SliderConstraint.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/SliderConstraint.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. #include <Jolt/ObjectStream/TypeDeclarations.h>
  8. #include <Jolt/Core/StreamIn.h>
  9. #include <Jolt/Core/StreamOut.h>
  10. #ifdef JPH_DEBUG_RENDERER
  11. #include <Jolt/Renderer/DebugRenderer.h>
  12. #endif // JPH_DEBUG_RENDERER
  13. JPH_NAMESPACE_BEGIN
  14. using namespace literals;
  15. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  16. {
  17. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  18. JPH_ADD_ENUM_ATTRIBUTE(SliderConstraintSettings, mSpace)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mAutoDetectPoint)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
  21. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
  22. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
  23. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
  24. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
  25. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
  26. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  27. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  28. JPH_ADD_ENUM_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mMode, "mSpringMode")
  29. JPH_ADD_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mFrequency, "mFrequency") // Renaming attributes to stay compatible with old versions of the library
  30. JPH_ADD_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mDamping, "mDamping")
  31. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  32. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  33. }
  34. void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
  35. {
  36. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  37. mSliderAxis1 = mSliderAxis2 = inSliderAxis;
  38. mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
  39. }
  40. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  41. {
  42. ConstraintSettings::SaveBinaryState(inStream);
  43. inStream.Write(mSpace);
  44. inStream.Write(mAutoDetectPoint);
  45. inStream.Write(mPoint1);
  46. inStream.Write(mSliderAxis1);
  47. inStream.Write(mNormalAxis1);
  48. inStream.Write(mPoint2);
  49. inStream.Write(mSliderAxis2);
  50. inStream.Write(mNormalAxis2);
  51. inStream.Write(mLimitsMin);
  52. inStream.Write(mLimitsMax);
  53. inStream.Write(mMaxFrictionForce);
  54. mLimitsSpringSettings.SaveBinaryState(inStream);
  55. mMotorSettings.SaveBinaryState(inStream);
  56. }
  57. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  58. {
  59. ConstraintSettings::RestoreBinaryState(inStream);
  60. inStream.Read(mSpace);
  61. inStream.Read(mAutoDetectPoint);
  62. inStream.Read(mPoint1);
  63. inStream.Read(mSliderAxis1);
  64. inStream.Read(mNormalAxis1);
  65. inStream.Read(mPoint2);
  66. inStream.Read(mSliderAxis2);
  67. inStream.Read(mNormalAxis2);
  68. inStream.Read(mLimitsMin);
  69. inStream.Read(mLimitsMax);
  70. inStream.Read(mMaxFrictionForce);
  71. mLimitsSpringSettings.RestoreBinaryState(inStream);
  72. mMotorSettings.RestoreBinaryState(inStream);
  73. }
  74. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  75. {
  76. return new SliderConstraint(inBody1, inBody2, *this);
  77. }
  78. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  79. TwoBodyConstraint(inBody1, inBody2, inSettings),
  80. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  81. mMotorSettings(inSettings.mMotorSettings)
  82. {
  83. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  84. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXY(inSettings.mSliderAxis1, inSettings.mNormalAxis1, inSettings.mSliderAxis2, inSettings.mNormalAxis2);
  85. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  86. {
  87. RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  88. RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  89. if (inSettings.mAutoDetectPoint)
  90. {
  91. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point
  92. RVec3 anchor;
  93. if (!inBody1.CanBeKinematicOrDynamic())
  94. anchor = inBody2.GetCenterOfMassPosition();
  95. else if (!inBody2.CanBeKinematicOrDynamic())
  96. anchor = inBody1.GetCenterOfMassPosition();
  97. else
  98. {
  99. // Otherwise use weighted anchor point towards the lightest body
  100. Real inv_m1 = Real(inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked());
  101. Real inv_m2 = Real(inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked());
  102. Real total_inv_mass = inv_m1 + inv_m2;
  103. if (total_inv_mass != 0.0_r)
  104. anchor = (inv_m1 * inBody1.GetCenterOfMassPosition() + inv_m2 * inBody2.GetCenterOfMassPosition()) / total_inv_mass;
  105. else
  106. anchor = inBody1.GetCenterOfMassPosition();
  107. }
  108. // Store local positions
  109. mLocalSpacePosition1 = Vec3(inv_transform1 * anchor);
  110. mLocalSpacePosition2 = Vec3(inv_transform2 * anchor);
  111. }
  112. else
  113. {
  114. // Store local positions
  115. mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
  116. mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
  117. }
  118. // If all properties were specified in world space, take them to local space now
  119. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(inSettings.mSliderAxis1).Normalized();
  120. mLocalSpaceNormal1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
  121. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  122. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  123. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  124. }
  125. else
  126. {
  127. // Store local positions
  128. mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
  129. mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
  130. // Store local space axis
  131. mLocalSpaceSliderAxis1 = inSettings.mSliderAxis1;
  132. mLocalSpaceNormal1 = inSettings.mNormalAxis1;
  133. }
  134. // Calculate 2nd local space normal
  135. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  136. // Store limits
  137. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mLimitsSpringSettings.mFrequency > 0.0f, "Better use a fixed constraint");
  138. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  139. // Store spring settings
  140. SetLimitsSpringSettings(inSettings.mLimitsSpringSettings);
  141. }
  142. void SliderConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
  143. {
  144. if (mBody1->GetID() == inBodyID)
  145. mLocalSpacePosition1 -= inDeltaCOM;
  146. else if (mBody2->GetID() == inBodyID)
  147. mLocalSpacePosition2 -= inDeltaCOM;
  148. }
  149. float SliderConstraint::GetCurrentPosition() const
  150. {
  151. // See: CalculateR1R2U and CalculateSlidingAxisAndPosition
  152. Vec3 r1 = mBody1->GetRotation() * mLocalSpacePosition1;
  153. Vec3 r2 = mBody2->GetRotation() * mLocalSpacePosition2;
  154. Vec3 u = Vec3(mBody2->GetCenterOfMassPosition() - mBody1->GetCenterOfMassPosition()) + r2 - r1;
  155. return u.Dot(mBody1->GetRotation() * mLocalSpaceSliderAxis1);
  156. }
  157. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  158. {
  159. JPH_ASSERT(inLimitsMin <= 0.0f);
  160. JPH_ASSERT(inLimitsMax >= 0.0f);
  161. mLimitsMin = inLimitsMin;
  162. mLimitsMax = inLimitsMax;
  163. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  164. }
  165. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  166. {
  167. // Calculate points relative to body
  168. mR1 = inRotation1 * mLocalSpacePosition1;
  169. mR2 = inRotation2 * mLocalSpacePosition2;
  170. // Calculate X2 + R2 - X1 - R1
  171. mU = Vec3(mBody2->GetCenterOfMassPosition() - mBody1->GetCenterOfMassPosition()) + mR2 - mR1;
  172. }
  173. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  174. {
  175. // Calculate world space normals
  176. mN1 = inRotation1 * mLocalSpaceNormal1;
  177. mN2 = inRotation1 * mLocalSpaceNormal2;
  178. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  179. }
  180. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  181. {
  182. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  183. {
  184. // Calculate world space slider axis
  185. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  186. // Calculate slide distance along axis
  187. mD = mU.Dot(mWorldSpaceSliderAxis);
  188. }
  189. }
  190. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime)
  191. {
  192. // Check if distance is within limits
  193. bool below_min = mD <= mLimitsMin;
  194. if (mHasLimits && (below_min || mD >= mLimitsMax))
  195. mPositionLimitsConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - (below_min? mLimitsMin : mLimitsMax), mLimitsSpringSettings);
  196. else
  197. mPositionLimitsConstraintPart.Deactivate();
  198. }
  199. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  200. {
  201. switch (mMotorState)
  202. {
  203. case EMotorState::Off:
  204. if (mMaxFrictionForce > 0.0f)
  205. mMotorConstraintPart.CalculateConstraintProperties(*mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  206. else
  207. mMotorConstraintPart.Deactivate();
  208. break;
  209. case EMotorState::Velocity:
  210. mMotorConstraintPart.CalculateConstraintProperties(*mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  211. break;
  212. case EMotorState::Position:
  213. mMotorConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mSpringSettings);
  214. break;
  215. }
  216. }
  217. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  218. {
  219. // Calculate constraint properties that are constant while bodies don't move
  220. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  221. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  222. CalculateR1R2U(rotation1, rotation2);
  223. CalculatePositionConstraintProperties(rotation1, rotation2);
  224. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  225. CalculateSlidingAxisAndPosition(rotation1);
  226. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  227. CalculateMotorConstraintProperties(inDeltaTime);
  228. }
  229. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  230. {
  231. // Warm starting: Apply previous frame impulse
  232. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  233. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  234. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  235. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  236. }
  237. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  238. {
  239. // Solve motor
  240. bool motor = false;
  241. if (mMotorConstraintPart.IsActive())
  242. {
  243. switch (mMotorState)
  244. {
  245. case EMotorState::Off:
  246. {
  247. float max_lambda = mMaxFrictionForce * inDeltaTime;
  248. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  249. break;
  250. }
  251. case EMotorState::Velocity:
  252. case EMotorState::Position:
  253. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  254. break;
  255. }
  256. }
  257. // Solve position constraint along 2 axis
  258. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  259. // Solve rotation constraint
  260. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  261. // Solve limits along slider axis
  262. bool limit = false;
  263. if (mPositionLimitsConstraintPart.IsActive())
  264. {
  265. float min_lambda, max_lambda;
  266. if (mLimitsMin == mLimitsMax)
  267. {
  268. min_lambda = -FLT_MAX;
  269. max_lambda = FLT_MAX;
  270. }
  271. else if (mD <= mLimitsMin)
  272. {
  273. min_lambda = 0.0f;
  274. max_lambda = FLT_MAX;
  275. }
  276. else
  277. {
  278. min_lambda = -FLT_MAX;
  279. max_lambda = 0.0f;
  280. }
  281. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, min_lambda, max_lambda);
  282. }
  283. return motor || pos || rot || limit;
  284. }
  285. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  286. {
  287. // Motor operates on velocities only, don't call SolvePositionConstraint
  288. // Solve position constraint along 2 axis
  289. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  290. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  291. CalculateR1R2U(rotation1, rotation2);
  292. CalculatePositionConstraintProperties(rotation1, rotation2);
  293. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  294. // Solve rotation constraint
  295. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  296. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  297. // Solve limits along slider axis
  298. bool limit = false;
  299. if (mHasLimits && mLimitsSpringSettings.mFrequency <= 0.0f)
  300. {
  301. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  302. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  303. CalculateR1R2U(rotation1, rotation2);
  304. CalculateSlidingAxisAndPosition(rotation1);
  305. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  306. if (mPositionLimitsConstraintPart.IsActive())
  307. {
  308. if (mD <= mLimitsMin)
  309. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  310. else
  311. {
  312. JPH_ASSERT(mD >= mLimitsMax);
  313. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  314. }
  315. }
  316. }
  317. return pos || rot || limit;
  318. }
  319. #ifdef JPH_DEBUG_RENDERER
  320. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  321. {
  322. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  323. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  324. // Transform the local positions into world space
  325. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  326. RVec3 position1 = transform1 * mLocalSpacePosition1;
  327. RVec3 position2 = transform2 * mLocalSpacePosition2;
  328. // Draw constraint
  329. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  330. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  331. inRenderer->DrawLine(position1, position2, Color::sGreen);
  332. // Draw motor
  333. switch (mMotorState)
  334. {
  335. case EMotorState::Position:
  336. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  337. break;
  338. case EMotorState::Velocity:
  339. {
  340. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  341. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  342. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  343. break;
  344. }
  345. case EMotorState::Off:
  346. break;
  347. }
  348. }
  349. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  350. {
  351. if (mHasLimits)
  352. {
  353. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  354. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  355. // Transform the local positions into world space
  356. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  357. RVec3 position1 = transform1 * mLocalSpacePosition1;
  358. RVec3 position2 = transform2 * mLocalSpacePosition2;
  359. // Calculate the limits in world space
  360. RVec3 limits_min = position1 + mLimitsMin * slider_axis;
  361. RVec3 limits_max = position1 + mLimitsMax * slider_axis;
  362. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  363. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  364. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  365. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  366. }
  367. }
  368. #endif // JPH_DEBUG_RENDERER
  369. void SliderConstraint::SaveState(StateRecorder &inStream) const
  370. {
  371. TwoBodyConstraint::SaveState(inStream);
  372. mMotorConstraintPart.SaveState(inStream);
  373. mPositionConstraintPart.SaveState(inStream);
  374. mRotationConstraintPart.SaveState(inStream);
  375. mPositionLimitsConstraintPart.SaveState(inStream);
  376. inStream.Write(mMotorState);
  377. inStream.Write(mTargetVelocity);
  378. inStream.Write(mTargetPosition);
  379. }
  380. void SliderConstraint::RestoreState(StateRecorder &inStream)
  381. {
  382. TwoBodyConstraint::RestoreState(inStream);
  383. mMotorConstraintPart.RestoreState(inStream);
  384. mPositionConstraintPart.RestoreState(inStream);
  385. mRotationConstraintPart.RestoreState(inStream);
  386. mPositionLimitsConstraintPart.RestoreState(inStream);
  387. inStream.Read(mMotorState);
  388. inStream.Read(mTargetVelocity);
  389. inStream.Read(mTargetPosition);
  390. }
  391. Ref<ConstraintSettings> SliderConstraint::GetConstraintSettings() const
  392. {
  393. SliderConstraintSettings *settings = new SliderConstraintSettings;
  394. ToConstraintSettings(*settings);
  395. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  396. settings->mPoint1 = RVec3(mLocalSpacePosition1);
  397. settings->mSliderAxis1 = mLocalSpaceSliderAxis1;
  398. settings->mNormalAxis1 = mLocalSpaceNormal1;
  399. settings->mPoint2 = RVec3(mLocalSpacePosition2);
  400. Mat44 inv_initial_rotation = Mat44::sRotation(mInvInitialOrientation);
  401. settings->mSliderAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceSliderAxis1);
  402. settings->mNormalAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceNormal1);
  403. settings->mLimitsMin = mLimitsMin;
  404. settings->mLimitsMax = mLimitsMax;
  405. settings->mLimitsSpringSettings = mLimitsSpringSettings;
  406. settings->mMaxFrictionForce = mMaxFrictionForce;
  407. settings->mMotorSettings = mMotorSettings;
  408. return settings;
  409. }
  410. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  411. {
  412. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  413. }
  414. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  415. {
  416. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  417. mat.SetTranslation(mLocalSpacePosition2);
  418. return mat;
  419. }
  420. JPH_NAMESPACE_END