HingeConstraint.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt.h>
  4. #include <Physics/Constraints/HingeConstraint.h>
  5. #include <Physics/Body/Body.h>
  6. #include <ObjectStream/TypeDeclarations.h>
  7. #include <Core/StreamIn.h>
  8. #include <Core/StreamOut.h>
  9. #ifdef JPH_DEBUG_RENDERER
  10. #include <Renderer/DebugRenderer.h>
  11. #endif // JPH_DEBUG_RENDERER
  12. namespace JPH {
  13. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(HingeConstraintSettings)
  14. {
  15. JPH_ADD_BASE_CLASS(HingeConstraintSettings, TwoBodyConstraintSettings)
  16. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint1)
  17. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis1)
  18. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis1)
  19. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint2)
  20. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis2)
  21. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis2)
  22. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMin)
  23. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMax)
  24. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMaxFrictionTorque)
  25. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMotorSettings)
  26. }
  27. void HingeConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  28. {
  29. ConstraintSettings::SaveBinaryState(inStream);
  30. inStream.Write(mPoint1);
  31. inStream.Write(mHingeAxis1);
  32. inStream.Write(mNormalAxis1);
  33. inStream.Write(mPoint2);
  34. inStream.Write(mHingeAxis2);
  35. inStream.Write(mNormalAxis2);
  36. inStream.Write(mLimitsMin);
  37. inStream.Write(mLimitsMax);
  38. inStream.Write(mMaxFrictionTorque);
  39. mMotorSettings.SaveBinaryState(inStream);
  40. }
  41. void HingeConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  42. {
  43. ConstraintSettings::RestoreBinaryState(inStream);
  44. inStream.Read(mPoint1);
  45. inStream.Read(mHingeAxis1);
  46. inStream.Read(mNormalAxis1);
  47. inStream.Read(mPoint2);
  48. inStream.Read(mHingeAxis2);
  49. inStream.Read(mNormalAxis2);
  50. inStream.Read(mLimitsMin);
  51. inStream.Read(mLimitsMax);
  52. inStream.Read(mMaxFrictionTorque);
  53. mMotorSettings.RestoreBinaryState(inStream);}
  54. TwoBodyConstraint *HingeConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  55. {
  56. return new HingeConstraint(inBody1, inBody2, *this);
  57. }
  58. HingeConstraint::HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings) :
  59. TwoBodyConstraint(inBody1, inBody2, inSettings),
  60. mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
  61. mMotorSettings(inSettings.mMotorSettings)
  62. {
  63. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  64. Mat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  65. // Store local positions
  66. mLocalSpacePosition1 = inv_transform1 * inSettings.mPoint1;
  67. mLocalSpacePosition2 = inv_transform2 * inSettings.mPoint2;
  68. // Store local hinge axis
  69. mLocalSpaceHingeAxis1 = inv_transform1.Multiply3x3(inSettings.mHingeAxis1).Normalized();
  70. mLocalSpaceHingeAxis2 = inv_transform2.Multiply3x3(inSettings.mHingeAxis2).Normalized();
  71. // Store local normal axis
  72. mLocalSpaceNormalAxis1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
  73. mLocalSpaceNormalAxis2 = inv_transform2.Multiply3x3(inSettings.mNormalAxis2).Normalized();
  74. // Store limits
  75. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax, "Better use a fixed constraint in this case");
  76. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  77. // Store inverse of initial rotation from body 1 to body 2 in body 1 space:
  78. //
  79. // q20 = q10 r0
  80. // <=> r0 = q10^-1 q20
  81. // <=> r0^-1 = q20^-1 q10
  82. //
  83. // where:
  84. //
  85. // q20 = initial orientation of body 2
  86. // q10 = initial orientation of body 1
  87. // r0 = initial rotation rotation from body 1 to body 2
  88. if (inSettings.mHingeAxis1 == inSettings.mHingeAxis2 && inSettings.mNormalAxis1 == inSettings.mNormalAxis2)
  89. {
  90. // Bodies are in their neutral poses, no need to take hinge and normal axis into account
  91. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * inBody1.GetRotation();
  92. }
  93. else
  94. {
  95. // Bodies are not in their neutral pose, need to adjust initial rotation for it
  96. // Form two world space constraint matrices C1, C2
  97. // Body 1 needs to be rotated by D to get it into neutral pose: C2 = D C1 <=> D = C2 C1^1
  98. // so instead of using body1 rotation as above use D R1 = C2 C1^-1 R1
  99. Mat44 constraint1(Vec4(inSettings.mNormalAxis1, 0), Vec4(inSettings.mHingeAxis1.Cross(inSettings.mNormalAxis1), 0), Vec4(inSettings.mHingeAxis1, 0), Vec4(0, 0, 0, 1));
  100. Mat44 constraint2(Vec4(inSettings.mNormalAxis2, 0), Vec4(inSettings.mHingeAxis2.Cross(inSettings.mNormalAxis2), 0), Vec4(inSettings.mHingeAxis2, 0), Vec4(0, 0, 0, 1));
  101. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated() * inBody1.GetRotation();
  102. }
  103. }
  104. void HingeConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  105. {
  106. JPH_ASSERT(inLimitsMin <= 0.0f && inLimitsMin >= -JPH_PI);
  107. JPH_ASSERT(inLimitsMax >= 0.0f && inLimitsMax <= JPH_PI);
  108. mLimitsMin = inLimitsMin;
  109. mLimitsMax = inLimitsMax;
  110. mHasLimits = mLimitsMin > -JPH_PI && mLimitsMax < JPH_PI;
  111. }
  112. void HingeConstraint::CalculateA1AndTheta()
  113. {
  114. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
  115. {
  116. Quat rotation1 = mBody1->GetRotation();
  117. // Calculate relative rotation in world space
  118. //
  119. // The rest rotation is:
  120. //
  121. // q2 = q1 r0
  122. //
  123. // But the actual rotation is
  124. //
  125. // q2 = diff q1 r0
  126. // <=> diff = q2 r0^-1 q1^-1
  127. //
  128. // Where:
  129. // q1 = current rotation of body 1
  130. // q2 = current rotation of body 2
  131. // diff = relative rotation in world space
  132. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  133. // Calculate hinge axis in world space
  134. mA1 = rotation1 * mLocalSpaceHingeAxis1;
  135. // Get rotation angle around the hinge axis
  136. mTheta = diff.GetRotationAngle(mA1);
  137. }
  138. }
  139. void HingeConstraint::CalculateRotationLimitsConstraintProperties(float inDeltaTime)
  140. {
  141. // Apply constraint if outside of limits
  142. if (mHasLimits && (mTheta <= mLimitsMin || mTheta >= mLimitsMax))
  143. mRotationLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1);
  144. else
  145. mRotationLimitsConstraintPart.Deactivate();
  146. }
  147. void HingeConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  148. {
  149. switch (mMotorState)
  150. {
  151. case EMotorState::Off:
  152. if (mMaxFrictionTorque > 0.0f)
  153. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1);
  154. else
  155. mMotorConstraintPart.Deactivate();
  156. break;
  157. case EMotorState::Velocity:
  158. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1, -mTargetAngularVelocity);
  159. break;
  160. case EMotorState::Position:
  161. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, CenterAngleAroundZero(mTheta - mTargetAngle), mMotorSettings.mFrequency, mMotorSettings.mDamping);
  162. break;
  163. }
  164. }
  165. void HingeConstraint::SetupVelocityConstraint(float inDeltaTime)
  166. {
  167. // Cache constraint values that are valid until the bodies move
  168. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  169. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  170. mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
  171. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  172. CalculateA1AndTheta();
  173. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  174. CalculateMotorConstraintProperties(inDeltaTime);
  175. }
  176. void HingeConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  177. {
  178. // Warm starting: Apply previous frame impulse
  179. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  180. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  181. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  182. mRotationLimitsConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  183. }
  184. float HingeConstraint::GetSmallestAngleToLimit() const
  185. {
  186. float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
  187. float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
  188. return abs(dist_to_min) < abs(dist_to_max)? dist_to_min : dist_to_max;
  189. }
  190. bool HingeConstraint::SolveVelocityConstraint(float inDeltaTime)
  191. {
  192. // Solve motor
  193. bool motor = false;
  194. if (mMotorConstraintPart.IsActive())
  195. {
  196. switch (mMotorState)
  197. {
  198. case EMotorState::Off:
  199. {
  200. float max_lambda = mMaxFrictionTorque * inDeltaTime;
  201. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -max_lambda, max_lambda);
  202. break;
  203. }
  204. case EMotorState::Velocity:
  205. case EMotorState::Position:
  206. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, inDeltaTime * mMotorSettings.mMinTorqueLimit, inDeltaTime * mMotorSettings.mMaxTorqueLimit);
  207. break;
  208. }
  209. }
  210. // Solve point constraint
  211. bool pos = mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  212. // Solve rotation constraint
  213. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  214. // Solve rotation limits
  215. bool limit = false;
  216. if (mRotationLimitsConstraintPart.IsActive())
  217. {
  218. if (GetSmallestAngleToLimit() < 0.0f)
  219. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, 0, FLT_MAX);
  220. else
  221. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -FLT_MAX, 0);
  222. }
  223. return motor || pos || rot || limit;
  224. }
  225. bool HingeConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  226. {
  227. // Motor operates on velocities only, don't call SolvePositionConstraint
  228. // Solve point constraint
  229. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  230. bool pos = mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  231. // Solve rotation constraint
  232. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation()); // Note that previous call to GetRotation() is out of date since the rotation has changed
  233. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  234. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  235. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  236. // Solve rotation limits
  237. bool limit = false;
  238. CalculateA1AndTheta();
  239. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  240. if (mRotationLimitsConstraintPart.IsActive())
  241. limit = mRotationLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, GetSmallestAngleToLimit(), inBaumgarte);
  242. return pos || rot || limit;
  243. }
  244. #ifdef JPH_DEBUG_RENDERER
  245. void HingeConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  246. {
  247. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  248. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  249. // Draw constraint
  250. Vec3 constraint_pos1 = transform1 * mLocalSpacePosition1;
  251. inRenderer->DrawMarker(constraint_pos1, Color::sRed, 0.1f);
  252. inRenderer->DrawLine(constraint_pos1, transform1 * (mLocalSpacePosition1 + mDrawConstraintSize * mLocalSpaceHingeAxis1), Color::sRed);
  253. Vec3 constraint_pos2 = transform2 * mLocalSpacePosition2;
  254. inRenderer->DrawMarker(constraint_pos2, Color::sGreen, 0.1f);
  255. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceHingeAxis2), Color::sGreen);
  256. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceNormalAxis2), Color::sWhite);
  257. }
  258. void HingeConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  259. {
  260. if (mHasLimits && mLimitsMax > mLimitsMin)
  261. {
  262. // Get constraint properties in world space
  263. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  264. Vec3 position1 = transform1 * mLocalSpacePosition1;
  265. Vec3 hinge_axis1 = transform1.Multiply3x3(mLocalSpaceHingeAxis1);
  266. Vec3 normal_axis1 = transform1.Multiply3x3(mLocalSpaceNormalAxis1);
  267. inRenderer->DrawPie(position1, mDrawConstraintSize, hinge_axis1, normal_axis1, mLimitsMin, mLimitsMax, Color::sPurple, DebugRenderer::ECastShadow::Off);
  268. }
  269. }
  270. #endif // JPH_DEBUG_RENDERER
  271. void HingeConstraint::SaveState(StateRecorder &inStream) const
  272. {
  273. TwoBodyConstraint::SaveState(inStream);
  274. mMotorConstraintPart.SaveState(inStream);
  275. mRotationConstraintPart.SaveState(inStream);
  276. mPointConstraintPart.SaveState(inStream);
  277. mRotationLimitsConstraintPart.SaveState(inStream);
  278. inStream.Write(mMotorState);
  279. inStream.Write(mTargetAngularVelocity);
  280. inStream.Write(mTargetAngle);
  281. }
  282. void HingeConstraint::RestoreState(StateRecorder &inStream)
  283. {
  284. TwoBodyConstraint::RestoreState(inStream);
  285. mMotorConstraintPart.RestoreState(inStream);
  286. mRotationConstraintPart.RestoreState(inStream);
  287. mPointConstraintPart.RestoreState(inStream);
  288. mRotationLimitsConstraintPart.RestoreState(inStream);
  289. inStream.Read(mMotorState);
  290. inStream.Read(mTargetAngularVelocity);
  291. inStream.Read(mTargetAngle);
  292. }
  293. Mat44 HingeConstraint::GetConstraintToBody1Matrix() const
  294. {
  295. return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(mLocalSpaceNormalAxis1, 0), Vec4(mLocalSpaceHingeAxis1.Cross(mLocalSpaceNormalAxis1), 0), Vec4(mLocalSpacePosition1, 1));
  296. }
  297. Mat44 HingeConstraint::GetConstraintToBody2Matrix() const
  298. {
  299. return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(mLocalSpaceNormalAxis2, 0), Vec4(mLocalSpaceHingeAxis2.Cross(mLocalSpaceNormalAxis2), 0), Vec4(mLocalSpacePosition2, 1));
  300. }
  301. } // JPH