TriangleCodecIndexed8BitPackSOA4Flags.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #pragma once
  5. #include <Jolt/Geometry/RayTriangle.h>
  6. JPH_NAMESPACE_BEGIN
  7. /// Store vertices in 64 bits and indices in 8 bits + 8 bit of flags per triangle like this:
  8. ///
  9. /// TriangleBlockHeader,
  10. /// TriangleBlock (4 triangles and their flags in 16 bytes),
  11. /// TriangleBlock...
  12. /// [Optional] UserData (4 bytes per triangle)
  13. ///
  14. /// Vertices are stored:
  15. ///
  16. /// VertexData (1 vertex in 64 bits),
  17. /// VertexData...
  18. ///
  19. /// They're compressed relative to the bounding box as provided by the node codec.
  20. class TriangleCodecIndexed8BitPackSOA4Flags
  21. {
  22. public:
  23. class TriangleHeader
  24. {
  25. public:
  26. Float3 mOffset; ///< Offset of all vertices
  27. Float3 mScale; ///< Scale of all vertices, vertex_position = mOffset + mScale * compressed_vertex_position
  28. };
  29. /// Size of the header (an empty struct is always > 0 bytes so this needs a separate variable)
  30. static constexpr int TriangleHeaderSize = sizeof(TriangleHeader);
  31. /// If this codec could return a different offset than the current buffer size when calling Pack()
  32. static constexpr bool ChangesOffsetOnPack = false;
  33. /// Amount of bits per component
  34. enum EComponentData : uint32
  35. {
  36. COMPONENT_BITS = 21,
  37. COMPONENT_MASK = (1 << COMPONENT_BITS) - 1,
  38. };
  39. /// Packed X and Y coordinate
  40. enum EVertexXY : uint32
  41. {
  42. COMPONENT_X = 0,
  43. COMPONENT_Y1 = COMPONENT_BITS,
  44. COMPONENT_Y1_BITS = 32 - COMPONENT_BITS,
  45. };
  46. /// Packed Z and Y coordinate
  47. enum EVertexZY : uint32
  48. {
  49. COMPONENT_Z = 0,
  50. COMPONENT_Y2 = COMPONENT_BITS,
  51. COMPONENT_Y2_BITS = 31 - COMPONENT_BITS,
  52. };
  53. /// A single packed vertex
  54. struct VertexData
  55. {
  56. uint32 mVertexXY;
  57. uint32 mVertexZY;
  58. };
  59. static_assert(sizeof(VertexData) == 8, "Compiler added padding");
  60. /// A block of 4 triangles
  61. struct TriangleBlock
  62. {
  63. uint8 mIndices[3][4]; ///< 8 bit indices to triangle vertices for 4 triangles in the form mIndices[vertex][triangle] where vertex in [0, 2] and triangle in [0, 3]
  64. uint8 mFlags[4]; ///< Triangle flags (could contain material and active edges)
  65. };
  66. static_assert(sizeof(TriangleBlock) == 16, "Compiler added padding");
  67. enum ETriangleBlockHeaderFlags : uint32
  68. {
  69. OFFSET_TO_VERTICES_BITS = 29, ///< Offset from current block to start of vertices in bytes
  70. OFFSET_TO_VERTICES_MASK = (1 << OFFSET_TO_VERTICES_BITS) - 1,
  71. OFFSET_TO_USERDATA_BITS = 3, ///< When user data is stored, this is the number of blocks to skip to get to the user data (0 = no user data)
  72. OFFSET_TO_USERDATA_MASK = (1 << OFFSET_TO_USERDATA_BITS) - 1,
  73. };
  74. /// A triangle header, will be followed by one or more TriangleBlocks
  75. struct TriangleBlockHeader
  76. {
  77. const VertexData * GetVertexData() const { return reinterpret_cast<const VertexData *>(reinterpret_cast<const uint8 *>(this) + (mFlags & OFFSET_TO_VERTICES_MASK)); }
  78. const TriangleBlock * GetTriangleBlock() const { return reinterpret_cast<const TriangleBlock *>(reinterpret_cast<const uint8 *>(this) + sizeof(TriangleBlockHeader)); }
  79. const uint32 * GetUserData() const { uint32 offset = mFlags >> OFFSET_TO_VERTICES_BITS; return offset == 0? nullptr : reinterpret_cast<const uint32 *>(GetTriangleBlock() + offset); }
  80. uint32 mFlags;
  81. };
  82. static_assert(sizeof(TriangleBlockHeader) == 4, "Compiler added padding");
  83. /// This class is used to validate that the triangle data will not be degenerate after compression
  84. class ValidationContext
  85. {
  86. public:
  87. /// Constructor
  88. ValidationContext(const IndexedTriangleList &inTriangles, const VertexList &inVertices) :
  89. mVertices(inVertices)
  90. {
  91. // Only used the referenced triangles, just like EncodingContext::Finalize does
  92. for (const IndexedTriangle &i : inTriangles)
  93. for (uint32 idx : i.mIdx)
  94. mBounds.Encapsulate(Vec3(inVertices[idx]));
  95. }
  96. /// Test if a triangle will be degenerate after quantization
  97. bool IsDegenerate(const IndexedTriangle &inTriangle) const
  98. {
  99. // Quantize the triangle in the same way as EncodingContext::Finalize does
  100. UVec4 quantized_vertex[3];
  101. Vec3 compress_scale = Vec3::sReplicate(COMPONENT_MASK) / Vec3::sMax(mBounds.GetSize(), Vec3::sReplicate(1.0e-20f));
  102. for (int i = 0; i < 3; ++i)
  103. quantized_vertex[i] = ((Vec3(mVertices[inTriangle.mIdx[i]]) - mBounds.mMin) * compress_scale + Vec3::sReplicate(0.5f)).ToInt();
  104. return quantized_vertex[0] == quantized_vertex[1] || quantized_vertex[1] == quantized_vertex[2] || quantized_vertex[0] == quantized_vertex[2];
  105. }
  106. private:
  107. const VertexList & mVertices;
  108. AABox mBounds;
  109. };
  110. /// This class is used to encode and compress triangle data into a byte buffer
  111. class EncodingContext
  112. {
  113. public:
  114. /// Construct the encoding context
  115. explicit EncodingContext(const VertexList &inVertices) :
  116. mVertexMap(inVertices.size(), 0xffffffff) // Fill vertex map with 'not found'
  117. {
  118. // Reserve for worst case to avoid allocating in the inner loop
  119. mVertices.reserve(inVertices.size());
  120. }
  121. /// Get an upper bound on the amount of bytes needed to store inTriangleCount triangles
  122. uint GetPessimisticMemoryEstimate(uint inTriangleCount, bool inStoreUserData) const
  123. {
  124. // Worst case each triangle is alone in a block, none of the vertices are shared and we need to add 3 bytes to align the vertices
  125. return inTriangleCount * (sizeof(TriangleBlockHeader) + sizeof(TriangleBlock) + (inStoreUserData? sizeof(uint32) : 0) + 3 * sizeof(VertexData)) + 3;
  126. }
  127. /// Pack the triangles in inContainer to ioBuffer. This stores the mMaterialIndex of a triangle in the 8 bit flags.
  128. /// Returns uint(-1) on error.
  129. uint Pack(const IndexedTriangleList &inTriangles, bool inStoreUserData, ByteBuffer &ioBuffer, const char *&outError)
  130. {
  131. // Determine position of triangles start
  132. uint offset = (uint)ioBuffer.size();
  133. // Update stats
  134. uint tri_count = (uint)inTriangles.size();
  135. mNumTriangles += tri_count;
  136. // Allocate triangle block header
  137. TriangleBlockHeader *header = ioBuffer.Allocate<TriangleBlockHeader>();
  138. // Compute first vertex that this batch will use (ensuring there's enough room if none of the vertices are shared)
  139. uint start_vertex = Clamp((int)mVertices.size() - 256 + (int)tri_count * 3, 0, (int)mVertices.size());
  140. // Store the start vertex offset, this will later be patched to give the delta offset relative to the triangle block
  141. mOffsetsToPatch.push_back(uint((uint8 *)&header->mFlags - &ioBuffer[0]));
  142. header->mFlags = start_vertex * sizeof(VertexData);
  143. JPH_ASSERT(header->mFlags <= OFFSET_TO_VERTICES_MASK, "Offset to vertices doesn't fit");
  144. // When we store user data we need to store the offset to the user data in TriangleBlocks
  145. uint padded_triangle_count = AlignUp(tri_count, 4);
  146. if (inStoreUserData)
  147. {
  148. uint32 num_blocks = padded_triangle_count >> 2;
  149. JPH_ASSERT(num_blocks <= OFFSET_TO_USERDATA_MASK);
  150. header->mFlags |= num_blocks << OFFSET_TO_VERTICES_BITS;
  151. }
  152. // Pack vertices
  153. for (uint t = 0; t < padded_triangle_count; t += 4)
  154. {
  155. TriangleBlock *block = ioBuffer.Allocate<TriangleBlock>();
  156. for (uint vertex_nr = 0; vertex_nr < 3; ++vertex_nr)
  157. for (uint block_tri_idx = 0; block_tri_idx < 4; ++block_tri_idx)
  158. {
  159. // Fetch vertex index. Create degenerate triangles for padding triangles.
  160. bool triangle_available = t + block_tri_idx < tri_count;
  161. uint32 src_vertex_index = triangle_available? inTriangles[t + block_tri_idx].mIdx[vertex_nr] : inTriangles[tri_count - 1].mIdx[0];
  162. // Check if we've seen this vertex before and if it is in the range that we can encode
  163. uint32 &vertex_index = mVertexMap[src_vertex_index];
  164. if (vertex_index == 0xffffffff || vertex_index < start_vertex)
  165. {
  166. // Add vertex
  167. vertex_index = (uint32)mVertices.size();
  168. mVertices.push_back(src_vertex_index);
  169. }
  170. // Store vertex index
  171. uint32 vertex_offset = vertex_index - start_vertex;
  172. if (vertex_offset > 0xff)
  173. {
  174. outError = "TriangleCodecIndexed8BitPackSOA4Flags: Offset doesn't fit in 8 bit";
  175. return uint(-1);
  176. }
  177. block->mIndices[vertex_nr][block_tri_idx] = (uint8)vertex_offset;
  178. // Store flags
  179. uint32 flags = triangle_available? inTriangles[t + block_tri_idx].mMaterialIndex : 0;
  180. if (flags > 0xff)
  181. {
  182. outError = "TriangleCodecIndexed8BitPackSOA4Flags: Material index doesn't fit in 8 bit";
  183. return uint(-1);
  184. }
  185. block->mFlags[block_tri_idx] = (uint8)flags;
  186. }
  187. }
  188. // Store user data
  189. if (inStoreUserData)
  190. {
  191. uint32 *user_data = ioBuffer.Allocate<uint32>(tri_count);
  192. for (uint t = 0; t < tri_count; ++t)
  193. user_data[t] = inTriangles[t].mUserData;
  194. }
  195. return offset;
  196. }
  197. /// After all triangles have been packed, this finalizes the header and triangle buffer
  198. void Finalize(const VertexList &inVertices, TriangleHeader *ioHeader, ByteBuffer &ioBuffer) const
  199. {
  200. // Check if anything to do
  201. if (mVertices.empty())
  202. return;
  203. // Align buffer to 4 bytes
  204. uint vertices_idx = (uint)ioBuffer.Align(4);
  205. // Patch the offsets
  206. for (uint o : mOffsetsToPatch)
  207. {
  208. uint32 *flags = ioBuffer.Get<uint32>(o);
  209. uint32 delta = vertices_idx - o;
  210. if ((*flags & OFFSET_TO_VERTICES_MASK) + delta > OFFSET_TO_VERTICES_MASK)
  211. JPH_ASSERT(false, "Offset to vertices doesn't fit");
  212. *flags += delta;
  213. }
  214. // Calculate bounding box
  215. AABox bounds;
  216. for (uint32 v : mVertices)
  217. bounds.Encapsulate(Vec3(inVertices[v]));
  218. // Compress vertices
  219. VertexData *vertices = ioBuffer.Allocate<VertexData>(mVertices.size());
  220. Vec3 compress_scale = Vec3::sReplicate(COMPONENT_MASK) / Vec3::sMax(bounds.GetSize(), Vec3::sReplicate(1.0e-20f));
  221. for (uint32 v : mVertices)
  222. {
  223. UVec4 c = ((Vec3(inVertices[v]) - bounds.mMin) * compress_scale + Vec3::sReplicate(0.5f)).ToInt();
  224. JPH_ASSERT(c.GetX() <= COMPONENT_MASK);
  225. JPH_ASSERT(c.GetY() <= COMPONENT_MASK);
  226. JPH_ASSERT(c.GetZ() <= COMPONENT_MASK);
  227. vertices->mVertexXY = c.GetX() + (c.GetY() << COMPONENT_Y1);
  228. vertices->mVertexZY = c.GetZ() + ((c.GetY() >> COMPONENT_Y1_BITS) << COMPONENT_Y2);
  229. ++vertices;
  230. }
  231. // Store decompression information
  232. bounds.mMin.StoreFloat3(&ioHeader->mOffset);
  233. (bounds.GetSize() / Vec3::sReplicate(COMPONENT_MASK)).StoreFloat3(&ioHeader->mScale);
  234. }
  235. private:
  236. using VertexMap = Array<uint32>;
  237. uint mNumTriangles = 0;
  238. Array<uint32> mVertices; ///< Output vertices as an index into the original vertex list (inVertices), sorted according to occurrence
  239. VertexMap mVertexMap; ///< Maps from the original mesh vertex index (inVertices) to the index in our output vertices (mVertices)
  240. Array<uint> mOffsetsToPatch; ///< Offsets to the vertex buffer that need to be patched in once all nodes have been packed
  241. };
  242. /// This class is used to decode and decompress triangle data packed by the EncodingContext
  243. class DecodingContext
  244. {
  245. private:
  246. /// Private helper functions to unpack the 1 vertex of 4 triangles (outX contains the x coordinate of triangle 0 .. 3 etc.)
  247. JPH_INLINE void Unpack(const VertexData *inVertices, UVec4Arg inIndex, Vec4 &outX, Vec4 &outY, Vec4 &outZ) const
  248. {
  249. // Get compressed data
  250. UVec4 c1 = UVec4::sGatherInt4<8>(&inVertices->mVertexXY, inIndex);
  251. UVec4 c2 = UVec4::sGatherInt4<8>(&inVertices->mVertexZY, inIndex);
  252. // Unpack the x y and z component
  253. UVec4 xc = UVec4::sAnd(c1, UVec4::sReplicate(COMPONENT_MASK));
  254. UVec4 yc = UVec4::sOr(c1.LogicalShiftRight<COMPONENT_Y1>(), c2.LogicalShiftRight<COMPONENT_Y2>().LogicalShiftLeft<COMPONENT_Y1_BITS>());
  255. UVec4 zc = UVec4::sAnd(c2, UVec4::sReplicate(COMPONENT_MASK));
  256. // Convert to float
  257. outX = Vec4::sFusedMultiplyAdd(xc.ToFloat(), mScaleX, mOffsetX);
  258. outY = Vec4::sFusedMultiplyAdd(yc.ToFloat(), mScaleY, mOffsetY);
  259. outZ = Vec4::sFusedMultiplyAdd(zc.ToFloat(), mScaleZ, mOffsetZ);
  260. }
  261. public:
  262. JPH_INLINE explicit DecodingContext(const TriangleHeader *inHeader) :
  263. mOffsetX(Vec4::sReplicate(inHeader->mOffset.x)),
  264. mOffsetY(Vec4::sReplicate(inHeader->mOffset.y)),
  265. mOffsetZ(Vec4::sReplicate(inHeader->mOffset.z)),
  266. mScaleX(Vec4::sReplicate(inHeader->mScale.x)),
  267. mScaleY(Vec4::sReplicate(inHeader->mScale.y)),
  268. mScaleZ(Vec4::sReplicate(inHeader->mScale.z))
  269. {
  270. }
  271. /// Unpacks triangles in the format t1v1,t1v2,t1v3, t2v1,t2v2,t2v3, ...
  272. JPH_INLINE void Unpack(const void *inTriangleStart, uint32 inNumTriangles, Vec3 *outTriangles) const
  273. {
  274. JPH_ASSERT(inNumTriangles > 0);
  275. const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
  276. const VertexData *vertices = header->GetVertexData();
  277. const TriangleBlock *t = header->GetTriangleBlock();
  278. const TriangleBlock *end = t + ((inNumTriangles + 3) >> 2);
  279. int triangles_left = inNumTriangles;
  280. do
  281. {
  282. // Get the indices for the three vertices (reads 4 bytes extra, but these are the flags so that's ok)
  283. UVec4 indices = UVec4::sLoadInt4(reinterpret_cast<const uint32 *>(&t->mIndices[0]));
  284. UVec4 iv1 = indices.Expand4Byte0();
  285. UVec4 iv2 = indices.Expand4Byte4();
  286. UVec4 iv3 = indices.Expand4Byte8();
  287. // Decompress the triangle data
  288. Vec4 v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z;
  289. Unpack(vertices, iv1, v1x, v1y, v1z);
  290. Unpack(vertices, iv2, v2x, v2y, v2z);
  291. Unpack(vertices, iv3, v3x, v3y, v3z);
  292. // Transpose it so we get normal vectors
  293. Mat44 v1 = Mat44(v1x, v1y, v1z, Vec4::sZero()).Transposed();
  294. Mat44 v2 = Mat44(v2x, v2y, v2z, Vec4::sZero()).Transposed();
  295. Mat44 v3 = Mat44(v3x, v3y, v3z, Vec4::sZero()).Transposed();
  296. // Store triangle data
  297. for (int i = 0; i < 4 && triangles_left > 0; ++i, --triangles_left)
  298. {
  299. *outTriangles++ = v1.GetColumn3(i);
  300. *outTriangles++ = v2.GetColumn3(i);
  301. *outTriangles++ = v3.GetColumn3(i);
  302. }
  303. ++t;
  304. }
  305. while (t < end);
  306. }
  307. /// Tests a ray against the packed triangles
  308. JPH_INLINE float TestRay(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, const void *inTriangleStart, uint32 inNumTriangles, float inClosest, uint32 &outClosestTriangleIndex) const
  309. {
  310. JPH_ASSERT(inNumTriangles > 0);
  311. const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
  312. const VertexData *vertices = header->GetVertexData();
  313. const TriangleBlock *t = header->GetTriangleBlock();
  314. const TriangleBlock *end = t + ((inNumTriangles + 3) >> 2);
  315. Vec4 closest = Vec4::sReplicate(inClosest);
  316. UVec4 closest_triangle_idx = UVec4::sZero();
  317. UVec4 start_triangle_idx = UVec4::sZero();
  318. do
  319. {
  320. // Get the indices for the three vertices (reads 4 bytes extra, but these are the flags so that's ok)
  321. UVec4 indices = UVec4::sLoadInt4(reinterpret_cast<const uint32 *>(&t->mIndices[0]));
  322. UVec4 iv1 = indices.Expand4Byte0();
  323. UVec4 iv2 = indices.Expand4Byte4();
  324. UVec4 iv3 = indices.Expand4Byte8();
  325. // Decompress the triangle data
  326. Vec4 v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z;
  327. Unpack(vertices, iv1, v1x, v1y, v1z);
  328. Unpack(vertices, iv2, v2x, v2y, v2z);
  329. Unpack(vertices, iv3, v3x, v3y, v3z);
  330. // Perform ray vs triangle test
  331. Vec4 distance = RayTriangle4(inRayOrigin, inRayDirection, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z);
  332. // Update closest with the smaller values
  333. UVec4 smaller = Vec4::sLess(distance, closest);
  334. closest = Vec4::sSelect(closest, distance, smaller);
  335. // Update triangle index with the smallest values
  336. UVec4 triangle_idx = start_triangle_idx + UVec4(0, 1, 2, 3);
  337. closest_triangle_idx = UVec4::sSelect(closest_triangle_idx, triangle_idx, smaller);
  338. // Next block
  339. ++t;
  340. start_triangle_idx += UVec4::sReplicate(4);
  341. }
  342. while (t < end);
  343. // Get the smallest component
  344. Vec4::sSort4(closest, closest_triangle_idx);
  345. outClosestTriangleIndex = closest_triangle_idx.GetX();
  346. return closest.GetX();
  347. }
  348. /// Decode a single triangle
  349. inline void GetTriangle(const void *inTriangleStart, uint32 inTriangleIdx, Vec3 &outV1, Vec3 &outV2, Vec3 &outV3) const
  350. {
  351. const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
  352. const VertexData *vertices = header->GetVertexData();
  353. const TriangleBlock *block = header->GetTriangleBlock() + (inTriangleIdx >> 2);
  354. uint32 block_triangle_idx = inTriangleIdx & 0b11;
  355. // Get the 3 vertices
  356. const VertexData &v1 = vertices[block->mIndices[0][block_triangle_idx]];
  357. const VertexData &v2 = vertices[block->mIndices[1][block_triangle_idx]];
  358. const VertexData &v3 = vertices[block->mIndices[2][block_triangle_idx]];
  359. // Pack the vertices
  360. UVec4 c1(v1.mVertexXY, v2.mVertexXY, v3.mVertexXY, 0);
  361. UVec4 c2(v1.mVertexZY, v2.mVertexZY, v3.mVertexZY, 0);
  362. // Unpack the x y and z component
  363. UVec4 xc = UVec4::sAnd(c1, UVec4::sReplicate(COMPONENT_MASK));
  364. UVec4 yc = UVec4::sOr(c1.LogicalShiftRight<COMPONENT_Y1>(), c2.LogicalShiftRight<COMPONENT_Y2>().LogicalShiftLeft<COMPONENT_Y1_BITS>());
  365. UVec4 zc = UVec4::sAnd(c2, UVec4::sReplicate(COMPONENT_MASK));
  366. // Convert to float
  367. Vec4 vx = Vec4::sFusedMultiplyAdd(xc.ToFloat(), mScaleX, mOffsetX);
  368. Vec4 vy = Vec4::sFusedMultiplyAdd(yc.ToFloat(), mScaleY, mOffsetY);
  369. Vec4 vz = Vec4::sFusedMultiplyAdd(zc.ToFloat(), mScaleZ, mOffsetZ);
  370. // Transpose it so we get normal vectors
  371. Mat44 trans = Mat44(vx, vy, vz, Vec4::sZero()).Transposed();
  372. outV1 = trans.GetAxisX();
  373. outV2 = trans.GetAxisY();
  374. outV3 = trans.GetAxisZ();
  375. }
  376. /// Get user data for a triangle
  377. JPH_INLINE uint32 GetUserData(const void *inTriangleStart, uint32 inTriangleIdx) const
  378. {
  379. const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
  380. const uint32 *user_data = header->GetUserData();
  381. return user_data != nullptr? user_data[inTriangleIdx] : 0;
  382. }
  383. /// Get flags for entire triangle block
  384. JPH_INLINE static void sGetFlags(const void *inTriangleStart, uint32 inNumTriangles, uint8 *outTriangleFlags)
  385. {
  386. JPH_ASSERT(inNumTriangles > 0);
  387. const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
  388. const TriangleBlock *t = header->GetTriangleBlock();
  389. const TriangleBlock *end = t + ((inNumTriangles + 3) >> 2);
  390. int triangles_left = inNumTriangles;
  391. do
  392. {
  393. for (int i = 0; i < 4 && triangles_left > 0; ++i, --triangles_left)
  394. *outTriangleFlags++ = t->mFlags[i];
  395. ++t;
  396. }
  397. while (t < end);
  398. }
  399. /// Get flags for a particular triangle
  400. JPH_INLINE static uint8 sGetFlags(const void *inTriangleStart, int inTriangleIndex)
  401. {
  402. const TriangleBlockHeader *header = reinterpret_cast<const TriangleBlockHeader *>(inTriangleStart);
  403. const TriangleBlock *first_block = header->GetTriangleBlock();
  404. return first_block[inTriangleIndex >> 2].mFlags[inTriangleIndex & 0b11];
  405. }
  406. /// Unpacks triangles and flags, convenience function
  407. JPH_INLINE void Unpack(const void *inTriangleStart, uint32 inNumTriangles, Vec3 *outTriangles, uint8 *outTriangleFlags) const
  408. {
  409. Unpack(inTriangleStart, inNumTriangles, outTriangles);
  410. sGetFlags(inTriangleStart, inNumTriangles, outTriangleFlags);
  411. }
  412. private:
  413. Vec4 mOffsetX;
  414. Vec4 mOffsetY;
  415. Vec4 mOffsetZ;
  416. Vec4 mScaleX;
  417. Vec4 mScaleY;
  418. Vec4 mScaleZ;
  419. };
  420. };
  421. JPH_NAMESPACE_END