SixDOFConstraint.cpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/SixDOFConstraint.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. #include <Jolt/Geometry/Ellipse.h>
  8. #include <Jolt/ObjectStream/TypeDeclarations.h>
  9. #include <Jolt/Core/StreamIn.h>
  10. #include <Jolt/Core/StreamOut.h>
  11. #ifdef JPH_DEBUG_RENDERER
  12. #include <Jolt/Renderer/DebugRenderer.h>
  13. #endif // JPH_DEBUG_RENDERER
  14. JPH_NAMESPACE_BEGIN
  15. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SixDOFConstraintSettings)
  16. {
  17. JPH_ADD_BASE_CLASS(SixDOFConstraintSettings, TwoBodyConstraintSettings)
  18. JPH_ADD_ENUM_ATTRIBUTE(SixDOFConstraintSettings, mSpace)
  19. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mPosition1)
  20. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisX1)
  21. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisY1)
  22. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mPosition2)
  23. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisX2)
  24. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mAxisY2)
  25. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mMaxFriction)
  26. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitMin)
  27. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitMax)
  28. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mLimitsSpringSettings)
  29. JPH_ADD_ATTRIBUTE(SixDOFConstraintSettings, mMotorSettings)
  30. }
  31. void SixDOFConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  32. {
  33. ConstraintSettings::SaveBinaryState(inStream);
  34. inStream.Write(mSpace);
  35. inStream.Write(mPosition1);
  36. inStream.Write(mAxisX1);
  37. inStream.Write(mAxisY1);
  38. inStream.Write(mPosition2);
  39. inStream.Write(mAxisX2);
  40. inStream.Write(mAxisY2);
  41. inStream.Write(mMaxFriction);
  42. inStream.Write(mLimitMin);
  43. inStream.Write(mLimitMax);
  44. for (const SpringSettings &s : mLimitsSpringSettings)
  45. s.SaveBinaryState(inStream);
  46. for (const MotorSettings &m : mMotorSettings)
  47. m.SaveBinaryState(inStream);
  48. }
  49. void SixDOFConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  50. {
  51. ConstraintSettings::RestoreBinaryState(inStream);
  52. inStream.Read(mSpace);
  53. inStream.Read(mPosition1);
  54. inStream.Read(mAxisX1);
  55. inStream.Read(mAxisY1);
  56. inStream.Read(mPosition2);
  57. inStream.Read(mAxisX2);
  58. inStream.Read(mAxisY2);
  59. inStream.Read(mMaxFriction);
  60. inStream.Read(mLimitMin);
  61. inStream.Read(mLimitMax);
  62. for (SpringSettings &s : mLimitsSpringSettings)
  63. s.RestoreBinaryState(inStream);
  64. for (MotorSettings &m : mMotorSettings)
  65. m.RestoreBinaryState(inStream);
  66. }
  67. TwoBodyConstraint *SixDOFConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  68. {
  69. return new SixDOFConstraint(inBody1, inBody2, *this);
  70. }
  71. void SixDOFConstraint::UpdateRotationLimits()
  72. {
  73. // Make values sensible
  74. for (int i = 3; i < 6; ++i)
  75. if (IsFixedAxis((EAxis)i))
  76. mLimitMin[i] = mLimitMax[i] = 0.0f;
  77. else
  78. {
  79. mLimitMin[i] = max(-JPH_PI, mLimitMin[i]);
  80. mLimitMax[i] = min(JPH_PI, mLimitMax[i]);
  81. }
  82. // The swing twist constraint part requires symmetrical rotations around Y and Z
  83. JPH_ASSERT(mLimitMin[EAxis::RotationY] == -mLimitMax[EAxis::RotationY]);
  84. JPH_ASSERT(mLimitMin[EAxis::RotationZ] == -mLimitMax[EAxis::RotationZ]);
  85. // Pass limits on to constraint part
  86. mSwingTwistConstraintPart.SetLimits(mLimitMin[EAxis::RotationX], mLimitMax[EAxis::RotationX], mLimitMax[EAxis::RotationY], mLimitMax[EAxis::RotationZ]);
  87. }
  88. SixDOFConstraint::SixDOFConstraint(Body &inBody1, Body &inBody2, const SixDOFConstraintSettings &inSettings) :
  89. TwoBodyConstraint(inBody1, inBody2, inSettings)
  90. {
  91. // Assert that input adheres to the limitations of this class
  92. JPH_ASSERT(inSettings.mLimitMin[EAxis::RotationY] == -inSettings.mLimitMax[EAxis::RotationY]);
  93. JPH_ASSERT(inSettings.mLimitMin[EAxis::RotationZ] == -inSettings.mLimitMax[EAxis::RotationZ]);
  94. // Calculate rotation needed to go from constraint space to body1 local space
  95. Vec3 axis_z1 = inSettings.mAxisX1.Cross(inSettings.mAxisY1);
  96. Mat44 c_to_b1(Vec4(inSettings.mAxisX1, 0), Vec4(inSettings.mAxisY1, 0), Vec4(axis_z1, 0), Vec4(0, 0, 0, 1));
  97. mConstraintToBody1 = c_to_b1.GetQuaternion();
  98. // Calculate rotation needed to go from constraint space to body2 local space
  99. Vec3 axis_z2 = inSettings.mAxisX2.Cross(inSettings.mAxisY2);
  100. Mat44 c_to_b2(Vec4(inSettings.mAxisX2, 0), Vec4(inSettings.mAxisY2, 0), Vec4(axis_z2, 0), Vec4(0, 0, 0, 1));
  101. mConstraintToBody2 = c_to_b2.GetQuaternion();
  102. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  103. {
  104. // If all properties were specified in world space, take them to local space now
  105. mLocalSpacePosition1 = Vec3(inBody1.GetInverseCenterOfMassTransform() * inSettings.mPosition1);
  106. mConstraintToBody1 = inBody1.GetRotation().Conjugated() * mConstraintToBody1;
  107. mLocalSpacePosition2 = Vec3(inBody2.GetInverseCenterOfMassTransform() * inSettings.mPosition2);
  108. mConstraintToBody2 = inBody2.GetRotation().Conjugated() * mConstraintToBody2;
  109. }
  110. else
  111. {
  112. mLocalSpacePosition1 = Vec3(inSettings.mPosition1);
  113. mLocalSpacePosition2 = Vec3(inSettings.mPosition2);
  114. }
  115. // Cache which axis are fixed and which ones are free
  116. mFreeAxis = 0;
  117. mFixedAxis = 0;
  118. for (int a = 0; a < EAxis::Num; ++a)
  119. {
  120. if (inSettings.IsFixedAxis((EAxis)a))
  121. mFixedAxis |= 1 << a;
  122. if (inSettings.IsFreeAxis((EAxis)a))
  123. mFreeAxis |= 1 << a;
  124. }
  125. // Copy translation and rotation limits
  126. memcpy(mLimitMin, inSettings.mLimitMin, sizeof(mLimitMin));
  127. memcpy(mLimitMax, inSettings.mLimitMax, sizeof(mLimitMax));
  128. memcpy(mLimitsSpringSettings, inSettings.mLimitsSpringSettings, sizeof(mLimitsSpringSettings));
  129. UpdateRotationLimits();
  130. CacheHasSpringLimits();
  131. // Store friction settings
  132. memcpy(mMaxFriction, inSettings.mMaxFriction, sizeof(mMaxFriction));
  133. // Store motor settings
  134. for (int i = 0; i < EAxis::Num; ++i)
  135. mMotorSettings[i] = inSettings.mMotorSettings[i];
  136. // Cache if motors are active (motors are off initially, but we may have friction)
  137. CacheTranslationMotorActive();
  138. CacheRotationMotorActive();
  139. }
  140. void SixDOFConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
  141. {
  142. if (mBody1->GetID() == inBodyID)
  143. mLocalSpacePosition1 -= inDeltaCOM;
  144. else if (mBody2->GetID() == inBodyID)
  145. mLocalSpacePosition2 -= inDeltaCOM;
  146. }
  147. void SixDOFConstraint::SetTranslationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax)
  148. {
  149. mLimitMin[EAxis::TranslationX] = inLimitMin.GetX();
  150. mLimitMin[EAxis::TranslationY] = inLimitMin.GetY();
  151. mLimitMin[EAxis::TranslationZ] = inLimitMin.GetZ();
  152. mLimitMax[EAxis::TranslationX] = inLimitMax.GetX();
  153. mLimitMax[EAxis::TranslationY] = inLimitMax.GetY();
  154. mLimitMax[EAxis::TranslationZ] = inLimitMax.GetZ();
  155. }
  156. void SixDOFConstraint::SetRotationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax)
  157. {
  158. mLimitMin[EAxis::RotationX] = inLimitMin.GetX();
  159. mLimitMin[EAxis::RotationY] = inLimitMin.GetY();
  160. mLimitMin[EAxis::RotationZ] = inLimitMin.GetZ();
  161. mLimitMax[EAxis::RotationX] = inLimitMax.GetX();
  162. mLimitMax[EAxis::RotationY] = inLimitMax.GetY();
  163. mLimitMax[EAxis::RotationZ] = inLimitMax.GetZ();
  164. UpdateRotationLimits();
  165. }
  166. void SixDOFConstraint::SetMaxFriction(EAxis inAxis, float inFriction)
  167. {
  168. mMaxFriction[inAxis] = inFriction;
  169. if (inAxis >= EAxis::TranslationX && inAxis <= EAxis::TranslationZ)
  170. CacheTranslationMotorActive();
  171. else
  172. CacheRotationMotorActive();
  173. }
  174. void SixDOFConstraint::GetPositionConstraintProperties(Vec3 &outR1PlusU, Vec3 &outR2, Vec3 &outU) const
  175. {
  176. RVec3 p1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
  177. RVec3 p2 = mBody2->GetCenterOfMassTransform() * mLocalSpacePosition2;
  178. outR1PlusU = Vec3(p2 - mBody1->GetCenterOfMassPosition()); // r1 + u = (p1 - x1) + (p2 - p1) = p2 - x1
  179. outR2 = Vec3(p2 - mBody2->GetCenterOfMassPosition());
  180. outU = Vec3(p2 - p1);
  181. }
  182. Quat SixDOFConstraint::GetRotationInConstraintSpace() const
  183. {
  184. // Let b1, b2 be the center of mass transform of body1 and body2 (For body1 this is mBody1->GetCenterOfMassTransform())
  185. // Let c1, c2 be the transform that takes a vector from constraint space to local space of body1 and body2 (For body1 this is Mat44::sRotationTranslation(mConstraintToBody1, mLocalSpacePosition1))
  186. // Let q be the rotation of the constraint in constraint space
  187. // b2 takes a vector from the local space of body2 to world space
  188. // To express this in terms of b1: b2 = b1 * c1 * q * c2^-1
  189. // c2^-1 goes from local body 2 space to constraint space
  190. // q rotates the constraint
  191. // c1 goes from constraint space to body 1 local space
  192. // b1 goes from body 1 local space to world space
  193. // So when the body rotations are given, q = (b1 * c1)^-1 * b2 c2
  194. // Or: q = (q1 * c1)^-1 * (q2 * c2) if we're only interested in rotations
  195. return (mBody1->GetRotation() * mConstraintToBody1).Conjugated() * mBody2->GetRotation() * mConstraintToBody2;
  196. }
  197. void SixDOFConstraint::CacheTranslationMotorActive()
  198. {
  199. mTranslationMotorActive = mMotorState[EAxis::TranslationX] != EMotorState::Off
  200. || mMotorState[EAxis::TranslationY] != EMotorState::Off
  201. || mMotorState[EAxis::TranslationZ] != EMotorState::Off
  202. || HasFriction(EAxis::TranslationX)
  203. || HasFriction(EAxis::TranslationY)
  204. || HasFriction(EAxis::TranslationZ);
  205. }
  206. void SixDOFConstraint::CacheRotationMotorActive()
  207. {
  208. mRotationMotorActive = mMotorState[EAxis::RotationX] != EMotorState::Off
  209. || mMotorState[EAxis::RotationY] != EMotorState::Off
  210. || mMotorState[EAxis::RotationZ] != EMotorState::Off
  211. || HasFriction(EAxis::RotationX)
  212. || HasFriction(EAxis::RotationY)
  213. || HasFriction(EAxis::RotationZ);
  214. }
  215. void SixDOFConstraint::CacheRotationPositionMotorActive()
  216. {
  217. mRotationPositionMotorActive = 0;
  218. for (int i = 0; i < 3; ++i)
  219. if (mMotorState[EAxis::RotationX + i] == EMotorState::Position)
  220. mRotationPositionMotorActive |= 1 << i;
  221. }
  222. void SixDOFConstraint::CacheHasSpringLimits()
  223. {
  224. mHasSpringLimits = mLimitsSpringSettings[EAxis::TranslationX].mFrequency > 0.0f
  225. || mLimitsSpringSettings[EAxis::TranslationY].mFrequency > 0.0f
  226. || mLimitsSpringSettings[EAxis::TranslationZ].mFrequency > 0.0f;
  227. }
  228. void SixDOFConstraint::SetMotorState(EAxis inAxis, EMotorState inState)
  229. {
  230. JPH_ASSERT(inState == EMotorState::Off || mMotorSettings[inAxis].IsValid());
  231. if (mMotorState[inAxis] != inState)
  232. {
  233. mMotorState[inAxis] = inState;
  234. // Ensure that warm starting next frame doesn't apply any impulses (motor parts are repurposed for different modes)
  235. if (inAxis >= EAxis::TranslationX && inAxis <= EAxis::TranslationZ)
  236. {
  237. mMotorTranslationConstraintPart[inAxis - EAxis::TranslationX].Deactivate();
  238. CacheTranslationMotorActive();
  239. }
  240. else
  241. {
  242. JPH_ASSERT(inAxis >= EAxis::RotationX && inAxis <= EAxis::RotationZ);
  243. mMotorRotationConstraintPart[inAxis - EAxis::RotationX].Deactivate();
  244. CacheRotationMotorActive();
  245. CacheRotationPositionMotorActive();
  246. }
  247. }
  248. }
  249. void SixDOFConstraint::SetTargetOrientationCS(QuatArg inOrientation)
  250. {
  251. Quat q_swing, q_twist;
  252. inOrientation.GetSwingTwist(q_swing, q_twist);
  253. bool twist_clamped, swing_y_clamped, swing_z_clamped;
  254. mSwingTwistConstraintPart.ClampSwingTwist(q_swing, swing_y_clamped, swing_z_clamped, q_twist, twist_clamped);
  255. if (twist_clamped || swing_y_clamped || swing_z_clamped)
  256. mTargetOrientation = q_swing * q_twist;
  257. else
  258. mTargetOrientation = inOrientation;
  259. }
  260. void SixDOFConstraint::SetupVelocityConstraint(float inDeltaTime)
  261. {
  262. // Get body rotations
  263. Quat rotation1 = mBody1->GetRotation();
  264. Quat rotation2 = mBody2->GetRotation();
  265. // Quaternion that rotates from body1's constraint space to world space
  266. Quat constraint_body1_to_world = rotation1 * mConstraintToBody1;
  267. // Store world space axis of constraint space
  268. Mat44 translation_axis_mat = Mat44::sRotation(constraint_body1_to_world);
  269. for (int i = 0; i < 3; ++i)
  270. mTranslationAxis[i] = translation_axis_mat.GetColumn3(i);
  271. if (IsTranslationFullyConstrained())
  272. {
  273. // All translation locked: Setup point constraint
  274. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(rotation1), mLocalSpacePosition1, *mBody2, Mat44::sRotation(rotation2), mLocalSpacePosition2);
  275. }
  276. else if (IsTranslationConstrained() || mTranslationMotorActive)
  277. {
  278. // Update world space positions (the bodies may have moved)
  279. Vec3 r1_plus_u, r2, u;
  280. GetPositionConstraintProperties(r1_plus_u, r2, u);
  281. // Setup axis constraint parts
  282. for (int i = 0; i < 3; ++i)
  283. {
  284. EAxis axis = EAxis(EAxis::TranslationX + i);
  285. Vec3 translation_axis = mTranslationAxis[i];
  286. // Calculate displacement along this axis
  287. float d = translation_axis.Dot(u);
  288. mDisplacement[i] = d; // Store for SolveVelocityConstraint
  289. // Setup limit constraint
  290. bool constraint_active = false;
  291. float constraint_value = 0.0f;
  292. if (IsFixedAxis(axis))
  293. {
  294. // When constraint is fixed it is always active
  295. constraint_value = d;
  296. constraint_active = true;
  297. }
  298. else if (!IsFreeAxis(axis))
  299. {
  300. // When constraint is limited, it is only active when outside of the allowed range
  301. if (d <= mLimitMin[i])
  302. {
  303. constraint_value = d - mLimitMin[i];
  304. constraint_active = true;
  305. }
  306. else if (d >= mLimitMax[i])
  307. {
  308. constraint_value = d - mLimitMax[i];
  309. constraint_active = true;
  310. }
  311. }
  312. if (constraint_active)
  313. mTranslationConstraintPart[i].CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis, 0.0f, constraint_value, mLimitsSpringSettings[i]);
  314. else
  315. mTranslationConstraintPart[i].Deactivate();
  316. // Setup motor constraint
  317. switch (mMotorState[i])
  318. {
  319. case EMotorState::Off:
  320. if (HasFriction(axis))
  321. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(*mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  322. else
  323. mMotorTranslationConstraintPart[i].Deactivate();
  324. break;
  325. case EMotorState::Velocity:
  326. mMotorTranslationConstraintPart[i].CalculateConstraintProperties(*mBody1, r1_plus_u, *mBody2, r2, translation_axis, -mTargetVelocity[i]);
  327. break;
  328. case EMotorState::Position:
  329. {
  330. const SpringSettings &spring_settings = mMotorSettings[i].mSpringSettings;
  331. if (spring_settings.HasStiffness())
  332. mMotorTranslationConstraintPart[i].CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, r1_plus_u, *mBody2, r2, translation_axis, 0.0f, translation_axis.Dot(u) - mTargetPosition[i], spring_settings);
  333. else
  334. mMotorTranslationConstraintPart[i].Deactivate();
  335. break;
  336. }
  337. }
  338. }
  339. }
  340. // Setup rotation constraints
  341. if (IsRotationFullyConstrained())
  342. {
  343. // All rotation locked: Setup rotation contraint
  344. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  345. }
  346. else if (IsRotationConstrained() || mRotationMotorActive)
  347. {
  348. // GetRotationInConstraintSpace without redoing the calculation of constraint_body1_to_world
  349. Quat constraint_body2_to_world = mBody2->GetRotation() * mConstraintToBody2;
  350. Quat q = constraint_body1_to_world.Conjugated() * constraint_body2_to_world;
  351. // Use swing twist constraint part
  352. if (IsRotationConstrained())
  353. mSwingTwistConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, q, constraint_body1_to_world);
  354. else
  355. mSwingTwistConstraintPart.Deactivate();
  356. if (mRotationMotorActive)
  357. {
  358. // Calculate rotation motor axis
  359. Mat44 ws_axis = Mat44::sRotation(constraint_body2_to_world);
  360. for (int i = 0; i < 3; ++i)
  361. mRotationAxis[i] = ws_axis.GetColumn3(i);
  362. // Get target orientation along the shortest path from q
  363. Quat target_orientation = q.Dot(mTargetOrientation) > 0.0f? mTargetOrientation : -mTargetOrientation;
  364. // The definition of the constraint rotation q:
  365. // R2 * ConstraintToBody2 = R1 * ConstraintToBody1 * q (1)
  366. //
  367. // R2' is the rotation of body 2 when reaching the target_orientation:
  368. // R2' * ConstraintToBody2 = R1 * ConstraintToBody1 * target_orientation (2)
  369. //
  370. // The difference in body 2 space:
  371. // R2' = R2 * diff_body2 (3)
  372. //
  373. // We want to specify the difference in the constraint space of body 2:
  374. // diff_body2 = ConstraintToBody2 * diff * ConstraintToBody2^* (4)
  375. //
  376. // Extracting R2' from 2: R2' = R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* (5)
  377. // Combining 3 & 4: R2' = R2 * ConstraintToBody2 * diff * ConstraintToBody2^* (6)
  378. // Combining 1 & 6: R2' = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^* (7)
  379. // Combining 5 & 7: R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^*
  380. // <=> target_orientation = q * diff
  381. // <=> diff = q^* * target_orientation
  382. Quat diff = q.Conjugated() * target_orientation;
  383. // Project diff so that only rotation around axis that have a position motor are remaining
  384. Quat projected_diff;
  385. switch (mRotationPositionMotorActive)
  386. {
  387. case 0b001:
  388. // Keep only rotation around X
  389. projected_diff = diff.GetTwist(Vec3::sAxisX());
  390. break;
  391. case 0b010:
  392. // Keep only rotation around Y
  393. projected_diff = diff.GetTwist(Vec3::sAxisY());
  394. break;
  395. case 0b100:
  396. // Keep only rotation around Z
  397. projected_diff = diff.GetTwist(Vec3::sAxisZ());
  398. break;
  399. case 0b011:
  400. // Remove rotation around Z
  401. // q = swing_xy * twist_z <=> swing_xy = q * twist_z^*
  402. projected_diff = diff * diff.GetTwist(Vec3::sAxisZ()).Conjugated();
  403. break;
  404. case 0b101:
  405. // Remove rotation around Y
  406. // q = swing_xz * twist_y <=> swing_xz = q * twist_y^*
  407. projected_diff = diff * diff.GetTwist(Vec3::sAxisY()).Conjugated();
  408. break;
  409. case 0b110:
  410. // Remove rotation around X
  411. // q = swing_yz * twist_x <=> swing_yz = q * twist_x^*
  412. projected_diff = diff * diff.GetTwist(Vec3::sAxisX()).Conjugated();
  413. break;
  414. case 0b111:
  415. default: // All motors off is handled here but the results are unused
  416. // Keep entire rotation
  417. projected_diff = diff;
  418. break;
  419. }
  420. // Approximate error angles
  421. // The imaginary part of a quaternion is rotation_axis * sin(angle / 2)
  422. // If angle is small, sin(x) = x so angle[i] ~ 2.0f * rotation_axis[i]
  423. // We'll be making small time steps, so if the angle is not small at least the sign will be correct and we'll move in the right direction
  424. Vec3 rotation_error = -2.0f * projected_diff.GetXYZ();
  425. // Setup motors
  426. for (int i = 0; i < 3; ++i)
  427. {
  428. EAxis axis = EAxis(EAxis::RotationX + i);
  429. Vec3 rotation_axis = mRotationAxis[i];
  430. switch (mMotorState[axis])
  431. {
  432. case EMotorState::Off:
  433. if (HasFriction(axis))
  434. mMotorRotationConstraintPart[i].CalculateConstraintProperties(*mBody1, *mBody2, rotation_axis);
  435. else
  436. mMotorRotationConstraintPart[i].Deactivate();
  437. break;
  438. case EMotorState::Velocity:
  439. mMotorRotationConstraintPart[i].CalculateConstraintProperties(*mBody1, *mBody2, rotation_axis, -mTargetAngularVelocity[i]);
  440. break;
  441. case EMotorState::Position:
  442. {
  443. const SpringSettings &spring_settings = mMotorSettings[axis].mSpringSettings;
  444. if (spring_settings.HasStiffness())
  445. mMotorRotationConstraintPart[i].CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, rotation_axis, 0.0f, rotation_error[i], spring_settings);
  446. else
  447. mMotorRotationConstraintPart[i].Deactivate();
  448. break;
  449. }
  450. }
  451. }
  452. }
  453. }
  454. }
  455. void SixDOFConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  456. {
  457. // Warm start translation motors
  458. if (mTranslationMotorActive)
  459. for (int i = 0; i < 3; ++i)
  460. if (mMotorTranslationConstraintPart[i].IsActive())
  461. mMotorTranslationConstraintPart[i].WarmStart(*mBody1, *mBody2, mTranslationAxis[i], inWarmStartImpulseRatio);
  462. // Warm start rotation motors
  463. if (mRotationMotorActive)
  464. for (AngleConstraintPart &c : mMotorRotationConstraintPart)
  465. if (c.IsActive())
  466. c.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  467. // Warm start rotation constraints
  468. if (IsRotationFullyConstrained())
  469. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  470. else if (IsRotationConstrained())
  471. mSwingTwistConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  472. // Warm start translation constraints
  473. if (IsTranslationFullyConstrained())
  474. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  475. else if (IsTranslationConstrained())
  476. for (int i = 0; i < 3; ++i)
  477. if (mTranslationConstraintPart[i].IsActive())
  478. mTranslationConstraintPart[i].WarmStart(*mBody1, *mBody2, mTranslationAxis[i], inWarmStartImpulseRatio);
  479. }
  480. bool SixDOFConstraint::SolveVelocityConstraint(float inDeltaTime)
  481. {
  482. bool impulse = false;
  483. // Solve translation motor
  484. if (mTranslationMotorActive)
  485. for (int i = 0; i < 3; ++i)
  486. if (mMotorTranslationConstraintPart[i].IsActive())
  487. switch (mMotorState[i])
  488. {
  489. case EMotorState::Off:
  490. {
  491. // Apply friction only
  492. float max_lambda = mMaxFriction[i] * inDeltaTime;
  493. impulse |= mMotorTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], -max_lambda, max_lambda);
  494. break;
  495. }
  496. case EMotorState::Velocity:
  497. case EMotorState::Position:
  498. // Drive motor
  499. impulse |= mMotorTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], inDeltaTime * mMotorSettings[i].mMinForceLimit, inDeltaTime * mMotorSettings[i].mMaxForceLimit);
  500. break;
  501. }
  502. // Solve rotation motor
  503. if (mRotationMotorActive)
  504. for (int i = 0; i < 3; ++i)
  505. {
  506. EAxis axis = EAxis(EAxis::RotationX + i);
  507. if (mMotorRotationConstraintPart[i].IsActive())
  508. switch (mMotorState[axis])
  509. {
  510. case EMotorState::Off:
  511. {
  512. // Apply friction only
  513. float max_lambda = mMaxFriction[axis] * inDeltaTime;
  514. impulse |= mMotorRotationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mRotationAxis[i], -max_lambda, max_lambda);
  515. break;
  516. }
  517. case EMotorState::Velocity:
  518. case EMotorState::Position:
  519. // Drive motor
  520. impulse |= mMotorRotationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mRotationAxis[i], inDeltaTime * mMotorSettings[axis].mMinTorqueLimit, inDeltaTime * mMotorSettings[axis].mMaxTorqueLimit);
  521. break;
  522. }
  523. }
  524. // Solve rotation constraint
  525. if (IsRotationFullyConstrained())
  526. impulse |= mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  527. else if (IsRotationConstrained())
  528. impulse |= mSwingTwistConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  529. // Solve position constraint
  530. if (IsTranslationFullyConstrained())
  531. impulse |= mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  532. else if (IsTranslationConstrained())
  533. for (int i = 0; i < 3; ++i)
  534. if (mTranslationConstraintPart[i].IsActive())
  535. {
  536. // If the axis is not fixed it must be limited (or else the constraint would not be active)
  537. // Calculate the min and max constraint force based on on which side we're limited
  538. float limit_min = -FLT_MAX, limit_max = FLT_MAX;
  539. if (!IsFixedAxis(EAxis(EAxis::TranslationX + i)))
  540. {
  541. JPH_ASSERT(!IsFreeAxis(EAxis(EAxis::TranslationX + i)));
  542. if (mDisplacement[i] <= mLimitMin[i])
  543. limit_min = 0;
  544. else if (mDisplacement[i] >= mLimitMax[i])
  545. limit_max = 0;
  546. }
  547. impulse |= mTranslationConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mTranslationAxis[i], limit_min, limit_max);
  548. }
  549. return impulse;
  550. }
  551. bool SixDOFConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  552. {
  553. bool impulse = false;
  554. if (IsRotationFullyConstrained())
  555. {
  556. // Rotation locked: Solve rotation constraint
  557. // Inverse of initial rotation from body 1 to body 2 in body 1 space
  558. // Definition of initial orientation r0: q2 = q1 r0
  559. // Initial rotation (see: GetRotationInConstraintSpace): q2 = q1 c1 c2^-1
  560. // So: r0^-1 = (c1 c2^-1)^-1 = c2 * c1^-1
  561. Quat inv_initial_orientation = mConstraintToBody2 * mConstraintToBody1.Conjugated();
  562. // Solve rotation violations
  563. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  564. impulse |= mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inv_initial_orientation, inBaumgarte);
  565. }
  566. else if (IsRotationConstrained())
  567. {
  568. // Rotation partially constraint
  569. // Solve rotation violations
  570. Quat q = GetRotationInConstraintSpace();
  571. impulse |= mSwingTwistConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, q, mConstraintToBody1, mConstraintToBody2, inBaumgarte);
  572. }
  573. // Solve position violations
  574. if (IsTranslationFullyConstrained())
  575. {
  576. // Translation locked: Solve point constraint
  577. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  578. impulse |= mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  579. }
  580. else if (IsTranslationConstrained())
  581. {
  582. // Translation partially locked: Solve per axis
  583. for (int i = 0; i < 3; ++i)
  584. if (mLimitsSpringSettings[i].mFrequency <= 0.0f) // If not soft limit
  585. {
  586. // Update world space positions (the bodies may have moved)
  587. Vec3 r1_plus_u, r2, u;
  588. GetPositionConstraintProperties(r1_plus_u, r2, u);
  589. // Quaternion that rotates from body1's constraint space to world space
  590. Quat constraint_body1_to_world = mBody1->GetRotation() * mConstraintToBody1;
  591. // Calculate axis
  592. Vec3 translation_axis;
  593. switch (i)
  594. {
  595. case 0: translation_axis = constraint_body1_to_world.RotateAxisX(); break;
  596. case 1: translation_axis = constraint_body1_to_world.RotateAxisY(); break;
  597. default: JPH_ASSERT(i == 2); translation_axis = constraint_body1_to_world.RotateAxisZ(); break;
  598. }
  599. // Determine position error
  600. float error = 0.0f;
  601. EAxis axis(EAxis(EAxis::TranslationX + i));
  602. if (IsFixedAxis(axis))
  603. error = u.Dot(translation_axis);
  604. else if (!IsFreeAxis(axis))
  605. {
  606. float displacement = u.Dot(translation_axis);
  607. if (displacement <= mLimitMin[axis])
  608. error = displacement - mLimitMin[axis];
  609. else if (displacement >= mLimitMax[axis])
  610. error = displacement - mLimitMax[axis];
  611. }
  612. if (error != 0.0f)
  613. {
  614. // Setup axis constraint part and solve it
  615. mTranslationConstraintPart[i].CalculateConstraintProperties(*mBody1, r1_plus_u, *mBody2, r2, translation_axis);
  616. impulse |= mTranslationConstraintPart[i].SolvePositionConstraint(*mBody1, *mBody2, translation_axis, error, inBaumgarte);
  617. }
  618. }
  619. }
  620. return impulse;
  621. }
  622. #ifdef JPH_DEBUG_RENDERER
  623. void SixDOFConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  624. {
  625. // Get constraint properties in world space
  626. RVec3 position1 = mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1;
  627. Quat rotation1 = mBody1->GetRotation() * mConstraintToBody1;
  628. Quat rotation2 = mBody2->GetRotation() * mConstraintToBody2;
  629. // Draw constraint orientation
  630. inRenderer->DrawCoordinateSystem(RMat44::sRotationTranslation(rotation1, position1), mDrawConstraintSize);
  631. if ((IsRotationConstrained() || mRotationPositionMotorActive != 0) && !IsRotationFullyConstrained())
  632. {
  633. // Draw current swing and twist
  634. Quat q = GetRotationInConstraintSpace();
  635. Quat q_swing, q_twist;
  636. q.GetSwingTwist(q_swing, q_twist);
  637. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_twist).RotateAxisY(), Color::sWhite);
  638. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_swing).RotateAxisX(), Color::sWhite);
  639. }
  640. // Draw target rotation
  641. Quat m_swing, m_twist;
  642. mTargetOrientation.GetSwingTwist(m_swing, m_twist);
  643. if (mMotorState[EAxis::RotationX] == EMotorState::Position)
  644. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * m_twist).RotateAxisY(), Color::sYellow);
  645. if (mMotorState[EAxis::RotationY] == EMotorState::Position || mMotorState[EAxis::RotationZ] == EMotorState::Position)
  646. inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * m_swing).RotateAxisX(), Color::sYellow);
  647. // Draw target angular velocity
  648. Vec3 target_angular_velocity = Vec3::sZero();
  649. for (int i = 0; i < 3; ++i)
  650. if (mMotorState[EAxis::RotationX + i] == EMotorState::Velocity)
  651. target_angular_velocity.SetComponent(i, mTargetAngularVelocity[i]);
  652. if (target_angular_velocity != Vec3::sZero())
  653. inRenderer->DrawArrow(position1, position1 + rotation2 * target_angular_velocity, Color::sRed, 0.1f);
  654. }
  655. void SixDOFConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  656. {
  657. // Get matrix that transforms from constraint space to world space
  658. RMat44 constraint_body1_to_world = RMat44::sRotationTranslation(mBody1->GetRotation() * mConstraintToBody1, mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1);
  659. // Draw limits
  660. inRenderer->DrawSwingLimits(constraint_body1_to_world, mLimitMax[EAxis::RotationY], mLimitMax[EAxis::RotationZ], mDrawConstraintSize, Color::sGreen, DebugRenderer::ECastShadow::Off);
  661. inRenderer->DrawPie(constraint_body1_to_world.GetTranslation(), mDrawConstraintSize, constraint_body1_to_world.GetAxisX(), constraint_body1_to_world.GetAxisY(), mLimitMin[EAxis::RotationX], mLimitMax[EAxis::RotationX], Color::sPurple, DebugRenderer::ECastShadow::Off);
  662. }
  663. #endif // JPH_DEBUG_RENDERER
  664. void SixDOFConstraint::SaveState(StateRecorder &inStream) const
  665. {
  666. TwoBodyConstraint::SaveState(inStream);
  667. for (const AxisConstraintPart &c : mTranslationConstraintPart)
  668. c.SaveState(inStream);
  669. mPointConstraintPart.SaveState(inStream);
  670. mSwingTwistConstraintPart.SaveState(inStream);
  671. mRotationConstraintPart.SaveState(inStream);
  672. for (const AxisConstraintPart &c : mMotorTranslationConstraintPart)
  673. c.SaveState(inStream);
  674. for (const AngleConstraintPart &c : mMotorRotationConstraintPart)
  675. c.SaveState(inStream);
  676. inStream.Write(mMotorState);
  677. inStream.Write(mTargetVelocity);
  678. inStream.Write(mTargetAngularVelocity);
  679. inStream.Write(mTargetPosition);
  680. inStream.Write(mTargetOrientation);
  681. }
  682. void SixDOFConstraint::RestoreState(StateRecorder &inStream)
  683. {
  684. TwoBodyConstraint::RestoreState(inStream);
  685. for (AxisConstraintPart &c : mTranslationConstraintPart)
  686. c.RestoreState(inStream);
  687. mPointConstraintPart.RestoreState(inStream);
  688. mSwingTwistConstraintPart.RestoreState(inStream);
  689. mRotationConstraintPart.RestoreState(inStream);
  690. for (AxisConstraintPart &c : mMotorTranslationConstraintPart)
  691. c.RestoreState(inStream);
  692. for (AngleConstraintPart &c : mMotorRotationConstraintPart)
  693. c.RestoreState(inStream);
  694. inStream.Read(mMotorState);
  695. inStream.Read(mTargetVelocity);
  696. inStream.Read(mTargetAngularVelocity);
  697. inStream.Read(mTargetPosition);
  698. inStream.Read(mTargetOrientation);
  699. CacheTranslationMotorActive();
  700. CacheRotationMotorActive();
  701. CacheRotationPositionMotorActive();
  702. }
  703. Ref<ConstraintSettings> SixDOFConstraint::GetConstraintSettings() const
  704. {
  705. SixDOFConstraintSettings *settings = new SixDOFConstraintSettings;
  706. ToConstraintSettings(*settings);
  707. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  708. settings->mPosition1 = RVec3(mLocalSpacePosition1);
  709. settings->mAxisX1 = mConstraintToBody1.RotateAxisX();
  710. settings->mAxisY1 = mConstraintToBody1.RotateAxisY();
  711. settings->mPosition2 = RVec3(mLocalSpacePosition2);
  712. settings->mAxisX2 = mConstraintToBody2.RotateAxisX();
  713. settings->mAxisY2 = mConstraintToBody2.RotateAxisY();
  714. memcpy(settings->mLimitMin, mLimitMin, sizeof(mLimitMin));
  715. memcpy(settings->mLimitMax, mLimitMax, sizeof(mLimitMax));
  716. memcpy(settings->mMaxFriction, mMaxFriction, sizeof(mMaxFriction));
  717. for (int i = 0; i < EAxis::Num; ++i)
  718. settings->mMotorSettings[i] = mMotorSettings[i];
  719. return settings;
  720. }
  721. JPH_NAMESPACE_END