ContactConstraintManager.cpp 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/ContactConstraintManager.h>
  6. #include <Jolt/Physics/Constraints/CalculateSolverSteps.h>
  7. #include <Jolt/Physics/Body/Body.h>
  8. #include <Jolt/Physics/PhysicsUpdateContext.h>
  9. #include <Jolt/Physics/PhysicsSettings.h>
  10. #include <Jolt/Physics/PhysicsSystem.h>
  11. #include <Jolt/Physics/IslandBuilder.h>
  12. #include <Jolt/Physics/DeterminismLog.h>
  13. #include <Jolt/Core/TempAllocator.h>
  14. #include <Jolt/Core/QuickSort.h>
  15. #ifdef JPH_DEBUG_RENDERER
  16. #include <Jolt/Renderer/DebugRenderer.h>
  17. #endif // JPH_DEBUG_RENDERER
  18. JPH_NAMESPACE_BEGIN
  19. using namespace literals;
  20. #ifdef JPH_DEBUG_RENDERER
  21. bool ContactConstraintManager::sDrawContactPoint = false;
  22. bool ContactConstraintManager::sDrawSupportingFaces = false;
  23. bool ContactConstraintManager::sDrawContactPointReduction = false;
  24. bool ContactConstraintManager::sDrawContactManifolds = false;
  25. #endif // JPH_DEBUG_RENDERER
  26. //#define JPH_MANIFOLD_CACHE_DEBUG
  27. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  28. // ContactConstraintManager::WorldContactPoint
  29. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  30. void ContactConstraintManager::WorldContactPoint::CalculateNonPenetrationConstraintProperties(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal)
  31. {
  32. // Calculate collision points relative to body
  33. RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
  34. Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
  35. Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
  36. mNonPenetrationConstraint.CalculateConstraintPropertiesWithMassOverride(inBody1, inInvMass1, inInvInertiaScale1, r1, inBody2, inInvMass2, inInvInertiaScale2, r2, inWorldSpaceNormal);
  37. }
  38. template <EMotionType Type1, EMotionType Type2>
  39. JPH_INLINE void ContactConstraintManager::WorldContactPoint::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(float inDeltaTime, float inGravityDeltaTimeDotNormal, const Body &inBody1, const Body &inBody2, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal, Vec3Arg inWorldSpaceTangent1, Vec3Arg inWorldSpaceTangent2, const ContactSettings &inSettings, float inMinVelocityForRestitution)
  40. {
  41. JPH_DET_LOG("TemplatedCalculateFrictionAndNonPenetrationConstraintProperties: p1: " << inWorldSpacePosition1 << " p2: " << inWorldSpacePosition2
  42. << " normal: " << inWorldSpaceNormal << " tangent1: " << inWorldSpaceTangent1 << " tangent2: " << inWorldSpaceTangent2
  43. << " restitution: " << inSettings.mCombinedRestitution << " friction: " << inSettings.mCombinedFriction << " minv: " << inMinVelocityForRestitution
  44. << " surface_vel: " << inSettings.mRelativeLinearSurfaceVelocity << " surface_ang: " << inSettings.mRelativeAngularSurfaceVelocity);
  45. // Calculate collision points relative to body
  46. RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
  47. Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
  48. Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
  49. // The gravity is applied in the beginning of the time step. If we get here, there was a collision
  50. // at the beginning of the time step, so we've applied too much gravity. This means that our
  51. // calculated restitution can be too high, so when we apply restitution, we cancel the added
  52. // velocity due to gravity.
  53. float gravity_dt_dot_normal;
  54. // Calculate velocity of collision points
  55. Vec3 relative_velocity;
  56. if constexpr (Type1 != EMotionType::Static && Type2 != EMotionType::Static)
  57. {
  58. const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
  59. const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
  60. relative_velocity = mp2->GetPointVelocityCOM(r2) - mp1->GetPointVelocityCOM(r1);
  61. gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * (mp2->GetGravityFactor() - mp1->GetGravityFactor());
  62. }
  63. else if constexpr (Type1 != EMotionType::Static)
  64. {
  65. const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
  66. relative_velocity = -mp1->GetPointVelocityCOM(r1);
  67. gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * mp1->GetGravityFactor();
  68. }
  69. else if constexpr (Type2 != EMotionType::Static)
  70. {
  71. const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
  72. relative_velocity = mp2->GetPointVelocityCOM(r2);
  73. gravity_dt_dot_normal = inGravityDeltaTimeDotNormal * mp2->GetGravityFactor();
  74. }
  75. else
  76. {
  77. JPH_ASSERT(false); // Static vs static makes no sense
  78. relative_velocity = Vec3::sZero();
  79. gravity_dt_dot_normal = 0.0f;
  80. }
  81. float normal_velocity = relative_velocity.Dot(inWorldSpaceNormal);
  82. // How much the shapes are penetrating (> 0 if penetrating, < 0 if separated)
  83. float penetration = Vec3(inWorldSpacePosition1 - inWorldSpacePosition2).Dot(inWorldSpaceNormal);
  84. // If there is no penetration, this is a speculative contact and we will apply a bias to the contact constraint
  85. // so that the constraint becomes relative_velocity . contact normal > -penetration / delta_time
  86. // instead of relative_velocity . contact normal > 0
  87. // See: GDC 2013: "Physics for Game Programmers; Continuous Collision" - Erin Catto
  88. float speculative_contact_velocity_bias = max(0.0f, -penetration / inDeltaTime);
  89. // Determine if the velocity is big enough for restitution
  90. float normal_velocity_bias;
  91. if (inSettings.mCombinedRestitution > 0.0f && normal_velocity < -inMinVelocityForRestitution)
  92. {
  93. // We have a velocity that is big enough for restitution. This is where speculative contacts don't work
  94. // great as we have to decide now if we're going to apply the restitution or not. If the relative
  95. // velocity is big enough for a hit, we apply the restitution (in the end, due to other constraints,
  96. // the objects may actually not collide and we will have applied restitution incorrectly). Another
  97. // artifact that occurs because of this approximation is that the object will bounce from its current
  98. // position rather than from a position where it is touching the other object. This causes the object
  99. // to appear to move faster for 1 frame (the opposite of time stealing).
  100. if (normal_velocity < -speculative_contact_velocity_bias)
  101. normal_velocity_bias = inSettings.mCombinedRestitution * (normal_velocity - gravity_dt_dot_normal);
  102. else
  103. // In this case we have predicted that we don't hit the other object, but if we do (due to other constraints changing velocities)
  104. // the speculative contact will prevent penetration but will not apply restitution leading to another artifact.
  105. normal_velocity_bias = speculative_contact_velocity_bias;
  106. }
  107. else
  108. {
  109. // No restitution. We can safely apply our contact velocity bias.
  110. normal_velocity_bias = speculative_contact_velocity_bias;
  111. }
  112. mNonPenetrationConstraint.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceNormal, normal_velocity_bias);
  113. // Calculate friction part
  114. if (inSettings.mCombinedFriction > 0.0f)
  115. {
  116. // Get surface velocity relative to tangents
  117. Vec3 ws_surface_velocity = inSettings.mRelativeLinearSurfaceVelocity + inSettings.mRelativeAngularSurfaceVelocity.Cross(r1);
  118. float surface_velocity1 = inWorldSpaceTangent1.Dot(ws_surface_velocity);
  119. float surface_velocity2 = inWorldSpaceTangent2.Dot(ws_surface_velocity);
  120. // Implement friction as 2 AxisConstraintParts
  121. mFrictionConstraint1.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent1, surface_velocity1);
  122. mFrictionConstraint2.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent2, surface_velocity2);
  123. }
  124. else
  125. {
  126. // Turn off friction constraint
  127. mFrictionConstraint1.Deactivate();
  128. mFrictionConstraint2.Deactivate();
  129. }
  130. }
  131. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  132. // ContactConstraintManager::ContactConstraint
  133. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  134. #ifdef JPH_DEBUG_RENDERER
  135. void ContactConstraintManager::ContactConstraint::Draw(DebugRenderer *inRenderer, ColorArg inManifoldColor) const
  136. {
  137. if (mContactPoints.empty())
  138. return;
  139. // Get body transforms
  140. RMat44 transform_body1 = mBody1->GetCenterOfMassTransform();
  141. RMat44 transform_body2 = mBody2->GetCenterOfMassTransform();
  142. RVec3 prev_point = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints.back().mContactPoint->mPosition1);
  143. for (const WorldContactPoint &wcp : mContactPoints)
  144. {
  145. // Test if any lambda from the previous frame was transferred
  146. float radius = wcp.mNonPenetrationConstraint.GetTotalLambda() == 0.0f
  147. && wcp.mFrictionConstraint1.GetTotalLambda() == 0.0f
  148. && wcp.mFrictionConstraint2.GetTotalLambda() == 0.0f? 0.1f : 0.2f;
  149. RVec3 next_point = transform_body1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  150. inRenderer->DrawMarker(next_point, Color::sCyan, radius);
  151. inRenderer->DrawMarker(transform_body2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2), Color::sPurple, radius);
  152. // Draw edge
  153. inRenderer->DrawArrow(prev_point, next_point, inManifoldColor, 0.05f);
  154. prev_point = next_point;
  155. }
  156. // Draw normal
  157. RVec3 wp = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints[0].mContactPoint->mPosition1);
  158. inRenderer->DrawArrow(wp, wp + GetWorldSpaceNormal(), Color::sRed, 0.05f);
  159. // Get tangents
  160. Vec3 t1, t2;
  161. GetTangents(t1, t2);
  162. // Draw tangents
  163. inRenderer->DrawLine(wp, wp + t1, Color::sGreen);
  164. inRenderer->DrawLine(wp, wp + t2, Color::sBlue);
  165. }
  166. #endif // JPH_DEBUG_RENDERER
  167. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  168. // ContactConstraintManager::CachedContactPoint
  169. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  170. void ContactConstraintManager::CachedContactPoint::SaveState(StateRecorder &inStream) const
  171. {
  172. inStream.Write(mPosition1);
  173. inStream.Write(mPosition2);
  174. inStream.Write(mNonPenetrationLambda);
  175. inStream.Write(mFrictionLambda);
  176. }
  177. void ContactConstraintManager::CachedContactPoint::RestoreState(StateRecorder &inStream)
  178. {
  179. inStream.Read(mPosition1);
  180. inStream.Read(mPosition2);
  181. inStream.Read(mNonPenetrationLambda);
  182. inStream.Read(mFrictionLambda);
  183. }
  184. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  185. // ContactConstraintManager::CachedManifold
  186. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  187. void ContactConstraintManager::CachedManifold::SaveState(StateRecorder &inStream) const
  188. {
  189. inStream.Write(mContactNormal);
  190. }
  191. void ContactConstraintManager::CachedManifold::RestoreState(StateRecorder &inStream)
  192. {
  193. inStream.Read(mContactNormal);
  194. }
  195. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  196. // ContactConstraintManager::CachedBodyPair
  197. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  198. void ContactConstraintManager::CachedBodyPair::SaveState(StateRecorder &inStream) const
  199. {
  200. inStream.Write(mDeltaPosition);
  201. inStream.Write(mDeltaRotation);
  202. }
  203. void ContactConstraintManager::CachedBodyPair::RestoreState(StateRecorder &inStream)
  204. {
  205. inStream.Read(mDeltaPosition);
  206. inStream.Read(mDeltaRotation);
  207. }
  208. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  209. // ContactConstraintManager::ManifoldCache
  210. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  211. void ContactConstraintManager::ManifoldCache::Init(uint inMaxBodyPairs, uint inMaxContactConstraints, uint inCachedManifoldsSize)
  212. {
  213. uint max_body_pairs = min(inMaxBodyPairs, cMaxBodyPairsLimit);
  214. JPH_ASSERT(max_body_pairs == inMaxBodyPairs, "Cannot support this many body pairs!");
  215. JPH_ASSERT(inMaxContactConstraints <= cMaxContactConstraintsLimit); // Should have been enforced by caller
  216. mAllocator.Init(uint(min(uint64(max_body_pairs) * sizeof(BodyPairMap::KeyValue) + inCachedManifoldsSize, uint64(~uint(0)))));
  217. mCachedManifolds.Init(GetNextPowerOf2(inMaxContactConstraints));
  218. mCachedBodyPairs.Init(GetNextPowerOf2(max_body_pairs));
  219. }
  220. void ContactConstraintManager::ManifoldCache::Clear()
  221. {
  222. JPH_PROFILE_FUNCTION();
  223. mCachedManifolds.Clear();
  224. mCachedBodyPairs.Clear();
  225. mAllocator.Clear();
  226. #ifdef JPH_ENABLE_ASSERTS
  227. // Mark as incomplete
  228. mIsFinalized = false;
  229. #endif
  230. }
  231. void ContactConstraintManager::ManifoldCache::Prepare(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
  232. {
  233. // Minimum amount of buckets to use in the hash map
  234. constexpr uint32 cMinBuckets = 1024;
  235. // Use the next higher power of 2 of amount of objects in the cache from last frame to determine the amount of buckets in this frame
  236. mCachedManifolds.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumManifolds)), mCachedManifolds.GetMaxBuckets()));
  237. mCachedBodyPairs.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumBodyPairs)), mCachedBodyPairs.GetMaxBuckets()));
  238. }
  239. const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Find(const SubShapeIDPair &inKey, uint64 inKeyHash) const
  240. {
  241. JPH_ASSERT(mIsFinalized);
  242. return mCachedManifolds.Find(inKey, inKeyHash);
  243. }
  244. ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
  245. {
  246. JPH_ASSERT(!mIsFinalized);
  247. MKeyValue *kv = mCachedManifolds.Create(ioContactAllocator, inKey, inKeyHash, CachedManifold::sGetRequiredExtraSize(inNumContactPoints));
  248. if (kv == nullptr)
  249. {
  250. ioContactAllocator.mErrors |= EPhysicsUpdateError::ManifoldCacheFull;
  251. return nullptr;
  252. }
  253. kv->GetValue().mNumContactPoints = uint16(inNumContactPoints);
  254. ++ioContactAllocator.mNumManifolds;
  255. return kv;
  256. }
  257. ContactConstraintManager::MKVAndCreated ContactConstraintManager::ManifoldCache::FindOrCreate(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
  258. {
  259. MKeyValue *kv = const_cast<MKeyValue *>(mCachedManifolds.Find(inKey, inKeyHash));
  260. if (kv != nullptr)
  261. return { kv, false };
  262. return { Create(ioContactAllocator, inKey, inKeyHash, inNumContactPoints), true };
  263. }
  264. uint32 ContactConstraintManager::ManifoldCache::ToHandle(const MKeyValue *inKeyValue) const
  265. {
  266. JPH_ASSERT(!mIsFinalized);
  267. return mCachedManifolds.ToHandle(inKeyValue);
  268. }
  269. const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::FromHandle(uint32 inHandle) const
  270. {
  271. JPH_ASSERT(mIsFinalized);
  272. return mCachedManifolds.FromHandle(inHandle);
  273. }
  274. const ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Find(const BodyPair &inKey, uint64 inKeyHash) const
  275. {
  276. JPH_ASSERT(mIsFinalized);
  277. return mCachedBodyPairs.Find(inKey, inKeyHash);
  278. }
  279. ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const BodyPair &inKey, uint64 inKeyHash)
  280. {
  281. JPH_ASSERT(!mIsFinalized);
  282. BPKeyValue *kv = mCachedBodyPairs.Create(ioContactAllocator, inKey, inKeyHash, 0);
  283. if (kv == nullptr)
  284. {
  285. ioContactAllocator.mErrors |= EPhysicsUpdateError::BodyPairCacheFull;
  286. return nullptr;
  287. }
  288. ++ioContactAllocator.mNumBodyPairs;
  289. return kv;
  290. }
  291. void ContactConstraintManager::ManifoldCache::GetAllBodyPairsSorted(Array<const BPKeyValue *> &outAll) const
  292. {
  293. JPH_ASSERT(mIsFinalized);
  294. mCachedBodyPairs.GetAllKeyValues(outAll);
  295. // Sort by key
  296. QuickSort(outAll.begin(), outAll.end(), [](const BPKeyValue *inLHS, const BPKeyValue *inRHS) {
  297. return inLHS->GetKey() < inRHS->GetKey();
  298. });
  299. }
  300. void ContactConstraintManager::ManifoldCache::GetAllManifoldsSorted(const CachedBodyPair &inBodyPair, Array<const MKeyValue *> &outAll) const
  301. {
  302. JPH_ASSERT(mIsFinalized);
  303. // Iterate through the attached manifolds
  304. for (uint32 handle = inBodyPair.mFirstCachedManifold; handle != ManifoldMap::cInvalidHandle; handle = FromHandle(handle)->GetValue().mNextWithSameBodyPair)
  305. {
  306. const MKeyValue *kv = mCachedManifolds.FromHandle(handle);
  307. outAll.push_back(kv);
  308. }
  309. // Sort by key
  310. QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
  311. return inLHS->GetKey() < inRHS->GetKey();
  312. });
  313. }
  314. void ContactConstraintManager::ManifoldCache::GetAllCCDManifoldsSorted(Array<const MKeyValue *> &outAll) const
  315. {
  316. mCachedManifolds.GetAllKeyValues(outAll);
  317. for (int i = (int)outAll.size() - 1; i >= 0; --i)
  318. if ((outAll[i]->GetValue().mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0)
  319. {
  320. outAll[i] = outAll.back();
  321. outAll.pop_back();
  322. }
  323. // Sort by key
  324. QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
  325. return inLHS->GetKey() < inRHS->GetKey();
  326. });
  327. }
  328. void ContactConstraintManager::ManifoldCache::ContactPointRemovedCallbacks(ContactListener *inListener)
  329. {
  330. JPH_PROFILE_FUNCTION();
  331. for (MKeyValue &kv : mCachedManifolds)
  332. if ((kv.GetValue().mFlags & uint16(CachedManifold::EFlags::ContactPersisted)) == 0)
  333. inListener->OnContactRemoved(kv.GetKey());
  334. }
  335. #ifdef JPH_ENABLE_ASSERTS
  336. void ContactConstraintManager::ManifoldCache::Finalize()
  337. {
  338. mIsFinalized = true;
  339. #ifdef JPH_MANIFOLD_CACHE_DEBUG
  340. Trace("ManifoldMap:");
  341. mCachedManifolds.TraceStats();
  342. Trace("BodyPairMap:");
  343. mCachedBodyPairs.TraceStats();
  344. #endif // JPH_MANIFOLD_CACHE_DEBUG
  345. }
  346. #endif
  347. void ContactConstraintManager::ManifoldCache::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
  348. {
  349. JPH_ASSERT(mIsFinalized);
  350. // Get contents of cache
  351. Array<const BPKeyValue *> all_bp;
  352. GetAllBodyPairsSorted(all_bp);
  353. // Determine which ones to save
  354. Array<const BPKeyValue *> selected_bp;
  355. if (inFilter == nullptr)
  356. selected_bp = std::move(all_bp);
  357. else
  358. {
  359. selected_bp.reserve(all_bp.size());
  360. for (const BPKeyValue *bp_kv : all_bp)
  361. if (inFilter->ShouldSaveContact(bp_kv->GetKey().mBodyA, bp_kv->GetKey().mBodyB))
  362. selected_bp.push_back(bp_kv);
  363. }
  364. // Write body pairs
  365. uint32 num_body_pairs = uint32(selected_bp.size());
  366. inStream.Write(num_body_pairs);
  367. for (const BPKeyValue *bp_kv : selected_bp)
  368. {
  369. // Write body pair key
  370. inStream.Write(bp_kv->GetKey());
  371. // Write body pair
  372. const CachedBodyPair &bp = bp_kv->GetValue();
  373. bp.SaveState(inStream);
  374. // Get attached manifolds
  375. Array<const MKeyValue *> all_m;
  376. GetAllManifoldsSorted(bp, all_m);
  377. // Write num manifolds
  378. uint32 num_manifolds = uint32(all_m.size());
  379. inStream.Write(num_manifolds);
  380. // Write all manifolds
  381. for (const MKeyValue *m_kv : all_m)
  382. {
  383. // Write key
  384. inStream.Write(m_kv->GetKey());
  385. const CachedManifold &cm = m_kv->GetValue();
  386. JPH_ASSERT((cm.mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0);
  387. // Write amount of contacts
  388. inStream.Write(cm.mNumContactPoints);
  389. // Write manifold
  390. cm.SaveState(inStream);
  391. // Write contact points
  392. for (uint32 i = 0; i < cm.mNumContactPoints; ++i)
  393. cm.mContactPoints[i].SaveState(inStream);
  394. }
  395. }
  396. // Get CCD manifolds
  397. Array<const MKeyValue *> all_m;
  398. GetAllCCDManifoldsSorted(all_m);
  399. // Determine which ones to save
  400. Array<const MKeyValue *> selected_m;
  401. if (inFilter == nullptr)
  402. selected_m = std::move(all_m);
  403. else
  404. {
  405. selected_m.reserve(all_m.size());
  406. for (const MKeyValue *m_kv : all_m)
  407. if (inFilter->ShouldSaveContact(m_kv->GetKey().GetBody1ID(), m_kv->GetKey().GetBody2ID()))
  408. selected_m.push_back(m_kv);
  409. }
  410. // Write all CCD manifold keys
  411. uint32 num_manifolds = uint32(selected_m.size());
  412. inStream.Write(num_manifolds);
  413. for (const MKeyValue *m_kv : selected_m)
  414. inStream.Write(m_kv->GetKey());
  415. }
  416. bool ContactConstraintManager::ManifoldCache::RestoreState(const ManifoldCache &inReadCache, StateRecorder &inStream, const StateRecorderFilter *inFilter)
  417. {
  418. JPH_ASSERT(!mIsFinalized);
  419. bool success = true;
  420. // Create a contact allocator for restoring the contact cache
  421. ContactAllocator contact_allocator(GetContactAllocator());
  422. // When validating, get all existing body pairs
  423. Array<const BPKeyValue *> all_bp;
  424. if (inStream.IsValidating())
  425. inReadCache.GetAllBodyPairsSorted(all_bp);
  426. // Read amount of body pairs
  427. uint32 num_body_pairs;
  428. if (inStream.IsValidating())
  429. num_body_pairs = uint32(all_bp.size());
  430. inStream.Read(num_body_pairs);
  431. // Read entire cache
  432. for (uint32 i = 0; i < num_body_pairs; ++i)
  433. {
  434. // Read key
  435. BodyPair body_pair_key;
  436. if (inStream.IsValidating() && i < all_bp.size())
  437. body_pair_key = all_bp[i]->GetKey();
  438. inStream.Read(body_pair_key);
  439. // Check if we want to restore this contact
  440. if (inFilter == nullptr || inFilter->ShouldRestoreContact(body_pair_key.mBodyA, body_pair_key.mBodyB))
  441. {
  442. // Create new entry for this body pair
  443. uint64 body_pair_hash = body_pair_key.GetHash();
  444. BPKeyValue *bp_kv = Create(contact_allocator, body_pair_key, body_pair_hash);
  445. if (bp_kv == nullptr)
  446. {
  447. // Out of cache space
  448. success = false;
  449. break;
  450. }
  451. CachedBodyPair &bp = bp_kv->GetValue();
  452. // Read body pair
  453. if (inStream.IsValidating() && i < all_bp.size())
  454. memcpy(&bp, &all_bp[i]->GetValue(), sizeof(CachedBodyPair));
  455. bp.RestoreState(inStream);
  456. // When validating, get all existing manifolds
  457. Array<const MKeyValue *> all_m;
  458. if (inStream.IsValidating())
  459. inReadCache.GetAllManifoldsSorted(all_bp[i]->GetValue(), all_m);
  460. // Read amount of manifolds
  461. uint32 num_manifolds = 0;
  462. if (inStream.IsValidating())
  463. num_manifolds = uint32(all_m.size());
  464. inStream.Read(num_manifolds);
  465. uint32 handle = ManifoldMap::cInvalidHandle;
  466. for (uint32 j = 0; j < num_manifolds; ++j)
  467. {
  468. // Read key
  469. SubShapeIDPair sub_shape_key;
  470. if (inStream.IsValidating() && j < all_m.size())
  471. sub_shape_key = all_m[j]->GetKey();
  472. inStream.Read(sub_shape_key);
  473. uint64 sub_shape_key_hash = sub_shape_key.GetHash();
  474. // Read amount of contact points
  475. uint16 num_contact_points = 0;
  476. if (inStream.IsValidating() && j < all_m.size())
  477. num_contact_points = all_m[j]->GetValue().mNumContactPoints;
  478. inStream.Read(num_contact_points);
  479. // Read manifold
  480. MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, num_contact_points);
  481. if (m_kv == nullptr)
  482. {
  483. // Out of cache space
  484. success = false;
  485. break;
  486. }
  487. CachedManifold &cm = m_kv->GetValue();
  488. if (inStream.IsValidating() && j < all_m.size())
  489. {
  490. memcpy(&cm, &all_m[j]->GetValue(), CachedManifold::sGetRequiredTotalSize(num_contact_points));
  491. cm.mNumContactPoints = uint16(num_contact_points); // Restore num contact points
  492. }
  493. cm.RestoreState(inStream);
  494. cm.mNextWithSameBodyPair = handle;
  495. handle = ToHandle(m_kv);
  496. // Read contact points
  497. for (uint32 k = 0; k < num_contact_points; ++k)
  498. cm.mContactPoints[k].RestoreState(inStream);
  499. }
  500. bp.mFirstCachedManifold = handle;
  501. }
  502. else
  503. {
  504. // Skip the contact
  505. CachedBodyPair bp;
  506. bp.RestoreState(inStream);
  507. uint32 num_manifolds = 0;
  508. inStream.Read(num_manifolds);
  509. for (uint32 j = 0; j < num_manifolds; ++j)
  510. {
  511. SubShapeIDPair sub_shape_key;
  512. inStream.Read(sub_shape_key);
  513. uint16 num_contact_points;
  514. inStream.Read(num_contact_points);
  515. CachedManifold cm;
  516. cm.RestoreState(inStream);
  517. for (uint32 k = 0; k < num_contact_points; ++k)
  518. cm.mContactPoints[0].RestoreState(inStream);
  519. }
  520. }
  521. }
  522. // When validating, get all existing CCD manifolds
  523. Array<const MKeyValue *> all_m;
  524. if (inStream.IsValidating())
  525. inReadCache.GetAllCCDManifoldsSorted(all_m);
  526. // Read amount of CCD manifolds
  527. uint32 num_manifolds;
  528. if (inStream.IsValidating())
  529. num_manifolds = uint32(all_m.size());
  530. inStream.Read(num_manifolds);
  531. for (uint32 j = 0; j < num_manifolds; ++j)
  532. {
  533. // Read key
  534. SubShapeIDPair sub_shape_key;
  535. if (inStream.IsValidating() && j < all_m.size())
  536. sub_shape_key = all_m[j]->GetKey();
  537. inStream.Read(sub_shape_key);
  538. // Check if we want to restore this contact
  539. if (inFilter == nullptr || inFilter->ShouldRestoreContact(sub_shape_key.GetBody1ID(), sub_shape_key.GetBody2ID()))
  540. {
  541. // Create CCD manifold
  542. uint64 sub_shape_key_hash = sub_shape_key.GetHash();
  543. MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, 0);
  544. if (m_kv == nullptr)
  545. {
  546. // Out of cache space
  547. success = false;
  548. break;
  549. }
  550. CachedManifold &cm = m_kv->GetValue();
  551. cm.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
  552. }
  553. }
  554. #ifdef JPH_ENABLE_ASSERTS
  555. // We don't finalize until the last part is restored
  556. if (inStream.IsLastPart())
  557. mIsFinalized = true;
  558. #endif
  559. return success;
  560. }
  561. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  562. // ContactConstraintManager
  563. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  564. ContactConstraintManager::ContactConstraintManager(const PhysicsSettings &inPhysicsSettings) :
  565. mPhysicsSettings(inPhysicsSettings)
  566. {
  567. #ifdef JPH_ENABLE_ASSERTS
  568. // For the first frame mark this empty buffer as finalized
  569. mCache[mCacheWriteIdx ^ 1].Finalize();
  570. #endif
  571. }
  572. ContactConstraintManager::~ContactConstraintManager()
  573. {
  574. JPH_ASSERT(mConstraints == nullptr);
  575. }
  576. void ContactConstraintManager::Init(uint inMaxBodyPairs, uint inMaxContactConstraints)
  577. {
  578. // Limit the number of constraints so that the allocation size fits in an unsigned integer
  579. mMaxConstraints = min(inMaxContactConstraints, cMaxContactConstraintsLimit);
  580. JPH_ASSERT(mMaxConstraints == inMaxContactConstraints, "Cannot support this many contact constraints!");
  581. // Calculate worst case cache usage
  582. constexpr uint cMaxManifoldSizePerConstraint = sizeof(CachedManifold) + (MaxContactPoints - 1) * sizeof(CachedContactPoint);
  583. static_assert(cMaxManifoldSizePerConstraint < sizeof(ContactConstraint)); // If not true, then the next line can overflow
  584. uint cached_manifolds_size = mMaxConstraints * cMaxManifoldSizePerConstraint;
  585. // Init the caches
  586. mCache[0].Init(inMaxBodyPairs, mMaxConstraints, cached_manifolds_size);
  587. mCache[1].Init(inMaxBodyPairs, mMaxConstraints, cached_manifolds_size);
  588. }
  589. void ContactConstraintManager::PrepareConstraintBuffer(PhysicsUpdateContext *inContext)
  590. {
  591. // Store context
  592. mUpdateContext = inContext;
  593. // Allocate temporary constraint buffer
  594. JPH_ASSERT(mConstraints == nullptr);
  595. mConstraints = (ContactConstraint *)inContext->mTempAllocator->Allocate(mMaxConstraints * sizeof(ContactConstraint));
  596. }
  597. template <EMotionType Type1, EMotionType Type2>
  598. JPH_INLINE void ContactConstraintManager::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, Vec3Arg inGravityDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
  599. {
  600. // Calculate scaled mass and inertia
  601. Mat44 inv_i1;
  602. if constexpr (Type1 == EMotionType::Dynamic)
  603. {
  604. const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
  605. inv_i1 = inSettings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inTransformBody1.GetRotation());
  606. }
  607. else
  608. {
  609. inv_i1 = Mat44::sZero();
  610. }
  611. Mat44 inv_i2;
  612. if constexpr (Type2 == EMotionType::Dynamic)
  613. {
  614. const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
  615. inv_i2 = inSettings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inTransformBody2.GetRotation());
  616. }
  617. else
  618. {
  619. inv_i2 = Mat44::sZero();
  620. }
  621. // Calculate tangents
  622. Vec3 t1, t2;
  623. ioConstraint.GetTangents(t1, t2);
  624. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  625. // Calculate value for restitution correction
  626. float gravity_dt_dot_normal = inGravityDeltaTime.Dot(ws_normal);
  627. // Setup velocity constraint properties
  628. float min_velocity_for_restitution = mPhysicsSettings.mMinVelocityForRestitution;
  629. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  630. {
  631. RVec3 p1 = inTransformBody1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  632. RVec3 p2 = inTransformBody2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
  633. wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(inDeltaTime, gravity_dt_dot_normal, inBody1, inBody2, ioConstraint.mInvMass1, ioConstraint.mInvMass2, inv_i1, inv_i2, p1, p2, ws_normal, t1, t2, inSettings, min_velocity_for_restitution);
  634. }
  635. }
  636. inline void ContactConstraintManager::CalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, Vec3Arg inGravityDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
  637. {
  638. // Dispatch to the correct templated form
  639. switch (inBody1.GetMotionType())
  640. {
  641. case EMotionType::Dynamic:
  642. switch (inBody2.GetMotionType())
  643. {
  644. case EMotionType::Dynamic:
  645. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  646. break;
  647. case EMotionType::Kinematic:
  648. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Kinematic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  649. break;
  650. case EMotionType::Static:
  651. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Static>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  652. break;
  653. default:
  654. JPH_ASSERT(false);
  655. break;
  656. }
  657. break;
  658. case EMotionType::Kinematic:
  659. JPH_ASSERT(inBody2.IsDynamic());
  660. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Kinematic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  661. break;
  662. case EMotionType::Static:
  663. JPH_ASSERT(inBody2.IsDynamic());
  664. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Static, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inGravityDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  665. break;
  666. default:
  667. JPH_ASSERT(false);
  668. break;
  669. }
  670. }
  671. void ContactConstraintManager::GetContactsFromCache(ContactAllocator &ioContactAllocator, Body &inBody1, Body &inBody2, bool &outPairHandled, bool &outConstraintCreated)
  672. {
  673. // Start with nothing found and not handled
  674. outConstraintCreated = false;
  675. outPairHandled = false;
  676. // Swap bodies so that body 1 id < body 2 id
  677. Body *body1, *body2;
  678. if (inBody1.GetID() < inBody2.GetID())
  679. {
  680. body1 = &inBody1;
  681. body2 = &inBody2;
  682. }
  683. else
  684. {
  685. body1 = &inBody2;
  686. body2 = &inBody1;
  687. }
  688. // Find the cached body pair
  689. BodyPair body_pair_key(body1->GetID(), body2->GetID());
  690. uint64 body_pair_hash = body_pair_key.GetHash();
  691. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  692. const BPKeyValue *kv = read_cache.Find(body_pair_key, body_pair_hash);
  693. if (kv == nullptr)
  694. return;
  695. const CachedBodyPair &input_cbp = kv->GetValue();
  696. // Get relative translation
  697. Quat inv_r1 = body1->GetRotation().Conjugated();
  698. Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
  699. // Get old position delta
  700. Vec3 old_delta_position = Vec3::sLoadFloat3Unsafe(input_cbp.mDeltaPosition);
  701. // Check if bodies are still roughly in the same relative position
  702. if ((delta_position - old_delta_position).LengthSq() > mPhysicsSettings.mBodyPairCacheMaxDeltaPositionSq)
  703. return;
  704. // Determine relative orientation
  705. Quat delta_rotation = inv_r1 * body2->GetRotation();
  706. // Reconstruct old quaternion delta
  707. Quat old_delta_rotation = Quat::sLoadFloat3Unsafe(input_cbp.mDeltaRotation);
  708. // Check if bodies are still roughly in the same relative orientation
  709. // The delta between 2 quaternions p and q is: p q^* = [rotation_axis * sin(angle / 2), cos(angle / 2)]
  710. // From the W component we can extract the angle: cos(angle / 2) = px * qx + py * qy + pz * qz + pw * qw = p . q
  711. // Since we want to abort if the rotation is smaller than -angle or bigger than angle, we can write the comparison as |p . q| < cos(angle / 2)
  712. if (abs(delta_rotation.Dot(old_delta_rotation)) < mPhysicsSettings.mBodyPairCacheCosMaxDeltaRotationDiv2)
  713. return;
  714. // The cache is valid, return that we've handled this body pair
  715. outPairHandled = true;
  716. // Copy the cached body pair to this frame
  717. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  718. BPKeyValue *output_bp_kv = write_cache.Create(ioContactAllocator, body_pair_key, body_pair_hash);
  719. if (output_bp_kv == nullptr)
  720. return; // Out of cache space
  721. CachedBodyPair *output_cbp = &output_bp_kv->GetValue();
  722. memcpy(output_cbp, &input_cbp, sizeof(CachedBodyPair));
  723. // If there were no contacts, we have handled the contact
  724. if (input_cbp.mFirstCachedManifold == ManifoldMap::cInvalidHandle)
  725. return;
  726. // Get body transforms
  727. RMat44 transform_body1 = body1->GetCenterOfMassTransform();
  728. RMat44 transform_body2 = body2->GetCenterOfMassTransform();
  729. // Get time step
  730. float delta_time = mUpdateContext->mStepDeltaTime;
  731. // Calculate value for restitution correction
  732. Vec3 gravity_dt = mUpdateContext->mPhysicsSystem->GetGravity() * delta_time;
  733. // Copy manifolds
  734. uint32 output_handle = ManifoldMap::cInvalidHandle;
  735. uint32 input_handle = input_cbp.mFirstCachedManifold;
  736. do
  737. {
  738. JPH_PROFILE("Add Constraint From Cached Manifold");
  739. // Find the existing manifold
  740. const MKeyValue *input_kv = read_cache.FromHandle(input_handle);
  741. const SubShapeIDPair &input_key = input_kv->GetKey();
  742. const CachedManifold &input_cm = input_kv->GetValue();
  743. JPH_ASSERT(input_cm.mNumContactPoints > 0); // There should be contact points in this manifold!
  744. // Create room for manifold in write buffer and copy data
  745. uint64 input_hash = input_key.GetHash();
  746. MKeyValue *output_kv = write_cache.Create(ioContactAllocator, input_key, input_hash, input_cm.mNumContactPoints);
  747. if (output_kv == nullptr)
  748. break; // Out of cache space
  749. CachedManifold *output_cm = &output_kv->GetValue();
  750. memcpy(output_cm, &input_cm, CachedManifold::sGetRequiredTotalSize(input_cm.mNumContactPoints));
  751. // Link the object under the body pairs
  752. output_cm->mNextWithSameBodyPair = output_handle;
  753. output_handle = write_cache.ToHandle(output_kv);
  754. // Calculate default contact settings
  755. ContactSettings settings;
  756. settings.mCombinedFriction = mCombineFriction(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
  757. settings.mCombinedRestitution = mCombineRestitution(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
  758. settings.mIsSensor = body1->IsSensor() || body2->IsSensor();
  759. // Calculate world space contact normal
  760. Vec3 world_space_normal = transform_body2.Multiply3x3(Vec3::sLoadFloat3Unsafe(output_cm->mContactNormal)).Normalized();
  761. // Call contact listener to update settings
  762. if (mContactListener != nullptr)
  763. {
  764. // Convert constraint to manifold structure for callback
  765. ContactManifold manifold;
  766. manifold.mWorldSpaceNormal = world_space_normal;
  767. manifold.mSubShapeID1 = input_key.GetSubShapeID1();
  768. manifold.mSubShapeID2 = input_key.GetSubShapeID2();
  769. manifold.mBaseOffset = transform_body1.GetTranslation();
  770. manifold.mRelativeContactPointsOn1.resize(output_cm->mNumContactPoints);
  771. manifold.mRelativeContactPointsOn2.resize(output_cm->mNumContactPoints);
  772. Mat44 local_transform_body2 = transform_body2.PostTranslated(-manifold.mBaseOffset).ToMat44();
  773. float penetration_depth = -FLT_MAX;
  774. for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
  775. {
  776. const CachedContactPoint &ccp = output_cm->mContactPoints[i];
  777. manifold.mRelativeContactPointsOn1[i] = transform_body1.Multiply3x3(Vec3::sLoadFloat3Unsafe(ccp.mPosition1));
  778. manifold.mRelativeContactPointsOn2[i] = local_transform_body2 * Vec3::sLoadFloat3Unsafe(ccp.mPosition2);
  779. penetration_depth = max(penetration_depth, (manifold.mRelativeContactPointsOn1[i] - manifold.mRelativeContactPointsOn2[i]).Dot(world_space_normal));
  780. }
  781. manifold.mPenetrationDepth = penetration_depth; // We don't have the penetration depth anymore, estimate it
  782. // Notify callback
  783. mContactListener->OnContactPersisted(*body1, *body2, manifold, settings);
  784. }
  785. JPH_ASSERT(settings.mIsSensor || !(body1->IsSensor() || body2->IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  786. if (!settings.mIsSensor // If one of the bodies is a sensor, don't actually create the constraint
  787. && ((body1->IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
  788. || (body2->IsDynamic() && settings.mInvMassScale2 != 0.0f)))
  789. {
  790. // Add contact constraint in world space for the solver
  791. uint32 constraint_idx = mNumConstraints++;
  792. if (constraint_idx >= mMaxConstraints)
  793. {
  794. ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
  795. break;
  796. }
  797. // A constraint will be created
  798. outConstraintCreated = true;
  799. ContactConstraint &constraint = mConstraints[constraint_idx];
  800. new (&constraint) ContactConstraint();
  801. constraint.mBody1 = body1;
  802. constraint.mBody2 = body2;
  803. constraint.mSortKey = input_hash;
  804. world_space_normal.StoreFloat3(&constraint.mWorldSpaceNormal);
  805. constraint.mCombinedFriction = settings.mCombinedFriction;
  806. constraint.mInvMass1 = body1->GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale1 * body1->GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
  807. constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
  808. constraint.mInvMass2 = body2->GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale2 * body2->GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
  809. constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
  810. constraint.mContactPoints.resize(output_cm->mNumContactPoints);
  811. for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
  812. {
  813. CachedContactPoint &ccp = output_cm->mContactPoints[i];
  814. WorldContactPoint &wcp = constraint.mContactPoints[i];
  815. wcp.mNonPenetrationConstraint.SetTotalLambda(ccp.mNonPenetrationLambda);
  816. wcp.mFrictionConstraint1.SetTotalLambda(ccp.mFrictionLambda[0]);
  817. wcp.mFrictionConstraint2.SetTotalLambda(ccp.mFrictionLambda[1]);
  818. wcp.mContactPoint = &ccp;
  819. }
  820. JPH_DET_LOG("GetContactsFromCache: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
  821. // Calculate friction and non-penetration constraint properties for all contact points
  822. CalculateFrictionAndNonPenetrationConstraintProperties(constraint, settings, delta_time, gravity_dt, transform_body1, transform_body2, *body1, *body2);
  823. // Notify island builder
  824. mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, body1->GetIndexInActiveBodiesInternal(), body2->GetIndexInActiveBodiesInternal());
  825. #ifdef JPH_DEBUG_RENDERER
  826. // Draw the manifold
  827. if (sDrawContactManifolds)
  828. constraint.Draw(DebugRenderer::sInstance, Color::sYellow);
  829. #endif // JPH_DEBUG_RENDERER
  830. #ifdef JPH_TRACK_SIMULATION_STATS
  831. // Track new contact constraints
  832. if (!body1->IsStatic())
  833. body1->GetMotionPropertiesUnchecked()->GetSimulationStats().mNumContactConstraints.fetch_add(1, memory_order_relaxed);
  834. if (!body2->IsStatic())
  835. body2->GetMotionPropertiesUnchecked()->GetSimulationStats().mNumContactConstraints.fetch_add(1, memory_order_relaxed);
  836. #endif
  837. }
  838. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  839. input_cm.mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  840. // Fetch the next manifold
  841. input_handle = input_cm.mNextWithSameBodyPair;
  842. }
  843. while (input_handle != ManifoldMap::cInvalidHandle);
  844. output_cbp->mFirstCachedManifold = output_handle;
  845. }
  846. ContactConstraintManager::BodyPairHandle ContactConstraintManager::AddBodyPair(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2)
  847. {
  848. // Swap bodies so that body 1 id < body 2 id
  849. const Body *body1, *body2;
  850. if (inBody1.GetID() < inBody2.GetID())
  851. {
  852. body1 = &inBody1;
  853. body2 = &inBody2;
  854. }
  855. else
  856. {
  857. body1 = &inBody2;
  858. body2 = &inBody1;
  859. }
  860. // Add an entry
  861. BodyPair body_pair_key(body1->GetID(), body2->GetID());
  862. uint64 body_pair_hash = body_pair_key.GetHash();
  863. BPKeyValue *body_pair_kv = mCache[mCacheWriteIdx].Create(ioContactAllocator, body_pair_key, body_pair_hash);
  864. if (body_pair_kv == nullptr)
  865. return nullptr; // Out of cache space
  866. CachedBodyPair *cbp = &body_pair_kv->GetValue();
  867. cbp->mFirstCachedManifold = ManifoldMap::cInvalidHandle;
  868. // Get relative translation
  869. Quat inv_r1 = body1->GetRotation().Conjugated();
  870. Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
  871. // Store it
  872. delta_position.StoreFloat3(&cbp->mDeltaPosition);
  873. // Determine relative orientation
  874. Quat delta_rotation = inv_r1 * body2->GetRotation();
  875. // Store it
  876. delta_rotation.StoreFloat3(&cbp->mDeltaRotation);
  877. return cbp;
  878. }
  879. template <EMotionType Type1, EMotionType Type2>
  880. bool ContactConstraintManager::TemplatedAddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
  881. {
  882. // Calculate hash
  883. SubShapeIDPair key { inBody1.GetID(), inManifold.mSubShapeID1, inBody2.GetID(), inManifold.mSubShapeID2 };
  884. uint64 key_hash = key.GetHash();
  885. // Determine number of contact points
  886. int num_contact_points = (int)inManifold.mRelativeContactPointsOn1.size();
  887. JPH_ASSERT(num_contact_points <= MaxContactPoints);
  888. JPH_ASSERT(num_contact_points == (int)inManifold.mRelativeContactPointsOn2.size());
  889. // Reserve space for new contact cache entry
  890. // Note that for dynamic vs dynamic we always require the first body to have a lower body id to get a consistent key
  891. // under which to look up the contact
  892. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  893. MKeyValue *new_manifold_kv = write_cache.Create(ioContactAllocator, key, key_hash, num_contact_points);
  894. if (new_manifold_kv == nullptr)
  895. return false; // Out of cache space
  896. CachedManifold *new_manifold = &new_manifold_kv->GetValue();
  897. // Transform the world space normal to the space of body 2 (this is usually the static body)
  898. RMat44 inverse_transform_body2 = inBody2.GetInverseCenterOfMassTransform();
  899. inverse_transform_body2.Multiply3x3(inManifold.mWorldSpaceNormal).Normalized().StoreFloat3(&new_manifold->mContactNormal);
  900. // Settings object that gets passed to the callback
  901. ContactSettings settings;
  902. settings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  903. settings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  904. settings.mIsSensor = inBody1.IsSensor() || inBody2.IsSensor();
  905. // Get the contact points for the old cache entry
  906. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  907. const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
  908. const CachedContactPoint *ccp_start;
  909. const CachedContactPoint *ccp_end;
  910. if (old_manifold_kv != nullptr)
  911. {
  912. // Call point persisted listener
  913. if (mContactListener != nullptr)
  914. mContactListener->OnContactPersisted(inBody1, inBody2, inManifold, settings);
  915. // Fetch the contact points from the old manifold
  916. const CachedManifold *old_manifold = &old_manifold_kv->GetValue();
  917. ccp_start = old_manifold->mContactPoints;
  918. ccp_end = ccp_start + old_manifold->mNumContactPoints;
  919. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  920. old_manifold->mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  921. }
  922. else
  923. {
  924. // Call point added listener
  925. if (mContactListener != nullptr)
  926. mContactListener->OnContactAdded(inBody1, inBody2, inManifold, settings);
  927. // No contact points available from old manifold
  928. ccp_start = nullptr;
  929. ccp_end = nullptr;
  930. }
  931. // Get inverse transform for body 1
  932. RMat44 inverse_transform_body1 = inBody1.GetInverseCenterOfMassTransform();
  933. bool contact_constraint_created = false;
  934. // If one of the bodies is a sensor, don't actually create the constraint
  935. JPH_ASSERT(settings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  936. if (!settings.mIsSensor
  937. && ((inBody1.IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
  938. || (inBody2.IsDynamic() && settings.mInvMassScale2 != 0.0f)))
  939. {
  940. // Add contact constraint
  941. uint32 constraint_idx = mNumConstraints++;
  942. if (constraint_idx >= mMaxConstraints)
  943. {
  944. ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
  945. // Manifold has been created already, we're not filling it in, so we need to reset the contact number of points.
  946. // Note that we don't hook it up to the body pair cache so that it won't be used as a cache during the next simulation.
  947. new_manifold->mNumContactPoints = 0;
  948. return false;
  949. }
  950. // We will create a contact constraint
  951. contact_constraint_created = true;
  952. ContactConstraint &constraint = mConstraints[constraint_idx];
  953. new (&constraint) ContactConstraint();
  954. constraint.mBody1 = &inBody1;
  955. constraint.mBody2 = &inBody2;
  956. constraint.mSortKey = key_hash;
  957. inManifold.mWorldSpaceNormal.StoreFloat3(&constraint.mWorldSpaceNormal);
  958. constraint.mCombinedFriction = settings.mCombinedFriction;
  959. constraint.mInvMass1 = inBody1.GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale1 * inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
  960. constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
  961. constraint.mInvMass2 = inBody2.GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale2 * inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
  962. constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
  963. JPH_DET_LOG("TemplatedAddContactConstraint: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
  964. // Notify island builder
  965. mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, inBody1.GetIndexInActiveBodiesInternal(), inBody2.GetIndexInActiveBodiesInternal());
  966. // Get time step
  967. float delta_time = mUpdateContext->mStepDeltaTime;
  968. // Calculate value for restitution correction
  969. float gravity_dt_dot_normal = inManifold.mWorldSpaceNormal.Dot(mUpdateContext->mPhysicsSystem->GetGravity() * delta_time);
  970. // Calculate scaled mass and inertia
  971. float inv_m1;
  972. Mat44 inv_i1;
  973. if constexpr (Type1 == EMotionType::Dynamic)
  974. {
  975. const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
  976. inv_m1 = settings.mInvMassScale1 * mp1->GetInverseMass();
  977. inv_i1 = settings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inverse_transform_body1.Transposed3x3());
  978. }
  979. else
  980. {
  981. inv_m1 = 0.0f;
  982. inv_i1 = Mat44::sZero();
  983. }
  984. float inv_m2;
  985. Mat44 inv_i2;
  986. if constexpr (Type2 == EMotionType::Dynamic)
  987. {
  988. const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
  989. inv_m2 = settings.mInvMassScale2 * mp2->GetInverseMass();
  990. inv_i2 = settings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inverse_transform_body2.Transposed3x3());
  991. }
  992. else
  993. {
  994. inv_m2 = 0.0f;
  995. inv_i2 = Mat44::sZero();
  996. }
  997. // Calculate tangents
  998. Vec3 t1, t2;
  999. constraint.GetTangents(t1, t2);
  1000. constraint.mContactPoints.resize(num_contact_points);
  1001. for (int i = 0; i < num_contact_points; ++i)
  1002. {
  1003. // Convert to world space and set positions
  1004. WorldContactPoint &wcp = constraint.mContactPoints[i];
  1005. RVec3 p1_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i];
  1006. RVec3 p2_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i];
  1007. // Convert to local space to the body
  1008. Vec3 p1_ls = Vec3(inverse_transform_body1 * p1_ws);
  1009. Vec3 p2_ls = Vec3(inverse_transform_body2 * p2_ws);
  1010. // Check if we have a close contact point from last update
  1011. bool lambda_set = false;
  1012. for (const CachedContactPoint *ccp = ccp_start; ccp < ccp_end; ccp++)
  1013. if (Vec3::sLoadFloat3Unsafe(ccp->mPosition1).IsClose(p1_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq)
  1014. && Vec3::sLoadFloat3Unsafe(ccp->mPosition2).IsClose(p2_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq))
  1015. {
  1016. // Get lambdas from previous frame
  1017. wcp.mNonPenetrationConstraint.SetTotalLambda(ccp->mNonPenetrationLambda);
  1018. wcp.mFrictionConstraint1.SetTotalLambda(ccp->mFrictionLambda[0]);
  1019. wcp.mFrictionConstraint2.SetTotalLambda(ccp->mFrictionLambda[1]);
  1020. lambda_set = true;
  1021. break;
  1022. }
  1023. if (!lambda_set)
  1024. {
  1025. wcp.mNonPenetrationConstraint.SetTotalLambda(0.0f);
  1026. wcp.mFrictionConstraint1.SetTotalLambda(0.0f);
  1027. wcp.mFrictionConstraint2.SetTotalLambda(0.0f);
  1028. }
  1029. // Create new contact point
  1030. CachedContactPoint &cp = new_manifold->mContactPoints[i];
  1031. p1_ls.StoreFloat3(&cp.mPosition1);
  1032. p2_ls.StoreFloat3(&cp.mPosition2);
  1033. wcp.mContactPoint = &cp;
  1034. // Setup velocity constraint
  1035. wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(delta_time, gravity_dt_dot_normal, inBody1, inBody2, inv_m1, inv_m2, inv_i1, inv_i2, p1_ws, p2_ws, inManifold.mWorldSpaceNormal, t1, t2, settings, mPhysicsSettings.mMinVelocityForRestitution);
  1036. }
  1037. #ifdef JPH_DEBUG_RENDERER
  1038. // Draw the manifold
  1039. if (sDrawContactManifolds)
  1040. constraint.Draw(DebugRenderer::sInstance, Color::sOrange);
  1041. #endif // JPH_DEBUG_RENDERER
  1042. #ifdef JPH_TRACK_SIMULATION_STATS
  1043. // Track new contact constraints
  1044. if constexpr (Type1 != EMotionType::Static)
  1045. inBody1.GetMotionPropertiesUnchecked()->GetSimulationStats().mNumContactConstraints.fetch_add(1, memory_order_relaxed);
  1046. if constexpr (Type2 != EMotionType::Static)
  1047. inBody2.GetMotionPropertiesUnchecked()->GetSimulationStats().mNumContactConstraints.fetch_add(1, memory_order_relaxed);
  1048. #endif
  1049. }
  1050. else
  1051. {
  1052. // Store the contact manifold in the cache
  1053. for (int i = 0; i < num_contact_points; ++i)
  1054. {
  1055. // Convert to local space to the body
  1056. Vec3 p1 = Vec3(inverse_transform_body1 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i]));
  1057. Vec3 p2 = Vec3(inverse_transform_body2 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i]));
  1058. // Create new contact point
  1059. CachedContactPoint &cp = new_manifold->mContactPoints[i];
  1060. p1.StoreFloat3(&cp.mPosition1);
  1061. p2.StoreFloat3(&cp.mPosition2);
  1062. // Reset contact impulses, we haven't applied any
  1063. cp.mNonPenetrationLambda = 0.0f;
  1064. cp.mFrictionLambda[0] = 0.0f;
  1065. cp.mFrictionLambda[1] = 0.0f;
  1066. }
  1067. }
  1068. // Store cached contact point in body pair cache
  1069. CachedBodyPair *cbp = reinterpret_cast<CachedBodyPair *>(inBodyPairHandle);
  1070. new_manifold->mNextWithSameBodyPair = cbp->mFirstCachedManifold;
  1071. cbp->mFirstCachedManifold = write_cache.ToHandle(new_manifold_kv);
  1072. // A contact constraint was added
  1073. return contact_constraint_created;
  1074. }
  1075. bool ContactConstraintManager::AddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
  1076. {
  1077. JPH_PROFILE_FUNCTION();
  1078. JPH_DET_LOG("AddContactConstraint: id1: " << inBody1.GetID() << " id2: " << inBody2.GetID()
  1079. << " subshape1: " << inManifold.mSubShapeID1 << " subshape2: " << inManifold.mSubShapeID2
  1080. << " normal: " << inManifold.mWorldSpaceNormal << " pendepth: " << inManifold.mPenetrationDepth);
  1081. JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
  1082. // Swap bodies so that body 1 id < body 2 id
  1083. const ContactManifold *manifold;
  1084. Body *body1, *body2;
  1085. ContactManifold temp;
  1086. if (inBody2.GetID() < inBody1.GetID())
  1087. {
  1088. body1 = &inBody2;
  1089. body2 = &inBody1;
  1090. temp = inManifold.SwapShapes();
  1091. manifold = &temp;
  1092. }
  1093. else
  1094. {
  1095. body1 = &inBody1;
  1096. body2 = &inBody2;
  1097. manifold = &inManifold;
  1098. }
  1099. // Dispatch to the correct templated form
  1100. // Note: Non-dynamic vs non-dynamic can happen in this case due to one body being a sensor, so we need to have an extended switch case here
  1101. switch (body1->GetMotionType())
  1102. {
  1103. case EMotionType::Dynamic:
  1104. {
  1105. switch (body2->GetMotionType())
  1106. {
  1107. case EMotionType::Dynamic:
  1108. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1109. case EMotionType::Kinematic:
  1110. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1111. case EMotionType::Static:
  1112. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1113. default:
  1114. JPH_ASSERT(false);
  1115. break;
  1116. }
  1117. break;
  1118. }
  1119. case EMotionType::Kinematic:
  1120. switch (body2->GetMotionType())
  1121. {
  1122. case EMotionType::Dynamic:
  1123. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1124. case EMotionType::Kinematic:
  1125. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1126. case EMotionType::Static:
  1127. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1128. default:
  1129. JPH_ASSERT(false);
  1130. break;
  1131. }
  1132. break;
  1133. case EMotionType::Static:
  1134. switch (body2->GetMotionType())
  1135. {
  1136. case EMotionType::Dynamic:
  1137. return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1138. case EMotionType::Kinematic:
  1139. return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1140. case EMotionType::Static: // Static vs static not possible
  1141. default:
  1142. JPH_ASSERT(false);
  1143. break;
  1144. }
  1145. break;
  1146. default:
  1147. JPH_ASSERT(false);
  1148. break;
  1149. }
  1150. return false;
  1151. }
  1152. void ContactConstraintManager::OnCCDContactAdded(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &outSettings)
  1153. {
  1154. JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
  1155. // Calculate contact settings
  1156. outSettings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  1157. outSettings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  1158. outSettings.mIsSensor = false; // For now, no sensors are supported during CCD
  1159. // The remainder of this function only deals with calling contact callbacks, if there's no contact callback we also don't need to do this work
  1160. if (mContactListener != nullptr)
  1161. {
  1162. // Swap bodies so that body 1 id < body 2 id
  1163. const ContactManifold *manifold;
  1164. const Body *body1, *body2;
  1165. ContactManifold temp;
  1166. if (inBody2.GetID() < inBody1.GetID())
  1167. {
  1168. body1 = &inBody2;
  1169. body2 = &inBody1;
  1170. temp = inManifold.SwapShapes();
  1171. manifold = &temp;
  1172. }
  1173. else
  1174. {
  1175. body1 = &inBody1;
  1176. body2 = &inBody2;
  1177. manifold = &inManifold;
  1178. }
  1179. // Calculate hash
  1180. SubShapeIDPair key { body1->GetID(), manifold->mSubShapeID1, body2->GetID(), manifold->mSubShapeID2 };
  1181. uint64 key_hash = key.GetHash();
  1182. // Check if we already created this contact this physics update
  1183. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  1184. MKVAndCreated new_manifold_kv = write_cache.FindOrCreate(ioContactAllocator, key, key_hash, 0);
  1185. if (new_manifold_kv.second)
  1186. {
  1187. // This contact is new for this physics update, check if previous update we already had this contact.
  1188. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  1189. const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
  1190. if (old_manifold_kv == nullptr)
  1191. {
  1192. // New contact
  1193. mContactListener->OnContactAdded(*body1, *body2, *manifold, outSettings);
  1194. }
  1195. else
  1196. {
  1197. // Existing contact
  1198. mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
  1199. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  1200. old_manifold_kv->GetValue().mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  1201. }
  1202. // Check if the cache is full
  1203. if (new_manifold_kv.first != nullptr)
  1204. {
  1205. // We don't store any contact points in this manifold as it is not for caching impulses, we only need to know that the contact was created
  1206. CachedManifold &new_manifold = new_manifold_kv.first->GetValue();
  1207. new_manifold.mContactNormal = { 0, 0, 0 };
  1208. new_manifold.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
  1209. }
  1210. }
  1211. else
  1212. {
  1213. // Already found this contact this physics update.
  1214. // Note that we can trigger OnContactPersisted multiple times per physics update, but otherwise we have no way of obtaining the settings
  1215. mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
  1216. }
  1217. // If we swapped body1 and body2 we need to swap the mass scales back
  1218. if (manifold == &temp)
  1219. {
  1220. std::swap(outSettings.mInvMassScale1, outSettings.mInvMassScale2);
  1221. std::swap(outSettings.mInvInertiaScale1, outSettings.mInvInertiaScale2);
  1222. // Note we do not need to negate the relative surface velocity as it is not applied by the CCD collision constraint
  1223. }
  1224. }
  1225. JPH_ASSERT(outSettings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  1226. }
  1227. void ContactConstraintManager::SortContacts(uint32 *inConstraintIdxBegin, uint32 *inConstraintIdxEnd) const
  1228. {
  1229. JPH_PROFILE_FUNCTION();
  1230. QuickSort(inConstraintIdxBegin, inConstraintIdxEnd, [this](uint32 inLHS, uint32 inRHS) {
  1231. const ContactConstraint &lhs = mConstraints[inLHS];
  1232. const ContactConstraint &rhs = mConstraints[inRHS];
  1233. // Most of the time the sort key will be different so we sort on that
  1234. if (lhs.mSortKey != rhs.mSortKey)
  1235. return lhs.mSortKey < rhs.mSortKey;
  1236. // If they're equal we use the IDs of body 1 to order
  1237. if (lhs.mBody1 != rhs.mBody1)
  1238. return lhs.mBody1->GetID() < rhs.mBody1->GetID();
  1239. // If they're still equal we use the IDs of body 2 to order
  1240. if (lhs.mBody2 != rhs.mBody2)
  1241. return lhs.mBody2->GetID() < rhs.mBody2->GetID();
  1242. JPH_ASSERT(inLHS == inRHS, "Hash collision, ordering will be inconsistent");
  1243. return false;
  1244. });
  1245. }
  1246. void ContactConstraintManager::FinalizeContactCacheAndCallContactPointRemovedCallbacks(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
  1247. {
  1248. JPH_PROFILE_FUNCTION();
  1249. #ifdef JPH_ENABLE_ASSERTS
  1250. // Mark cache as finalized
  1251. ManifoldCache &old_write_cache = mCache[mCacheWriteIdx];
  1252. old_write_cache.Finalize();
  1253. // Check that the count of body pairs and manifolds that we tracked outside of the cache (to avoid contention on an atomic) is correct
  1254. JPH_ASSERT(old_write_cache.GetNumBodyPairs() == inExpectedNumBodyPairs);
  1255. JPH_ASSERT(old_write_cache.GetNumManifolds() == inExpectedNumManifolds);
  1256. #endif
  1257. // Buffers are now complete, make write buffer the read buffer
  1258. mCacheWriteIdx ^= 1;
  1259. // Get the old read cache / new write cache
  1260. ManifoldCache &old_read_cache = mCache[mCacheWriteIdx];
  1261. // Call the contact point removal callbacks
  1262. if (mContactListener != nullptr)
  1263. old_read_cache.ContactPointRemovedCallbacks(mContactListener);
  1264. // We're done with the old read cache now
  1265. old_read_cache.Clear();
  1266. // Use the amount of contacts from the last iteration to determine the amount of buckets to use in the hash map for the next iteration
  1267. old_read_cache.Prepare(inExpectedNumBodyPairs, inExpectedNumManifolds);
  1268. }
  1269. bool ContactConstraintManager::WereBodiesInContact(const BodyID &inBody1ID, const BodyID &inBody2ID) const
  1270. {
  1271. // The body pair needs to be in the cache and it needs to have a manifold (otherwise it's just a record indicating that there are no collisions)
  1272. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  1273. BodyPair key;
  1274. if (inBody1ID < inBody2ID)
  1275. key = BodyPair(inBody1ID, inBody2ID);
  1276. else
  1277. key = BodyPair(inBody2ID, inBody1ID);
  1278. uint64 key_hash = key.GetHash();
  1279. const BPKeyValue *kv = read_cache.Find(key, key_hash);
  1280. return kv != nullptr && kv->GetValue().mFirstCachedManifold != ManifoldMap::cInvalidHandle;
  1281. }
  1282. template <EMotionType Type1, EMotionType Type2>
  1283. JPH_INLINE void ContactConstraintManager::sWarmStartConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, float inWarmStartImpulseRatio)
  1284. {
  1285. // Calculate tangents
  1286. Vec3 t1, t2;
  1287. ioConstraint.GetTangents(t1, t2);
  1288. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  1289. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1290. {
  1291. // Warm starting: Apply impulse from last frame
  1292. if (wcp.mFrictionConstraint1.IsActive() || wcp.mFrictionConstraint2.IsActive())
  1293. {
  1294. wcp.mFrictionConstraint1.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t1, inWarmStartImpulseRatio);
  1295. wcp.mFrictionConstraint2.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t2, inWarmStartImpulseRatio);
  1296. }
  1297. wcp.mNonPenetrationConstraint.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, ws_normal, inWarmStartImpulseRatio);
  1298. }
  1299. }
  1300. template <class MotionPropertiesCallback>
  1301. void ContactConstraintManager::WarmStartVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, MotionPropertiesCallback &ioCallback)
  1302. {
  1303. JPH_PROFILE_FUNCTION();
  1304. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1305. {
  1306. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1307. // Fetch bodies
  1308. Body &body1 = *constraint.mBody1;
  1309. EMotionType motion_type1 = body1.GetMotionType();
  1310. MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
  1311. Body &body2 = *constraint.mBody2;
  1312. EMotionType motion_type2 = body2.GetMotionType();
  1313. MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
  1314. // Dispatch to the correct templated form
  1315. // Note: Warm starting doesn't differentiate between kinematic/static bodies so we handle both as static bodies
  1316. if (motion_type1 == EMotionType::Dynamic)
  1317. {
  1318. if (motion_type2 == EMotionType::Dynamic)
  1319. {
  1320. sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1321. ioCallback(motion_properties2);
  1322. }
  1323. else
  1324. sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1325. ioCallback(motion_properties1);
  1326. }
  1327. else
  1328. {
  1329. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1330. sWarmStartConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1331. ioCallback(motion_properties2);
  1332. }
  1333. }
  1334. }
  1335. // Specialize for the two body callback types
  1336. template void ContactConstraintManager::WarmStartVelocityConstraints<CalculateSolverSteps>(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, CalculateSolverSteps &ioCallback);
  1337. template void ContactConstraintManager::WarmStartVelocityConstraints<DummyCalculateSolverSteps>(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio, DummyCalculateSolverSteps &ioCallback);
  1338. template <EMotionType Type1, EMotionType Type2>
  1339. JPH_INLINE bool ContactConstraintManager::sSolveVelocityConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2)
  1340. {
  1341. bool any_impulse_applied = false;
  1342. // Calculate tangents
  1343. Vec3 t1, t2;
  1344. ioConstraint.GetTangents(t1, t2);
  1345. // First apply all friction constraints (non-penetration is more important than friction)
  1346. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1347. {
  1348. // Check if friction is enabled
  1349. if (wcp.mFrictionConstraint1.IsActive() || wcp.mFrictionConstraint2.IsActive())
  1350. {
  1351. // Calculate impulse to stop motion in tangential direction
  1352. float lambda1 = wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t1);
  1353. float lambda2 = wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t2);
  1354. float total_lambda_sq = Square(lambda1) + Square(lambda2);
  1355. // Calculate max impulse that can be applied. Note that we're using the non-penetration impulse from the previous iteration here.
  1356. // We do this because non-penetration is more important so is solved last (the last things that are solved in an iterative solver
  1357. // contribute the most).
  1358. float max_lambda_f = ioConstraint.mCombinedFriction * wcp.mNonPenetrationConstraint.GetTotalLambda();
  1359. // If the total lambda that we will apply is too large, scale it back
  1360. if (total_lambda_sq > Square(max_lambda_f))
  1361. {
  1362. float scale = max_lambda_f / sqrt(total_lambda_sq);
  1363. lambda1 *= scale;
  1364. lambda2 *= scale;
  1365. }
  1366. // Apply the friction impulse
  1367. if (wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t1, lambda1))
  1368. any_impulse_applied = true;
  1369. if (wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t2, lambda2))
  1370. any_impulse_applied = true;
  1371. }
  1372. }
  1373. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  1374. // Then apply all non-penetration constraints
  1375. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1376. {
  1377. // Solve non penetration velocities
  1378. if (wcp.mNonPenetrationConstraint.TemplatedSolveVelocityConstraint<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, ws_normal, 0.0f, FLT_MAX))
  1379. any_impulse_applied = true;
  1380. }
  1381. return any_impulse_applied;
  1382. }
  1383. bool ContactConstraintManager::SolveVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
  1384. {
  1385. JPH_PROFILE_FUNCTION();
  1386. bool any_impulse_applied = false;
  1387. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1388. {
  1389. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1390. // Fetch bodies
  1391. Body &body1 = *constraint.mBody1;
  1392. EMotionType motion_type1 = body1.GetMotionType();
  1393. MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
  1394. Body &body2 = *constraint.mBody2;
  1395. EMotionType motion_type2 = body2.GetMotionType();
  1396. MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
  1397. // Dispatch to the correct templated form
  1398. switch (motion_type1)
  1399. {
  1400. case EMotionType::Dynamic:
  1401. switch (motion_type2)
  1402. {
  1403. case EMotionType::Dynamic:
  1404. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1405. break;
  1406. case EMotionType::Kinematic:
  1407. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(constraint, motion_properties1, motion_properties2);
  1408. break;
  1409. case EMotionType::Static:
  1410. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2);
  1411. break;
  1412. default:
  1413. JPH_ASSERT(false);
  1414. break;
  1415. }
  1416. break;
  1417. case EMotionType::Kinematic:
  1418. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1419. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1420. break;
  1421. case EMotionType::Static:
  1422. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1423. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1424. break;
  1425. default:
  1426. JPH_ASSERT(false);
  1427. break;
  1428. }
  1429. }
  1430. return any_impulse_applied;
  1431. }
  1432. void ContactConstraintManager::StoreAppliedImpulses(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd) const
  1433. {
  1434. // Copy back total applied impulse to cache for the next frame
  1435. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1436. {
  1437. const ContactConstraint &constraint = mConstraints[*constraint_idx];
  1438. for (const WorldContactPoint &wcp : constraint.mContactPoints)
  1439. {
  1440. wcp.mContactPoint->mNonPenetrationLambda = wcp.mNonPenetrationConstraint.GetTotalLambda();
  1441. wcp.mContactPoint->mFrictionLambda[0] = wcp.mFrictionConstraint1.GetTotalLambda();
  1442. wcp.mContactPoint->mFrictionLambda[1] = wcp.mFrictionConstraint2.GetTotalLambda();
  1443. }
  1444. }
  1445. }
  1446. bool ContactConstraintManager::SolvePositionConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
  1447. {
  1448. JPH_PROFILE_FUNCTION();
  1449. bool any_impulse_applied = false;
  1450. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1451. {
  1452. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1453. // Fetch bodies
  1454. Body &body1 = *constraint.mBody1;
  1455. Body &body2 = *constraint.mBody2;
  1456. // Get transforms
  1457. RMat44 transform1 = body1.GetCenterOfMassTransform();
  1458. RMat44 transform2 = body2.GetCenterOfMassTransform();
  1459. Vec3 ws_normal = constraint.GetWorldSpaceNormal();
  1460. for (WorldContactPoint &wcp : constraint.mContactPoints)
  1461. {
  1462. // Calculate new contact point positions in world space (the bodies may have moved)
  1463. RVec3 p1 = transform1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  1464. RVec3 p2 = transform2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
  1465. // Calculate separation along the normal (negative if interpenetrating)
  1466. // Allow a little penetration by default (PhysicsSettings::mPenetrationSlop) to avoid jittering between contact/no-contact which wipes out the contact cache and warm start impulses
  1467. // Clamp penetration to a max PhysicsSettings::mMaxPenetrationDistance so that we don't apply a huge impulse if we're penetrating a lot
  1468. float separation = max(Vec3(p2 - p1).Dot(ws_normal) + mPhysicsSettings.mPenetrationSlop, -mPhysicsSettings.mMaxPenetrationDistance);
  1469. // Only enforce constraint when separation < 0 (otherwise we're apart)
  1470. if (separation < 0.0f)
  1471. {
  1472. // Update constraint properties (bodies may have moved)
  1473. wcp.CalculateNonPenetrationConstraintProperties(body1, constraint.mInvMass1, constraint.mInvInertiaScale1, body2, constraint.mInvMass2, constraint.mInvInertiaScale2, p1, p2, ws_normal);
  1474. // Solve position errors
  1475. if (wcp.mNonPenetrationConstraint.SolvePositionConstraintWithMassOverride(body1, constraint.mInvMass1, body2, constraint.mInvMass2, ws_normal, separation, mPhysicsSettings.mBaumgarte))
  1476. any_impulse_applied = true;
  1477. }
  1478. }
  1479. }
  1480. return any_impulse_applied;
  1481. }
  1482. void ContactConstraintManager::RecycleConstraintBuffer()
  1483. {
  1484. // Reset constraint array
  1485. mNumConstraints = 0;
  1486. }
  1487. void ContactConstraintManager::FinishConstraintBuffer()
  1488. {
  1489. // Free constraints buffer
  1490. mUpdateContext->mTempAllocator->Free(mConstraints, mMaxConstraints * sizeof(ContactConstraint));
  1491. mConstraints = nullptr;
  1492. mNumConstraints = 0;
  1493. // Reset update context
  1494. mUpdateContext = nullptr;
  1495. }
  1496. void ContactConstraintManager::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
  1497. {
  1498. mCache[mCacheWriteIdx ^ 1].SaveState(inStream, inFilter);
  1499. }
  1500. bool ContactConstraintManager::RestoreState(StateRecorder &inStream, const StateRecorderFilter *inFilter)
  1501. {
  1502. bool success = mCache[mCacheWriteIdx].RestoreState(mCache[mCacheWriteIdx ^ 1], inStream, inFilter);
  1503. // If this is the last part, the cache is finalized
  1504. if (inStream.IsLastPart())
  1505. {
  1506. mCacheWriteIdx ^= 1;
  1507. mCache[mCacheWriteIdx].Clear();
  1508. }
  1509. return success;
  1510. }
  1511. JPH_NAMESPACE_END