ConvexShape.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt.h>
  4. #include <Physics/Collision/Shape/ConvexShape.h>
  5. #include <Physics/Collision/RayCast.h>
  6. #include <Physics/Collision/ShapeCast.h>
  7. #include <Physics/Collision/CollideShape.h>
  8. #include <Physics/Collision/CastResult.h>
  9. #include <Physics/Collision/CollidePointResult.h>
  10. #include <Physics/Collision/Shape/ScaleHelpers.h>
  11. #include <Physics/Collision/Shape/GetTrianglesContext.h>
  12. #include <Physics/Collision/Shape/PolyhedronSubmergedVolumeCalculator.h>
  13. #include <Physics/Collision/TransformedShape.h>
  14. #include <Physics/Collision/CollisionDispatch.h>
  15. #include <Physics/Collision/NarrowPhaseStats.h>
  16. #include <Physics/PhysicsSettings.h>
  17. #include <Core/StreamIn.h>
  18. #include <Core/StreamOut.h>
  19. #include <Geometry/EPAPenetrationDepth.h>
  20. #include <Geometry/OrientedBox.h>
  21. #include <ObjectStream/TypeDeclarations.h>
  22. namespace JPH {
  23. JPH_IMPLEMENT_SERIALIZABLE_ABSTRACT(ConvexShapeSettings)
  24. {
  25. JPH_ADD_BASE_CLASS(ConvexShapeSettings, ShapeSettings)
  26. JPH_ADD_ATTRIBUTE(ConvexShapeSettings, mDensity)
  27. JPH_ADD_ATTRIBUTE(ConvexShapeSettings, mMaterial)
  28. }
  29. const vector<Vec3> ConvexShape::sUnitSphereTriangles = []() {
  30. const int level = 2;
  31. vector<Vec3> verts;
  32. GetTrianglesContextVertexList::sCreateHalfUnitSphereTop(verts, level);
  33. GetTrianglesContextVertexList::sCreateHalfUnitSphereBottom(verts, level);
  34. return verts;
  35. }();
  36. void ConvexShape::sCollideConvexVsConvex(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector)
  37. {
  38. JPH_PROFILE_FUNCTION();
  39. // Get the shapes
  40. JPH_ASSERT(inShape1->GetType() == EShapeType::Convex);
  41. JPH_ASSERT(inShape2->GetType() == EShapeType::Convex);
  42. const ConvexShape *shape1 = static_cast<const ConvexShape *>(inShape1);
  43. const ConvexShape *shape2 = static_cast<const ConvexShape *>(inShape2);
  44. // Get transforms
  45. Mat44 inverse_transform1 = inCenterOfMassTransform1.InversedRotationTranslation();
  46. Mat44 transform_2_to_1 = inverse_transform1 * inCenterOfMassTransform2;
  47. // Get bounding boxes
  48. AABox shape1_bbox = shape1->GetLocalBounds().Scaled(inScale1);
  49. shape1_bbox.ExpandBy(Vec3::sReplicate(inCollideShapeSettings.mMaxSeparationDistance));
  50. AABox shape2_bbox = shape2->GetLocalBounds().Scaled(inScale2);
  51. // Check if they overlap
  52. if (!OrientedBox(transform_2_to_1, shape2_bbox).Overlaps(shape1_bbox))
  53. return;
  54. Vec3 penetration_axis = Vec3::sAxisX(), point1, point2;
  55. EPAPenetrationDepth pen_depth;
  56. EPAPenetrationDepth::EStatus status;
  57. // Scope to limit lifetime of SupportBuffer
  58. {
  59. // Create support function
  60. SupportBuffer buffer1_excl_cvx_radius, buffer2_excl_cvx_radius;
  61. const Support *shape1_excl_cvx_radius = shape1->GetSupportFunction(ConvexShape::ESupportMode::ExcludeConvexRadius, buffer1_excl_cvx_radius, inScale1);
  62. const Support *shape2_excl_cvx_radius = shape2->GetSupportFunction(ConvexShape::ESupportMode::ExcludeConvexRadius, buffer2_excl_cvx_radius, inScale2);
  63. // Transform shape 2 in the space of shape 1
  64. TransformedConvexObject<Support> transformed2_excl_cvx_radius(transform_2_to_1, *shape2_excl_cvx_radius);
  65. // Perform GJK step
  66. status = pen_depth.GetPenetrationDepthStepGJK(*shape1_excl_cvx_radius, shape1_excl_cvx_radius->GetConvexRadius() + inCollideShapeSettings.mMaxSeparationDistance, transformed2_excl_cvx_radius, shape2_excl_cvx_radius->GetConvexRadius(), inCollideShapeSettings.mCollisionTolerance, penetration_axis, point1, point2);
  67. }
  68. // Check result of collision detection
  69. switch (status)
  70. {
  71. case EPAPenetrationDepth::EStatus::Colliding:
  72. break;
  73. case EPAPenetrationDepth::EStatus::NotColliding:
  74. return;
  75. case EPAPenetrationDepth::EStatus::Indeterminate:
  76. {
  77. // Need to run expensive EPA algorithm
  78. // Create support function
  79. SupportBuffer buffer1_incl_cvx_radius, buffer2_incl_cvx_radius;
  80. const Support *shape1_incl_cvx_radius = shape1->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer1_incl_cvx_radius, inScale1);
  81. const Support *shape2_incl_cvx_radius = shape2->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer2_incl_cvx_radius, inScale2);
  82. // Add separation distance
  83. AddConvexRadius<Support> shape1_add_max_separation_distance(*shape1_incl_cvx_radius, inCollideShapeSettings.mMaxSeparationDistance);
  84. // Transform shape 2 in the space of shape 1
  85. TransformedConvexObject<Support> transformed2_incl_cvx_radius(transform_2_to_1, *shape2_incl_cvx_radius);
  86. // Perform EPA step
  87. if (!pen_depth.GetPenetrationDepthStepEPA(shape1_add_max_separation_distance, transformed2_incl_cvx_radius, inCollideShapeSettings.mPenetrationTolerance, penetration_axis, point1, point2))
  88. return;
  89. break;
  90. }
  91. }
  92. // Check if the penetration is bigger than the early out fraction
  93. float penetration_depth = (point2 - point1).Length() - inCollideShapeSettings.mMaxSeparationDistance;
  94. if (-penetration_depth >= ioCollector.GetEarlyOutFraction())
  95. return;
  96. // Correct point1 for the added separation distance
  97. float penetration_axis_len = penetration_axis.Length();
  98. if (penetration_axis_len > 0.0f)
  99. point1 -= penetration_axis * (inCollideShapeSettings.mMaxSeparationDistance / penetration_axis_len);
  100. // Convert to world space
  101. point1 = inCenterOfMassTransform1 * point1;
  102. point2 = inCenterOfMassTransform1 * point2;
  103. Vec3 penetration_axis_world = inCenterOfMassTransform1.Multiply3x3(penetration_axis);
  104. // Create collision result
  105. CollideShapeResult result(point1, point2, penetration_axis_world, penetration_depth, inSubShapeIDCreator1.GetID(), inSubShapeIDCreator2.GetID(), TransformedShape::sGetBodyID(ioCollector.GetContext()));
  106. // Gather faces
  107. if (inCollideShapeSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces)
  108. {
  109. // Get supporting face of shape 1
  110. shape1->GetSupportingFace(-penetration_axis, inScale1, result.mShape1Face);
  111. // Convert to world space
  112. for (Vec3 &p : result.mShape1Face)
  113. p = inCenterOfMassTransform1 * p;
  114. // Get supporting face of shape 2
  115. shape2->GetSupportingFace(transform_2_to_1.Multiply3x3Transposed(penetration_axis), inScale2, result.mShape2Face);
  116. // Convert to world space
  117. for (Vec3 &p : result.mShape2Face)
  118. p = inCenterOfMassTransform2 * p;
  119. }
  120. // Notify the collector
  121. JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
  122. ioCollector.AddHit(result);
  123. }
  124. bool ConvexShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
  125. {
  126. // Note: This is a fallback routine, most convex shapes should implement a more performant version!
  127. JPH_PROFILE_FUNCTION();
  128. // Create support function
  129. SupportBuffer buffer;
  130. const Support *support = GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, Vec3::sReplicate(1.0f));
  131. // Cast ray
  132. GJKClosestPoint gjk;
  133. if (gjk.CastRay(inRay.mOrigin, inRay.mDirection, cDefaultCollisionTolerance, *support, ioHit.mFraction))
  134. {
  135. ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
  136. return true;
  137. }
  138. return false;
  139. }
  140. void ConvexShape::CastRay(const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector) const
  141. {
  142. // Note: This is a fallback routine, most convex shapes should implement a more performant version!
  143. // First do a normal raycast, limited to the early out fraction
  144. RayCastResult hit;
  145. hit.mFraction = ioCollector.GetEarlyOutFraction();
  146. if (CastRay(inRay, inSubShapeIDCreator, hit))
  147. {
  148. // Check front side
  149. if (inRayCastSettings.mTreatConvexAsSolid || hit.mFraction > 0.0f)
  150. {
  151. hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext());
  152. ioCollector.AddHit(hit);
  153. }
  154. // Check if we want back facing hits and the collector still accepts additional hits
  155. if (inRayCastSettings.mBackFaceMode == EBackFaceMode::CollideWithBackFaces && !ioCollector.ShouldEarlyOut())
  156. {
  157. // Invert the ray, going from the early out fraction back to the fraction where we found our forward hit
  158. float start_fraction = min(1.0f, ioCollector.GetEarlyOutFraction());
  159. float delta_fraction = hit.mFraction - start_fraction;
  160. if (delta_fraction < 0.0f)
  161. {
  162. RayCast inverted_ray { inRay.mOrigin + start_fraction * inRay.mDirection, delta_fraction * inRay.mDirection };
  163. // Cast another ray
  164. RayCastResult inverted_hit;
  165. inverted_hit.mFraction = 1.0f;
  166. if (CastRay(inverted_ray, inSubShapeIDCreator, inverted_hit)
  167. && inverted_hit.mFraction > 0.0f) // Ignore hits with fraction 0, this means the ray ends inside the object and we don't want to report it as a back facing hit
  168. {
  169. // Invert fraction and rescale it to the fraction of the original ray
  170. inverted_hit.mFraction = hit.mFraction + (inverted_hit.mFraction - 1.0f) * delta_fraction;
  171. inverted_hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext());
  172. ioCollector.AddHit(inverted_hit);
  173. }
  174. }
  175. }
  176. }
  177. }
  178. void ConvexShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector) const
  179. {
  180. // First test bounding box
  181. if (GetLocalBounds().Contains(inPoint))
  182. {
  183. // Create support function
  184. SupportBuffer buffer;
  185. const Support *support = GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, Vec3::sReplicate(1.0f));
  186. // Create support function for point
  187. PointConvexSupport point { inPoint };
  188. // Test intersection
  189. GJKClosestPoint gjk;
  190. Vec3 v = inPoint;
  191. if (gjk.Intersects(*support, point, cDefaultCollisionTolerance, v))
  192. ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
  193. }
  194. }
  195. void ConvexShape::sCastConvexVsConvex(const ShapeCast &inShapeCast, const ShapeCastSettings &inShapeCastSettings, const Shape *inShape, Vec3Arg inScale, [[maybe_unused]] const ShapeFilter &inShapeFilter, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, CastShapeCollector &ioCollector)
  196. {
  197. JPH_PROFILE_FUNCTION();
  198. // Only supported for convex shapes
  199. JPH_ASSERT(inShapeCast.mShape->GetType() == EShapeType::Convex);
  200. const ConvexShape *cast_shape = static_cast<const ConvexShape *>(inShapeCast.mShape);
  201. JPH_ASSERT(inShape->GetType() == EShapeType::Convex);
  202. const ConvexShape *shape = static_cast<const ConvexShape *>(inShape);
  203. // Determine if we want to use the actual shape or a shrunken shape with convex radius
  204. ConvexShape::ESupportMode support_mode = inShapeCastSettings.mUseShrunkenShapeAndConvexRadius? ConvexShape::ESupportMode::ExcludeConvexRadius : ConvexShape::ESupportMode::IncludeConvexRadius;
  205. // Create support function for shape to cast
  206. SupportBuffer cast_buffer;
  207. const Support *cast_support = cast_shape->GetSupportFunction(support_mode, cast_buffer, inShapeCast.mScale);
  208. // Create support function for target shape
  209. SupportBuffer target_buffer;
  210. const Support *target_support = shape->GetSupportFunction(support_mode, target_buffer, inScale);
  211. // Do a raycast against the result
  212. EPAPenetrationDepth epa;
  213. float fraction = ioCollector.GetEarlyOutFraction();
  214. Vec3 contact_point_a, contact_point_b, contact_normal;
  215. if (epa.CastShape(inShapeCast.mCenterOfMassStart, inShapeCast.mDirection, inShapeCastSettings.mCollisionTolerance, inShapeCastSettings.mPenetrationTolerance, *cast_support, *target_support, cast_support->GetConvexRadius(), target_support->GetConvexRadius(), inShapeCastSettings.mReturnDeepestPoint, fraction, contact_point_a, contact_point_b, contact_normal))
  216. {
  217. // Test if backfacing
  218. if (inShapeCastSettings.mBackFaceModeConvex == EBackFaceMode::CollideWithBackFaces
  219. || contact_normal.Dot(inShapeCast.mDirection) > 0.0f)
  220. {
  221. // Convert to world space
  222. contact_point_a = inCenterOfMassTransform2 * contact_point_a;
  223. contact_point_b = inCenterOfMassTransform2 * contact_point_b;
  224. Vec3 contact_normal_world = inCenterOfMassTransform2.Multiply3x3(contact_normal);
  225. ShapeCastResult result(fraction, contact_point_a, contact_point_b, contact_normal_world, false, inSubShapeIDCreator1.GetID(), inSubShapeIDCreator2.GetID(), TransformedShape::sGetBodyID(ioCollector.GetContext()));
  226. // Gather faces
  227. if (inShapeCastSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces)
  228. {
  229. // Get supporting face of shape 1
  230. Mat44 transform_1_to_2 = inShapeCast.mCenterOfMassStart;
  231. transform_1_to_2.SetTranslation(transform_1_to_2.GetTranslation() + fraction * inShapeCast.mDirection);
  232. cast_shape->GetSupportingFace(transform_1_to_2.Multiply3x3Transposed(-contact_normal), inShapeCast.mScale, result.mShape1Face);
  233. // Convert to world space
  234. Mat44 transform_1_to_world = inCenterOfMassTransform2 * transform_1_to_2;
  235. for (Vec3 &p : result.mShape1Face)
  236. p = transform_1_to_world * p;
  237. // Get supporting face of shape 2
  238. shape->GetSupportingFace(contact_normal, inScale, result.mShape2Face);
  239. // Convert to world space
  240. for (Vec3 &p : result.mShape2Face)
  241. p = inCenterOfMassTransform2 * p;
  242. }
  243. JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
  244. ioCollector.AddHit(result);
  245. }
  246. }
  247. }
  248. class ConvexShape::CSGetTrianglesContext
  249. {
  250. public:
  251. CSGetTrianglesContext(const ConvexShape *inShape, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) :
  252. mLocalToWorld(Mat44::sRotationTranslation(inRotation, inPositionCOM) * Mat44::sScale(inScale)),
  253. mIsInsideOut(ScaleHelpers::IsInsideOut(inScale))
  254. {
  255. mSupport = inShape->GetSupportFunction(ESupportMode::IncludeConvexRadius, mSupportBuffer, Vec3::sReplicate(1.0f));
  256. }
  257. SupportBuffer mSupportBuffer;
  258. const Support * mSupport;
  259. Mat44 mLocalToWorld;
  260. bool mIsInsideOut;
  261. size_t mCurrentVertex = 0;
  262. };
  263. void ConvexShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
  264. {
  265. static_assert(sizeof(CSGetTrianglesContext) <= sizeof(GetTrianglesContext), "GetTrianglesContext too small");
  266. JPH_ASSERT(IsAligned(&ioContext, alignof(CSGetTrianglesContext)));
  267. new (&ioContext) CSGetTrianglesContext(this, inPositionCOM, inRotation, inScale);
  268. }
  269. int ConvexShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
  270. {
  271. JPH_ASSERT(inMaxTrianglesRequested >= cGetTrianglesMinTrianglesRequested);
  272. CSGetTrianglesContext &context = (CSGetTrianglesContext &)ioContext;
  273. int total_num_vertices = min(inMaxTrianglesRequested * 3, int(sUnitSphereTriangles.size() - context.mCurrentVertex));
  274. if (context.mIsInsideOut)
  275. {
  276. // Store triangles flipped
  277. for (const Vec3 *v = sUnitSphereTriangles.data() + context.mCurrentVertex, *v_end = v + total_num_vertices; v < v_end; v += 3)
  278. {
  279. (context.mLocalToWorld * context.mSupport->GetSupport(v[0])).StoreFloat3(outTriangleVertices++);
  280. (context.mLocalToWorld * context.mSupport->GetSupport(v[2])).StoreFloat3(outTriangleVertices++);
  281. (context.mLocalToWorld * context.mSupport->GetSupport(v[1])).StoreFloat3(outTriangleVertices++);
  282. }
  283. }
  284. else
  285. {
  286. // Store triangles
  287. for (const Vec3 *v = sUnitSphereTriangles.data() + context.mCurrentVertex, *v_end = v + total_num_vertices; v < v_end; v += 3)
  288. {
  289. (context.mLocalToWorld * context.mSupport->GetSupport(v[0])).StoreFloat3(outTriangleVertices++);
  290. (context.mLocalToWorld * context.mSupport->GetSupport(v[1])).StoreFloat3(outTriangleVertices++);
  291. (context.mLocalToWorld * context.mSupport->GetSupport(v[2])).StoreFloat3(outTriangleVertices++);
  292. }
  293. }
  294. context.mCurrentVertex += total_num_vertices;
  295. int total_num_triangles = total_num_vertices / 3;
  296. // Store materials
  297. if (outMaterials != nullptr)
  298. {
  299. const PhysicsMaterial *material = GetMaterial();
  300. for (const PhysicsMaterial **m = outMaterials, **m_end = outMaterials + total_num_triangles; m < m_end; ++m)
  301. *m = material;
  302. }
  303. return total_num_triangles;
  304. }
  305. void ConvexShape::GetSubmergedVolume(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy) const
  306. {
  307. // Calculate total volume
  308. Vec3 abs_scale = inScale.Abs();
  309. Vec3 extent = GetLocalBounds().GetExtent() * abs_scale;
  310. outTotalVolume = 8.0f * extent.GetX() * extent.GetY() * extent.GetZ();
  311. // Points of the bounding box
  312. Vec3 points[] =
  313. {
  314. Vec3(-1, -1, -1),
  315. Vec3( 1, -1, -1),
  316. Vec3(-1, 1, -1),
  317. Vec3( 1, 1, -1),
  318. Vec3(-1, -1, 1),
  319. Vec3( 1, -1, 1),
  320. Vec3(-1, 1, 1),
  321. Vec3( 1, 1, 1),
  322. };
  323. // Faces of the bounding box
  324. using Face = int[5];
  325. #define MAKE_FACE(a, b, c, d) { a, b, c, d, ((1 << a) | (1 << b) | (1 << c) | (1 << d)) } // Last int is a bit mask that indicates which indices are used
  326. Face faces[] =
  327. {
  328. MAKE_FACE(0, 2, 3, 1),
  329. MAKE_FACE(4, 6, 2, 0),
  330. MAKE_FACE(4, 5, 7, 6),
  331. MAKE_FACE(1, 3, 7, 5),
  332. MAKE_FACE(2, 6, 7, 3),
  333. MAKE_FACE(0, 1, 5, 4),
  334. };
  335. PolyhedronSubmergedVolumeCalculator::Point *buffer = (PolyhedronSubmergedVolumeCalculator::Point *)JPH_STACK_ALLOC(8 * sizeof(PolyhedronSubmergedVolumeCalculator::Point));
  336. PolyhedronSubmergedVolumeCalculator submerged_vol_calc(inCenterOfMassTransform * Mat44::sScale(extent), points, sizeof(Vec3), 8, inSurface, buffer);
  337. if (submerged_vol_calc.AreAllAbove())
  338. {
  339. // We're above the water
  340. outSubmergedVolume = 0.0f;
  341. outCenterOfBuoyancy = Vec3::sZero();
  342. }
  343. else if (submerged_vol_calc.AreAllBelow())
  344. {
  345. // We're fully submerged
  346. outSubmergedVolume = outTotalVolume;
  347. outCenterOfBuoyancy = inCenterOfMassTransform.GetTranslation();
  348. }
  349. else
  350. {
  351. // Calculate submerged volume
  352. int reference_point_bit = 1 << submerged_vol_calc.GetReferencePointIdx();
  353. for (const Face &f : faces)
  354. {
  355. // Test if this face includes the reference point
  356. if ((f[4] & reference_point_bit) == 0)
  357. {
  358. // Triangulate the face (a quad)
  359. submerged_vol_calc.AddFace(f[0], f[1], f[2]);
  360. submerged_vol_calc.AddFace(f[0], f[2], f[3]);
  361. }
  362. }
  363. submerged_vol_calc.GetResult(outSubmergedVolume, outCenterOfBuoyancy);
  364. }
  365. }
  366. #ifdef JPH_DEBUG_RENDERER
  367. void ConvexShape::DrawGetSupportFunction(DebugRenderer *inRenderer, Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inDrawSupportDirection) const
  368. {
  369. DebugRenderer::GeometryRef &geometry = mGetSupportFunctionGeometry[inScale];
  370. if (geometry == nullptr)
  371. {
  372. SupportBuffer buffer;
  373. const Support *support = GetSupportFunction(ESupportMode::ExcludeConvexRadius, buffer, inScale);
  374. AddConvexRadius<Support> add_convex(*support, support->GetConvexRadius());
  375. geometry = inRenderer->CreateTriangleGeometryForConvex([&add_convex](Vec3Arg inDirection) { return add_convex.GetSupport(inDirection); });
  376. }
  377. AABox bounds = geometry->mBounds.Transformed(inCenterOfMassTransform);
  378. float lod_scale_sq = geometry->mBounds.GetExtent().LengthSq();
  379. inRenderer->DrawGeometry(inCenterOfMassTransform, bounds, lod_scale_sq, inColor, geometry);
  380. if (inDrawSupportDirection)
  381. {
  382. // Get the support function with convex radius
  383. SupportBuffer buffer;
  384. const Support *support = GetSupportFunction(ESupportMode::ExcludeConvexRadius, buffer, inScale);
  385. AddConvexRadius<Support> add_convex(*support, support->GetConvexRadius());
  386. // Iterate on all directions and draw the support point and an arrow in the direction that was sampled to test if the support points make sense
  387. for (Vec3 v : Vec3::sUnitSphere)
  388. {
  389. Vec3 direction = 0.05f * v;
  390. Vec3 pos = add_convex.GetSupport(direction);
  391. Vec3 from = inCenterOfMassTransform * pos;
  392. Vec3 to = inCenterOfMassTransform * (pos + direction);
  393. inRenderer->DrawMarker(from, Color::sWhite, 0.001f);
  394. inRenderer->DrawArrow(from, to, Color::sWhite, 0.001f);
  395. }
  396. }
  397. }
  398. void ConvexShape::DrawGetSupportingFace(DebugRenderer *inRenderer, Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
  399. {
  400. // Sample directions and map which faces belong to which directions
  401. using FaceToDirection = unordered_map<SupportingFace, vector<Vec3>>;
  402. FaceToDirection faces;
  403. for (Vec3 v : Vec3::sUnitSphere)
  404. {
  405. Vec3 direction = 0.05f * v;
  406. SupportingFace face;
  407. GetSupportingFace(direction, inScale, face);
  408. if (!face.empty())
  409. {
  410. JPH_ASSERT(face.size() >= 2, "The GetSupportingFace function should either return nothing or at least an edge");
  411. faces[face].push_back(direction);
  412. }
  413. }
  414. // Draw each face in a unique color and draw corresponding directions
  415. int color_it = 0;
  416. for (FaceToDirection::value_type &ftd : faces)
  417. {
  418. Color color = Color::sGetDistinctColor(color_it++);
  419. // Create copy of face (key in map is read only)
  420. SupportingFace face = ftd.first;
  421. // Displace the face a little bit forward so it is easier to see
  422. Vec3 normal = face.size() >= 3? (face[2] - face[1]).Cross(face[0] - face[1]).Normalized() : Vec3::sZero();
  423. Vec3 displacement = 0.001f * normal;
  424. // Transform face to world space and calculate center of mass
  425. Vec3 com = Vec3::sZero();
  426. for (Vec3 &v : face)
  427. {
  428. v = inCenterOfMassTransform * (v + displacement);
  429. com += v;
  430. }
  431. com /= (float)face.size();
  432. // Draw the polygon and directions
  433. inRenderer->DrawWirePolygon(face, color, face.size() >= 3? 0.001f : 0.0f);
  434. if (face.size() >= 3)
  435. inRenderer->DrawArrow(com, com + inCenterOfMassTransform.Multiply3x3(normal), color, 0.01f);
  436. for (Vec3 &v : ftd.second)
  437. inRenderer->DrawArrow(com, com + inCenterOfMassTransform.Multiply3x3(-v), color, 0.001f);
  438. }
  439. }
  440. #endif // JPH_DEBUG_RENDERER
  441. void ConvexShape::SaveBinaryState(StreamOut &inStream) const
  442. {
  443. Shape::SaveBinaryState(inStream);
  444. inStream.Write(mDensity);
  445. }
  446. void ConvexShape::RestoreBinaryState(StreamIn &inStream)
  447. {
  448. Shape::RestoreBinaryState(inStream);
  449. inStream.Read(mDensity);
  450. }
  451. void ConvexShape::SaveMaterialState(PhysicsMaterialList &outMaterials) const
  452. {
  453. outMaterials.clear();
  454. outMaterials.push_back(mMaterial);
  455. }
  456. void ConvexShape::RestoreMaterialState(const PhysicsMaterialRefC *inMaterials, uint inNumMaterials)
  457. {
  458. JPH_ASSERT(inNumMaterials == 1);
  459. mMaterial = inMaterials[0];
  460. }
  461. void ConvexShape::sRegister()
  462. {
  463. for (EShapeSubType s1 : sConvexSubShapeTypes)
  464. for (EShapeSubType s2 : sConvexSubShapeTypes)
  465. {
  466. CollisionDispatch::sRegisterCollideShape(s1, s2, sCollideConvexVsConvex);
  467. CollisionDispatch::sRegisterCastShape(s1, s2, sCastConvexVsConvex);
  468. }
  469. }
  470. } // JPH