [real-part, i-part, j-part, k-part]):
- ///
- /// [0, 1, 0, 0]
- /// A = [0, 0, 1, 0]
- /// [0, 0, 0, 1]
- ///
- /// or in our case since we store a quaternion like [i-part, j-part, k-part, real-part]:
- ///
- /// [1, 0, 0, 0]
- /// A = [0, 1, 0, 0]
- /// [0, 0, 1, 0]
- ///
- /// Time derivative:
- ///
- /// d/dt C = A (q1^* d/dt(q2) + d/dt(q1^*) q2) r0^*
- /// = A (q1^* (1/2 W2 q2) + (1/2 W1 q1)^* q2) r0^*
- /// = 1/2 A (q1^* W2 q2 + q1^* W1^* q2) r0^*
- /// = 1/2 A (q1^* W2 q2 - q1^* W1 * q2) r0^*
- /// = 1/2 A ML(q1^*) MR(q2 r0^*) (W2 - W1)
- /// = 1/2 A ML(q1^*) MR(q2 r0^*) A^T (w2 - w1)
- ///
- /// Where:
- /// W1 = [0, w1], W2 = [0, w2] (converting angular velocity to imaginary part of quaternion).
- /// w1, w2 = angular velocity of body 1 and 2.
- /// d/dt(q) = 1/2 W q (time derivative of a quaternion).
- /// W^* = -W (conjugate negates angular velocity as quaternion).
- /// ML(q): 4x4 matrix so that q * p = ML(q) * p, where q and p are quaternions.
- /// MR(p): 4x4 matrix so that q * p = MR(p) * q, where q and p are quaternions.
- /// A^T: Transpose of A.
- ///
- /// Jacobian:
- ///
- /// J = [0, -1/2 A ML(q1^*) MR(q2 r0^*) A^T, 0, 1/2 A ML(q1^*) MR(q2 r0^*) A^T]
- /// = [0, -JP, 0, JP]
- ///
- /// Suggested reading:
- /// - 3D Constraint Derivations for Impulse Solvers - Marijn Tamis
- /// - Game Physics Pearls - Section 9 - Quaternion Based Constraints - Claude Lacoursiere
- class RotationQuatConstraintPart
- {
- private:
- /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
- JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inLambda) const
- {
- // Apply impulse if delta is not zero
- if (inLambda != Vec3::sZero())
- {
- // Calculate velocity change due to constraint
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler velocity integration:
- // v' = v + M^-1 P
- if (ioBody1.IsDynamic())
- ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1_JPT.Multiply3x3(inLambda));
- if (ioBody2.IsDynamic())
- ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2_JPT.Multiply3x3(inLambda));
- return true;
- }
- return false;
- }
- public:
- /// Return inverse of initial rotation from body 1 to body 2 in body 1 space
- static Quat sGetInvInitialOrientation(const Body &inBody1, const Body &inBody2)
- {
- // q20 = q10 r0
- // <=> r0 = q10^-1 q20
- // <=> r0^-1 = q20^-1 q10
- //
- // where:
- //
- // q20 = initial orientation of body 2
- // q10 = initial orientation of body 1
- // r0 = initial rotation rotation from body 1 to body 2
- return inBody2.GetRotation().Conjugated() * inBody1.GetRotation();
- }
- /// Calculate properties used during the functions below
- inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, const Body &inBody2, Mat44Arg inRotation2, QuatArg inInvInitialOrientation)
- {
- // Calculate: JP = 1/2 A ML(q1^*) MR(q2 r0^*) A^T
- Mat44 jp = (Mat44::sQuatLeftMultiply(0.5f * inBody1.GetRotation().Conjugated()) * Mat44::sQuatRightMultiply(inBody2.GetRotation() * inInvInitialOrientation)).GetRotationSafe();
- // Calculate properties used during constraint solving
- Mat44 invi1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero();
- Mat44 invi2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero();
- mInvI1_JPT = invi1.Multiply3x3RightTransposed(jp);
- mInvI2_JPT = invi2.Multiply3x3RightTransposed(jp);
- // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
- // = (JP * I1^-1 * JP^T + JP * I2^-1 * JP^T)^-1
- // = (JP * (I1^-1 + I2^-1) * JP^T)^-1
- if (!mEffectiveMass.SetInversed3x3(jp.Multiply3x3(invi1 + invi2).Multiply3x3RightTransposed(jp)))
- Deactivate();
- else
- mEffectiveMass_JP = mEffectiveMass.Multiply3x3(jp);
- }
- /// Deactivate this constraint
- inline void Deactivate()
- {
- mEffectiveMass = Mat44::sZero();
- mEffectiveMass_JP = Mat44::sZero();
- mTotalLambda = Vec3::sZero();
- }
- /// Check if constraint is active
- inline bool IsActive() const
- {
- return mEffectiveMass(3, 3) != 0.0f;
- }
- /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
- inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
- {
- mTotalLambda *= inWarmStartImpulseRatio;
- ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
- }
- /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
- inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
- {
- // Calculate lagrange multiplier:
- //
- // lambda = -K^-1 (J v + b)
- Vec3 lambda = mEffectiveMass_JP.Multiply3x3(ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity());
- mTotalLambda += lambda;
- return ApplyVelocityStep(ioBody1, ioBody2, lambda);
- }
- /// Iteratively update the position constraint. Makes sure C(...) = 0.
- inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, QuatArg inInvInitialOrientation, float inBaumgarte) const
- {
- // Calculate constraint equation
- Vec3 c = (ioBody1.GetRotation().Conjugated() * ioBody2.GetRotation() * inInvInitialOrientation).GetXYZ();
- if (c != Vec3::sZero())
- {
- // Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
- //
- // lambda = -K^-1 * beta / dt * C
- //
- // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
- Vec3 lambda = -inBaumgarte * mEffectiveMass * c;
- // Directly integrate velocity change for one time step
- //
- // Euler velocity integration:
- // dv = M^-1 P
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler position integration:
- // x' = x + dv * dt
- //
- // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
- // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
- // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
- // integrate + a position integrate and then discard the velocity change.
- if (ioBody1.IsDynamic())
- ioBody1.SubRotationStep(mInvI1_JPT.Multiply3x3(lambda));
- if (ioBody2.IsDynamic())
- ioBody2.AddRotationStep(mInvI2_JPT.Multiply3x3(lambda));
- return true;
- }
- return false;
- }
- /// Return lagrange multiplier
- Vec3 GetTotalLambda() const
- {
- return mTotalLambda;
- }
- /// Save state of this constraint part
- void SaveState(StateRecorder &inStream) const
- {
- inStream.Write(mTotalLambda);
- }
- /// Restore state of this constraint part
- void RestoreState(StateRecorder &inStream)
- {
- inStream.Read(mTotalLambda);
- }
- private:
- Mat44 mInvI1_JPT;
- Mat44 mInvI2_JPT;
- Mat44 mEffectiveMass;
- Mat44 mEffectiveMass_JP;
- Vec3 mTotalLambda { Vec3::sZero() };
- };
- JPH_NAMESPACE_END
|