HelloWorld.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. // The Jolt headers don't include Jolt.h. Always include Jolt.h before including any other Jolt header.
  5. // You can use Jolt.h in your precompiled header to speed up compilation.
  6. #include <Jolt/Jolt.h>
  7. // Jolt includes
  8. #include <Jolt/RegisterTypes.h>
  9. #include <Jolt/Core/Factory.h>
  10. #include <Jolt/Core/TempAllocator.h>
  11. #include <Jolt/Core/JobSystemThreadPool.h>
  12. #include <Jolt/Physics/PhysicsSettings.h>
  13. #include <Jolt/Physics/PhysicsSystem.h>
  14. #include <Jolt/Physics/Collision/Shape/BoxShape.h>
  15. #include <Jolt/Physics/Collision/Shape/SphereShape.h>
  16. #include <Jolt/Physics/Body/BodyCreationSettings.h>
  17. #include <Jolt/Physics/Body/BodyActivationListener.h>
  18. // STL includes
  19. #include <iostream>
  20. #include <cstdarg>
  21. #include <thread>
  22. // Disable common warnings triggered by Jolt, you can use JPH_SUPPRESS_WARNING_PUSH / JPH_SUPPRESS_WARNING_POP to store and restore the warning state
  23. JPH_SUPPRESS_WARNINGS
  24. // All Jolt symbols are in the JPH namespace
  25. using namespace JPH;
  26. // If you want your code to compile using single or double precision write 0.0_r to get a Real value that compiles to double or float depending if JPH_DOUBLE_PRECISION is set or not.
  27. using namespace JPH::literals;
  28. // We're also using STL classes in this example
  29. using namespace std;
  30. // Callback for traces, connect this to your own trace function if you have one
  31. static void TraceImpl(const char *inFMT, ...)
  32. {
  33. // Format the message
  34. va_list list;
  35. va_start(list, inFMT);
  36. char buffer[1024];
  37. vsnprintf(buffer, sizeof(buffer), inFMT, list);
  38. va_end(list);
  39. // Print to the TTY
  40. cout << buffer << endl;
  41. }
  42. #ifdef JPH_ENABLE_ASSERTS
  43. // Callback for asserts, connect this to your own assert handler if you have one
  44. static bool AssertFailedImpl(const char *inExpression, const char *inMessage, const char *inFile, uint inLine)
  45. {
  46. // Print to the TTY
  47. cout << inFile << ":" << inLine << ": (" << inExpression << ") " << (inMessage != nullptr? inMessage : "") << endl;
  48. // Breakpoint
  49. return true;
  50. };
  51. #endif // JPH_ENABLE_ASSERTS
  52. // Layer that objects can be in, determines which other objects it can collide with
  53. // Typically you at least want to have 1 layer for moving bodies and 1 layer for static bodies, but you can have more
  54. // layers if you want. E.g. you could have a layer for high detail collision (which is not used by the physics simulation
  55. // but only if you do collision testing).
  56. namespace Layers
  57. {
  58. static constexpr ObjectLayer NON_MOVING = 0;
  59. static constexpr ObjectLayer MOVING = 1;
  60. static constexpr ObjectLayer NUM_LAYERS = 2;
  61. };
  62. /// Class that determines if two object layers can collide
  63. class ObjectLayerPairFilterImpl : public ObjectLayerPairFilter
  64. {
  65. public:
  66. virtual bool ShouldCollide(ObjectLayer inObject1, ObjectLayer inObject2) const override
  67. {
  68. switch (inObject1)
  69. {
  70. case Layers::NON_MOVING:
  71. return inObject2 == Layers::MOVING; // Non moving only collides with moving
  72. case Layers::MOVING:
  73. return true; // Moving collides with everything
  74. default:
  75. JPH_ASSERT(false);
  76. return false;
  77. }
  78. }
  79. };
  80. // Each broadphase layer results in a separate bounding volume tree in the broad phase. You at least want to have
  81. // a layer for non-moving and moving objects to avoid having to update a tree full of static objects every frame.
  82. // You can have a 1-on-1 mapping between object layers and broadphase layers (like in this case) but if you have
  83. // many object layers you'll be creating many broad phase trees, which is not efficient. If you want to fine tune
  84. // your broadphase layers define JPH_TRACK_BROADPHASE_STATS and look at the stats reported on the TTY.
  85. namespace BroadPhaseLayers
  86. {
  87. static constexpr BroadPhaseLayer NON_MOVING(0);
  88. static constexpr BroadPhaseLayer MOVING(1);
  89. static constexpr uint NUM_LAYERS(2);
  90. };
  91. // BroadPhaseLayerInterface implementation
  92. // This defines a mapping between object and broadphase layers.
  93. class BPLayerInterfaceImpl final : public BroadPhaseLayerInterface
  94. {
  95. public:
  96. BPLayerInterfaceImpl()
  97. {
  98. // Create a mapping table from object to broad phase layer
  99. mObjectToBroadPhase[Layers::NON_MOVING] = BroadPhaseLayers::NON_MOVING;
  100. mObjectToBroadPhase[Layers::MOVING] = BroadPhaseLayers::MOVING;
  101. }
  102. virtual uint GetNumBroadPhaseLayers() const override
  103. {
  104. return BroadPhaseLayers::NUM_LAYERS;
  105. }
  106. virtual BroadPhaseLayer GetBroadPhaseLayer(ObjectLayer inLayer) const override
  107. {
  108. JPH_ASSERT(inLayer < Layers::NUM_LAYERS);
  109. return mObjectToBroadPhase[inLayer];
  110. }
  111. #if defined(JPH_EXTERNAL_PROFILE) || defined(JPH_PROFILE_ENABLED)
  112. virtual const char * GetBroadPhaseLayerName(BroadPhaseLayer inLayer) const override
  113. {
  114. switch ((BroadPhaseLayer::Type)inLayer)
  115. {
  116. case (BroadPhaseLayer::Type)BroadPhaseLayers::NON_MOVING: return "NON_MOVING";
  117. case (BroadPhaseLayer::Type)BroadPhaseLayers::MOVING: return "MOVING";
  118. default: JPH_ASSERT(false); return "INVALID";
  119. }
  120. }
  121. #endif // JPH_EXTERNAL_PROFILE || JPH_PROFILE_ENABLED
  122. private:
  123. BroadPhaseLayer mObjectToBroadPhase[Layers::NUM_LAYERS];
  124. };
  125. /// Class that determines if an object layer can collide with a broadphase layer
  126. class ObjectVsBroadPhaseLayerFilterImpl : public ObjectVsBroadPhaseLayerFilter
  127. {
  128. public:
  129. virtual bool ShouldCollide(ObjectLayer inLayer1, BroadPhaseLayer inLayer2) const override
  130. {
  131. switch (inLayer1)
  132. {
  133. case Layers::NON_MOVING:
  134. return inLayer2 == BroadPhaseLayers::MOVING;
  135. case Layers::MOVING:
  136. return true;
  137. default:
  138. JPH_ASSERT(false);
  139. return false;
  140. }
  141. }
  142. };
  143. // An example contact listener
  144. class MyContactListener : public ContactListener
  145. {
  146. public:
  147. // See: ContactListener
  148. virtual ValidateResult OnContactValidate(const Body &inBody1, const Body &inBody2, RVec3Arg inBaseOffset, const CollideShapeResult &inCollisionResult) override
  149. {
  150. cout << "Contact validate callback" << endl;
  151. // Allows you to ignore a contact before it is created (using layers to not make objects collide is cheaper!)
  152. return ValidateResult::AcceptAllContactsForThisBodyPair;
  153. }
  154. virtual void OnContactAdded(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  155. {
  156. cout << "A contact was added" << endl;
  157. }
  158. virtual void OnContactPersisted(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
  159. {
  160. cout << "A contact was persisted" << endl;
  161. }
  162. virtual void OnContactRemoved(const SubShapeIDPair &inSubShapePair) override
  163. {
  164. cout << "A contact was removed" << endl;
  165. }
  166. };
  167. // An example activation listener
  168. class MyBodyActivationListener : public BodyActivationListener
  169. {
  170. public:
  171. virtual void OnBodyActivated(const BodyID &inBodyID, uint64 inBodyUserData) override
  172. {
  173. cout << "A body got activated" << endl;
  174. }
  175. virtual void OnBodyDeactivated(const BodyID &inBodyID, uint64 inBodyUserData) override
  176. {
  177. cout << "A body went to sleep" << endl;
  178. }
  179. };
  180. // Program entry point
  181. int main(int argc, char** argv)
  182. {
  183. // Register allocation hook
  184. RegisterDefaultAllocator();
  185. // Install callbacks
  186. Trace = TraceImpl;
  187. JPH_IF_ENABLE_ASSERTS(AssertFailed = AssertFailedImpl;)
  188. // Create a factory
  189. Factory::sInstance = new Factory();
  190. // Register all Jolt physics types
  191. RegisterTypes();
  192. // We need a temp allocator for temporary allocations during the physics update. We're
  193. // pre-allocating 10 MB to avoid having to do allocations during the physics update.
  194. // B.t.w. 10 MB is way too much for this example but it is a typical value you can use.
  195. // If you don't want to pre-allocate you can also use TempAllocatorMalloc to fall back to
  196. // malloc / free.
  197. TempAllocatorImpl temp_allocator(10 * 1024 * 1024);
  198. // We need a job system that will execute physics jobs on multiple threads. Typically
  199. // you would implement the JobSystem interface yourself and let Jolt Physics run on top
  200. // of your own job scheduler. JobSystemThreadPool is an example implementation.
  201. JobSystemThreadPool job_system(cMaxPhysicsJobs, cMaxPhysicsBarriers, thread::hardware_concurrency() - 1);
  202. // This is the max amount of rigid bodies that you can add to the physics system. If you try to add more you'll get an error.
  203. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  204. const uint cMaxBodies = 1024;
  205. // This determines how many mutexes to allocate to protect rigid bodies from concurrent access. Set it to 0 for the default settings.
  206. const uint cNumBodyMutexes = 0;
  207. // This is the max amount of body pairs that can be queued at any time (the broad phase will detect overlapping
  208. // body pairs based on their bounding boxes and will insert them into a queue for the narrowphase). If you make this buffer
  209. // too small the queue will fill up and the broad phase jobs will start to do narrow phase work. This is slightly less efficient.
  210. // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
  211. const uint cMaxBodyPairs = 1024;
  212. // This is the maximum size of the contact constraint buffer. If more contacts (collisions between bodies) are detected than this
  213. // number then these contacts will be ignored and bodies will start interpenetrating / fall through the world.
  214. // Note: This value is low because this is a simple test. For a real project use something in the order of 10240.
  215. const uint cMaxContactConstraints = 1024;
  216. // Create mapping table from object layer to broadphase layer
  217. // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
  218. BPLayerInterfaceImpl broad_phase_layer_interface;
  219. // Create class that filters object vs broadphase layers
  220. // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
  221. ObjectVsBroadPhaseLayerFilterImpl object_vs_broadphase_layer_filter;
  222. // Create class that filters object vs object layers
  223. // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
  224. ObjectLayerPairFilterImpl object_vs_object_layer_filter;
  225. // Now we can create the actual physics system.
  226. PhysicsSystem physics_system;
  227. physics_system.Init(cMaxBodies, cNumBodyMutexes, cMaxBodyPairs, cMaxContactConstraints, broad_phase_layer_interface, object_vs_broadphase_layer_filter, object_vs_object_layer_filter);
  228. // A body activation listener gets notified when bodies activate and go to sleep
  229. // Note that this is called from a job so whatever you do here needs to be thread safe.
  230. // Registering one is entirely optional.
  231. MyBodyActivationListener body_activation_listener;
  232. physics_system.SetBodyActivationListener(&body_activation_listener);
  233. // A contact listener gets notified when bodies (are about to) collide, and when they separate again.
  234. // Note that this is called from a job so whatever you do here needs to be thread safe.
  235. // Registering one is entirely optional.
  236. MyContactListener contact_listener;
  237. physics_system.SetContactListener(&contact_listener);
  238. // The main way to interact with the bodies in the physics system is through the body interface. There is a locking and a non-locking
  239. // variant of this. We're going to use the locking version (even though we're not planning to access bodies from multiple threads)
  240. BodyInterface &body_interface = physics_system.GetBodyInterface();
  241. // Next we can create a rigid body to serve as the floor, we make a large box
  242. // Create the settings for the collision volume (the shape).
  243. // Note that for simple shapes (like boxes) you can also directly construct a BoxShape.
  244. BoxShapeSettings floor_shape_settings(Vec3(100.0f, 1.0f, 100.0f));
  245. // Create the shape
  246. ShapeSettings::ShapeResult floor_shape_result = floor_shape_settings.Create();
  247. ShapeRefC floor_shape = floor_shape_result.Get(); // We don't expect an error here, but you can check floor_shape_result for HasError() / GetError()
  248. // Create the settings for the body itself. Note that here you can also set other properties like the restitution / friction.
  249. BodyCreationSettings floor_settings(floor_shape, RVec3(0.0_r, -1.0_r, 0.0_r), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING);
  250. // Create the actual rigid body
  251. Body *floor = body_interface.CreateBody(floor_settings); // Note that if we run out of bodies this can return nullptr
  252. // Add it to the world
  253. body_interface.AddBody(floor->GetID(), EActivation::DontActivate);
  254. // Now create a dynamic body to bounce on the floor
  255. // Note that this uses the shorthand version of creating and adding a body to the world
  256. BodyCreationSettings sphere_settings(new SphereShape(0.5f), RVec3(0.0_r, 2.0_r, 0.0_r), Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING);
  257. BodyID sphere_id = body_interface.CreateAndAddBody(sphere_settings, EActivation::Activate);
  258. // Now you can interact with the dynamic body, in this case we're going to give it a velocity.
  259. // (note that if we had used CreateBody then we could have set the velocity straight on the body before adding it to the physics system)
  260. body_interface.SetLinearVelocity(sphere_id, Vec3(0.0f, -5.0f, 0.0f));
  261. // We simulate the physics world in discrete time steps. 60 Hz is a good rate to update the physics system.
  262. const float cDeltaTime = 1.0f / 60.0f;
  263. // Optional step: Before starting the physics simulation you can optimize the broad phase. This improves collision detection performance (it's pointless here because we only have 2 bodies).
  264. // You should definitely not call this every frame or when e.g. streaming in a new level section as it is an expensive operation.
  265. // Instead insert all new objects in batches instead of 1 at a time to keep the broad phase efficient.
  266. physics_system.OptimizeBroadPhase();
  267. // Now we're ready to simulate the body, keep simulating until it goes to sleep
  268. uint step = 0;
  269. while (body_interface.IsActive(sphere_id))
  270. {
  271. // Next step
  272. ++step;
  273. // Output current position and velocity of the sphere
  274. RVec3 position = body_interface.GetCenterOfMassPosition(sphere_id);
  275. Vec3 velocity = body_interface.GetLinearVelocity(sphere_id);
  276. cout << "Step " << step << ": Position = (" << position.GetX() << ", " << position.GetY() << ", " << position.GetZ() << "), Velocity = (" << velocity.GetX() << ", " << velocity.GetY() << ", " << velocity.GetZ() << ")" << endl;
  277. // If you take larger steps than 1 / 60th of a second you need to do multiple collision steps in order to keep the simulation stable. Do 1 collision step per 1 / 60th of a second (round up).
  278. const int cCollisionSteps = 1;
  279. // If you want more accurate step results you can do multiple sub steps within a collision step. Usually you would set this to 1.
  280. const int cIntegrationSubSteps = 1;
  281. // Step the world
  282. physics_system.Update(cDeltaTime, cCollisionSteps, cIntegrationSubSteps, &temp_allocator, &job_system);
  283. }
  284. // Remove the sphere from the physics system. Note that the sphere itself keeps all of its state and can be re-added at any time.
  285. body_interface.RemoveBody(sphere_id);
  286. // Destroy the sphere. After this the sphere ID is no longer valid.
  287. body_interface.DestroyBody(sphere_id);
  288. // Remove and destroy the floor
  289. body_interface.RemoveBody(floor->GetID());
  290. body_interface.DestroyBody(floor->GetID());
  291. // Unregisters all types with the factory and cleans up the default material
  292. UnregisterTypes();
  293. // Destroy the factory
  294. delete Factory::sInstance;
  295. Factory::sInstance = nullptr;
  296. return 0;
  297. }