ConvexShape.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Collision/Shape/ConvexShape.h>
  6. #include <Jolt/Physics/Collision/RayCast.h>
  7. #include <Jolt/Physics/Collision/ShapeCast.h>
  8. #include <Jolt/Physics/Collision/CollideShape.h>
  9. #include <Jolt/Physics/Collision/CastResult.h>
  10. #include <Jolt/Physics/Collision/CollidePointResult.h>
  11. #include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
  12. #include <Jolt/Physics/Collision/Shape/GetTrianglesContext.h>
  13. #include <Jolt/Physics/Collision/Shape/PolyhedronSubmergedVolumeCalculator.h>
  14. #include <Jolt/Physics/Collision/TransformedShape.h>
  15. #include <Jolt/Physics/Collision/CollisionDispatch.h>
  16. #include <Jolt/Physics/Collision/NarrowPhaseStats.h>
  17. #include <Jolt/Physics/PhysicsSettings.h>
  18. #include <Jolt/Core/StreamIn.h>
  19. #include <Jolt/Core/StreamOut.h>
  20. #include <Jolt/Geometry/EPAPenetrationDepth.h>
  21. #include <Jolt/Geometry/OrientedBox.h>
  22. #include <Jolt/ObjectStream/TypeDeclarations.h>
  23. JPH_NAMESPACE_BEGIN
  24. JPH_IMPLEMENT_SERIALIZABLE_ABSTRACT(ConvexShapeSettings)
  25. {
  26. JPH_ADD_BASE_CLASS(ConvexShapeSettings, ShapeSettings)
  27. JPH_ADD_ATTRIBUTE(ConvexShapeSettings, mDensity)
  28. JPH_ADD_ATTRIBUTE(ConvexShapeSettings, mMaterial)
  29. }
  30. const StaticArray<Vec3, 384> ConvexShape::sUnitSphereTriangles = []() {
  31. const int level = 2;
  32. StaticArray<Vec3, 384> verts;
  33. GetTrianglesContextVertexList::sCreateHalfUnitSphereTop(verts, level);
  34. GetTrianglesContextVertexList::sCreateHalfUnitSphereBottom(verts, level);
  35. return verts;
  36. }();
  37. void ConvexShape::sCollideConvexVsConvex(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector, [[maybe_unused]] const ShapeFilter &inShapeFilter)
  38. {
  39. JPH_PROFILE_FUNCTION();
  40. // Get the shapes
  41. JPH_ASSERT(inShape1->GetType() == EShapeType::Convex);
  42. JPH_ASSERT(inShape2->GetType() == EShapeType::Convex);
  43. const ConvexShape *shape1 = static_cast<const ConvexShape *>(inShape1);
  44. const ConvexShape *shape2 = static_cast<const ConvexShape *>(inShape2);
  45. // Get transforms
  46. Mat44 inverse_transform1 = inCenterOfMassTransform1.InversedRotationTranslation();
  47. Mat44 transform_2_to_1 = inverse_transform1 * inCenterOfMassTransform2;
  48. // Get bounding boxes
  49. float max_separation_distance = inCollideShapeSettings.mMaxSeparationDistance;
  50. AABox shape1_bbox = shape1->GetLocalBounds().Scaled(inScale1);
  51. shape1_bbox.ExpandBy(Vec3::sReplicate(max_separation_distance));
  52. AABox shape2_bbox = shape2->GetLocalBounds().Scaled(inScale2);
  53. // Check if they overlap
  54. if (!OrientedBox(transform_2_to_1, shape2_bbox).Overlaps(shape1_bbox))
  55. return;
  56. // Note: As we don't remember the penetration axis from the last iteration, and it is likely that shape2 is pushed out of
  57. // collision relative to shape1 by comparing their COM's, we use that as an initial penetration axis: shape2.com - shape1.com
  58. // This has been seen to improve performance by approx. 1% over using a fixed axis like (1, 0, 0).
  59. Vec3 penetration_axis = transform_2_to_1.GetTranslation();
  60. // Ensure that we do not pass in a near zero penetration axis
  61. if (penetration_axis.IsNearZero())
  62. penetration_axis = Vec3::sAxisX();
  63. Vec3 point1, point2;
  64. EPAPenetrationDepth pen_depth;
  65. EPAPenetrationDepth::EStatus status;
  66. // Scope to limit lifetime of SupportBuffer
  67. {
  68. // Create support function
  69. SupportBuffer buffer1_excl_cvx_radius, buffer2_excl_cvx_radius;
  70. const Support *shape1_excl_cvx_radius = shape1->GetSupportFunction(ConvexShape::ESupportMode::ExcludeConvexRadius, buffer1_excl_cvx_radius, inScale1);
  71. const Support *shape2_excl_cvx_radius = shape2->GetSupportFunction(ConvexShape::ESupportMode::ExcludeConvexRadius, buffer2_excl_cvx_radius, inScale2);
  72. // Transform shape 2 in the space of shape 1
  73. TransformedConvexObject transformed2_excl_cvx_radius(transform_2_to_1, *shape2_excl_cvx_radius);
  74. // Perform GJK step
  75. status = pen_depth.GetPenetrationDepthStepGJK(*shape1_excl_cvx_radius, shape1_excl_cvx_radius->GetConvexRadius() + max_separation_distance, transformed2_excl_cvx_radius, shape2_excl_cvx_radius->GetConvexRadius(), inCollideShapeSettings.mCollisionTolerance, penetration_axis, point1, point2);
  76. }
  77. // Check result of collision detection
  78. switch (status)
  79. {
  80. case EPAPenetrationDepth::EStatus::Colliding:
  81. break;
  82. case EPAPenetrationDepth::EStatus::NotColliding:
  83. return;
  84. case EPAPenetrationDepth::EStatus::Indeterminate:
  85. {
  86. // Need to run expensive EPA algorithm
  87. // We know we're overlapping at this point, so we can set the max separation distance to 0.
  88. // Numerically it is possible that GJK finds that the shapes are overlapping but EPA finds that they're separated.
  89. // In order to avoid this, we clamp the max separation distance to 1 so that we don't excessively inflate the shape,
  90. // but we still inflate it enough to avoid the case where EPA misses the collision.
  91. max_separation_distance = min(max_separation_distance, 1.0f);
  92. // Create support function
  93. SupportBuffer buffer1_incl_cvx_radius, buffer2_incl_cvx_radius;
  94. const Support *shape1_incl_cvx_radius = shape1->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer1_incl_cvx_radius, inScale1);
  95. const Support *shape2_incl_cvx_radius = shape2->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer2_incl_cvx_radius, inScale2);
  96. // Add separation distance
  97. AddConvexRadius shape1_add_max_separation_distance(*shape1_incl_cvx_radius, max_separation_distance);
  98. // Transform shape 2 in the space of shape 1
  99. TransformedConvexObject transformed2_incl_cvx_radius(transform_2_to_1, *shape2_incl_cvx_radius);
  100. // Perform EPA step
  101. if (!pen_depth.GetPenetrationDepthStepEPA(shape1_add_max_separation_distance, transformed2_incl_cvx_radius, inCollideShapeSettings.mPenetrationTolerance, penetration_axis, point1, point2))
  102. return;
  103. break;
  104. }
  105. }
  106. // Check if the penetration is bigger than the early out fraction
  107. float penetration_depth = (point2 - point1).Length() - max_separation_distance;
  108. if (-penetration_depth >= ioCollector.GetEarlyOutFraction())
  109. return;
  110. // Correct point1 for the added separation distance
  111. float penetration_axis_len = penetration_axis.Length();
  112. if (penetration_axis_len > 0.0f)
  113. point1 -= penetration_axis * (max_separation_distance / penetration_axis_len);
  114. // Convert to world space
  115. point1 = inCenterOfMassTransform1 * point1;
  116. point2 = inCenterOfMassTransform1 * point2;
  117. Vec3 penetration_axis_world = inCenterOfMassTransform1.Multiply3x3(penetration_axis);
  118. // Create collision result
  119. CollideShapeResult result(point1, point2, penetration_axis_world, penetration_depth, inSubShapeIDCreator1.GetID(), inSubShapeIDCreator2.GetID(), TransformedShape::sGetBodyID(ioCollector.GetContext()));
  120. // Gather faces
  121. if (inCollideShapeSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces)
  122. {
  123. // Get supporting face of shape 1
  124. shape1->GetSupportingFace(SubShapeID(), -penetration_axis, inScale1, inCenterOfMassTransform1, result.mShape1Face);
  125. // Get supporting face of shape 2
  126. shape2->GetSupportingFace(SubShapeID(), transform_2_to_1.Multiply3x3Transposed(penetration_axis), inScale2, inCenterOfMassTransform2, result.mShape2Face);
  127. }
  128. // Notify the collector
  129. JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
  130. ioCollector.AddHit(result);
  131. }
  132. bool ConvexShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
  133. {
  134. // Note: This is a fallback routine, most convex shapes should implement a more performant version!
  135. JPH_PROFILE_FUNCTION();
  136. // Create support function
  137. SupportBuffer buffer;
  138. const Support *support = GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, Vec3::sOne());
  139. // Cast ray
  140. GJKClosestPoint gjk;
  141. if (gjk.CastRay(inRay.mOrigin, inRay.mDirection, cDefaultCollisionTolerance, *support, ioHit.mFraction))
  142. {
  143. ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
  144. return true;
  145. }
  146. return false;
  147. }
  148. void ConvexShape::CastRay(const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector, const ShapeFilter &inShapeFilter) const
  149. {
  150. // Note: This is a fallback routine, most convex shapes should implement a more performant version!
  151. // Test shape filter
  152. if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
  153. return;
  154. // First do a normal raycast, limited to the early out fraction
  155. RayCastResult hit;
  156. hit.mFraction = ioCollector.GetEarlyOutFraction();
  157. if (CastRay(inRay, inSubShapeIDCreator, hit))
  158. {
  159. // Check front side
  160. if (inRayCastSettings.mTreatConvexAsSolid || hit.mFraction > 0.0f)
  161. {
  162. hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext());
  163. ioCollector.AddHit(hit);
  164. }
  165. // Check if we want back facing hits and the collector still accepts additional hits
  166. if (inRayCastSettings.mBackFaceModeConvex == EBackFaceMode::CollideWithBackFaces && !ioCollector.ShouldEarlyOut())
  167. {
  168. // Invert the ray, going from the early out fraction back to the fraction where we found our forward hit
  169. float start_fraction = min(1.0f, ioCollector.GetEarlyOutFraction());
  170. float delta_fraction = hit.mFraction - start_fraction;
  171. if (delta_fraction < 0.0f)
  172. {
  173. RayCast inverted_ray { inRay.mOrigin + start_fraction * inRay.mDirection, delta_fraction * inRay.mDirection };
  174. // Cast another ray
  175. RayCastResult inverted_hit;
  176. inverted_hit.mFraction = 1.0f;
  177. if (CastRay(inverted_ray, inSubShapeIDCreator, inverted_hit)
  178. && inverted_hit.mFraction > 0.0f) // Ignore hits with fraction 0, this means the ray ends inside the object and we don't want to report it as a back facing hit
  179. {
  180. // Invert fraction and rescale it to the fraction of the original ray
  181. inverted_hit.mFraction = hit.mFraction + (inverted_hit.mFraction - 1.0f) * delta_fraction;
  182. inverted_hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext());
  183. ioCollector.AddHit(inverted_hit);
  184. }
  185. }
  186. }
  187. }
  188. }
  189. void ConvexShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
  190. {
  191. // Test shape filter
  192. if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
  193. return;
  194. // First test bounding box
  195. if (GetLocalBounds().Contains(inPoint))
  196. {
  197. // Create support function
  198. SupportBuffer buffer;
  199. const Support *support = GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, Vec3::sOne());
  200. // Create support function for point
  201. PointConvexSupport point { inPoint };
  202. // Test intersection
  203. GJKClosestPoint gjk;
  204. Vec3 v = inPoint;
  205. if (gjk.Intersects(*support, point, cDefaultCollisionTolerance, v))
  206. ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
  207. }
  208. }
  209. void ConvexShape::sCastConvexVsConvex(const ShapeCast &inShapeCast, const ShapeCastSettings &inShapeCastSettings, const Shape *inShape, Vec3Arg inScale, [[maybe_unused]] const ShapeFilter &inShapeFilter, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, CastShapeCollector &ioCollector)
  210. {
  211. JPH_PROFILE_FUNCTION();
  212. // Only supported for convex shapes
  213. JPH_ASSERT(inShapeCast.mShape->GetType() == EShapeType::Convex);
  214. const ConvexShape *cast_shape = static_cast<const ConvexShape *>(inShapeCast.mShape);
  215. JPH_ASSERT(inShape->GetType() == EShapeType::Convex);
  216. const ConvexShape *shape = static_cast<const ConvexShape *>(inShape);
  217. // Determine if we want to use the actual shape or a shrunken shape with convex radius
  218. ConvexShape::ESupportMode support_mode = inShapeCastSettings.mUseShrunkenShapeAndConvexRadius? ConvexShape::ESupportMode::ExcludeConvexRadius : ConvexShape::ESupportMode::Default;
  219. // Create support function for shape to cast
  220. SupportBuffer cast_buffer;
  221. const Support *cast_support = cast_shape->GetSupportFunction(support_mode, cast_buffer, inShapeCast.mScale);
  222. // Create support function for target shape
  223. SupportBuffer target_buffer;
  224. const Support *target_support = shape->GetSupportFunction(support_mode, target_buffer, inScale);
  225. // Do a raycast against the result
  226. EPAPenetrationDepth epa;
  227. float fraction = ioCollector.GetEarlyOutFraction();
  228. Vec3 contact_point_a, contact_point_b, contact_normal;
  229. if (epa.CastShape(inShapeCast.mCenterOfMassStart, inShapeCast.mDirection, inShapeCastSettings.mCollisionTolerance, inShapeCastSettings.mPenetrationTolerance, *cast_support, *target_support, cast_support->GetConvexRadius(), target_support->GetConvexRadius(), inShapeCastSettings.mReturnDeepestPoint, fraction, contact_point_a, contact_point_b, contact_normal)
  230. && (inShapeCastSettings.mBackFaceModeConvex == EBackFaceMode::CollideWithBackFaces
  231. || contact_normal.Dot(inShapeCast.mDirection) > 0.0f)) // Test if backfacing
  232. {
  233. // Convert to world space
  234. contact_point_a = inCenterOfMassTransform2 * contact_point_a;
  235. contact_point_b = inCenterOfMassTransform2 * contact_point_b;
  236. Vec3 contact_normal_world = inCenterOfMassTransform2.Multiply3x3(contact_normal);
  237. ShapeCastResult result(fraction, contact_point_a, contact_point_b, contact_normal_world, false, inSubShapeIDCreator1.GetID(), inSubShapeIDCreator2.GetID(), TransformedShape::sGetBodyID(ioCollector.GetContext()));
  238. // Early out if this hit is deeper than the collector's early out value
  239. if (fraction == 0.0f && -result.mPenetrationDepth >= ioCollector.GetEarlyOutFraction())
  240. return;
  241. // Gather faces
  242. if (inShapeCastSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces)
  243. {
  244. // Get supporting face of shape 1
  245. Mat44 transform_1_to_2 = inShapeCast.mCenterOfMassStart;
  246. transform_1_to_2.SetTranslation(transform_1_to_2.GetTranslation() + fraction * inShapeCast.mDirection);
  247. cast_shape->GetSupportingFace(SubShapeID(), transform_1_to_2.Multiply3x3Transposed(-contact_normal), inShapeCast.mScale, inCenterOfMassTransform2 * transform_1_to_2, result.mShape1Face);
  248. // Get supporting face of shape 2
  249. shape->GetSupportingFace(SubShapeID(), contact_normal, inScale, inCenterOfMassTransform2, result.mShape2Face);
  250. }
  251. JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
  252. ioCollector.AddHit(result);
  253. }
  254. }
  255. class ConvexShape::CSGetTrianglesContext
  256. {
  257. public:
  258. CSGetTrianglesContext(const ConvexShape *inShape, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) :
  259. mLocalToWorld(Mat44::sRotationTranslation(inRotation, inPositionCOM) * Mat44::sScale(inScale)),
  260. mIsInsideOut(ScaleHelpers::IsInsideOut(inScale))
  261. {
  262. mSupport = inShape->GetSupportFunction(ESupportMode::IncludeConvexRadius, mSupportBuffer, Vec3::sOne());
  263. }
  264. SupportBuffer mSupportBuffer;
  265. const Support * mSupport;
  266. Mat44 mLocalToWorld;
  267. bool mIsInsideOut;
  268. size_t mCurrentVertex = 0;
  269. };
  270. void ConvexShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
  271. {
  272. static_assert(sizeof(CSGetTrianglesContext) <= sizeof(GetTrianglesContext), "GetTrianglesContext too small");
  273. JPH_ASSERT(IsAligned(&ioContext, alignof(CSGetTrianglesContext)));
  274. new (&ioContext) CSGetTrianglesContext(this, inPositionCOM, inRotation, inScale);
  275. }
  276. int ConvexShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
  277. {
  278. JPH_ASSERT(inMaxTrianglesRequested >= cGetTrianglesMinTrianglesRequested);
  279. CSGetTrianglesContext &context = (CSGetTrianglesContext &)ioContext;
  280. int total_num_vertices = min(inMaxTrianglesRequested * 3, int(sUnitSphereTriangles.size() - context.mCurrentVertex));
  281. if (context.mIsInsideOut)
  282. {
  283. // Store triangles flipped
  284. for (const Vec3 *v = sUnitSphereTriangles.data() + context.mCurrentVertex, *v_end = v + total_num_vertices; v < v_end; v += 3)
  285. {
  286. (context.mLocalToWorld * context.mSupport->GetSupport(v[0])).StoreFloat3(outTriangleVertices++);
  287. (context.mLocalToWorld * context.mSupport->GetSupport(v[2])).StoreFloat3(outTriangleVertices++);
  288. (context.mLocalToWorld * context.mSupport->GetSupport(v[1])).StoreFloat3(outTriangleVertices++);
  289. }
  290. }
  291. else
  292. {
  293. // Store triangles
  294. for (const Vec3 *v = sUnitSphereTriangles.data() + context.mCurrentVertex, *v_end = v + total_num_vertices; v < v_end; v += 3)
  295. {
  296. (context.mLocalToWorld * context.mSupport->GetSupport(v[0])).StoreFloat3(outTriangleVertices++);
  297. (context.mLocalToWorld * context.mSupport->GetSupport(v[1])).StoreFloat3(outTriangleVertices++);
  298. (context.mLocalToWorld * context.mSupport->GetSupport(v[2])).StoreFloat3(outTriangleVertices++);
  299. }
  300. }
  301. context.mCurrentVertex += total_num_vertices;
  302. int total_num_triangles = total_num_vertices / 3;
  303. // Store materials
  304. if (outMaterials != nullptr)
  305. {
  306. const PhysicsMaterial *material = GetMaterial();
  307. for (const PhysicsMaterial **m = outMaterials, **m_end = outMaterials + total_num_triangles; m < m_end; ++m)
  308. *m = material;
  309. }
  310. return total_num_triangles;
  311. }
  312. void ConvexShape::GetSubmergedVolume(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy JPH_IF_DEBUG_RENDERER(, RVec3Arg inBaseOffset)) const
  313. {
  314. // Calculate total volume
  315. Vec3 abs_scale = inScale.Abs();
  316. Vec3 extent = GetLocalBounds().GetExtent() * abs_scale;
  317. outTotalVolume = 8.0f * extent.GetX() * extent.GetY() * extent.GetZ();
  318. // Points of the bounding box
  319. Vec3 points[] =
  320. {
  321. Vec3(-1, -1, -1),
  322. Vec3( 1, -1, -1),
  323. Vec3(-1, 1, -1),
  324. Vec3( 1, 1, -1),
  325. Vec3(-1, -1, 1),
  326. Vec3( 1, -1, 1),
  327. Vec3(-1, 1, 1),
  328. Vec3( 1, 1, 1),
  329. };
  330. // Faces of the bounding box
  331. using Face = int[5];
  332. #define MAKE_FACE(a, b, c, d) { a, b, c, d, ((1 << a) | (1 << b) | (1 << c) | (1 << d)) } // Last int is a bit mask that indicates which indices are used
  333. Face faces[] =
  334. {
  335. MAKE_FACE(0, 2, 3, 1),
  336. MAKE_FACE(4, 6, 2, 0),
  337. MAKE_FACE(4, 5, 7, 6),
  338. MAKE_FACE(1, 3, 7, 5),
  339. MAKE_FACE(2, 6, 7, 3),
  340. MAKE_FACE(0, 1, 5, 4),
  341. };
  342. PolyhedronSubmergedVolumeCalculator::Point *buffer = (PolyhedronSubmergedVolumeCalculator::Point *)JPH_STACK_ALLOC(8 * sizeof(PolyhedronSubmergedVolumeCalculator::Point));
  343. PolyhedronSubmergedVolumeCalculator submerged_vol_calc(inCenterOfMassTransform * Mat44::sScale(extent), points, sizeof(Vec3), 8, inSurface, buffer JPH_IF_DEBUG_RENDERER(, inBaseOffset));
  344. if (submerged_vol_calc.AreAllAbove())
  345. {
  346. // We're above the water
  347. outSubmergedVolume = 0.0f;
  348. outCenterOfBuoyancy = Vec3::sZero();
  349. }
  350. else if (submerged_vol_calc.AreAllBelow())
  351. {
  352. // We're fully submerged
  353. outSubmergedVolume = outTotalVolume;
  354. outCenterOfBuoyancy = inCenterOfMassTransform.GetTranslation();
  355. }
  356. else
  357. {
  358. // Calculate submerged volume
  359. int reference_point_bit = 1 << submerged_vol_calc.GetReferencePointIdx();
  360. for (const Face &f : faces)
  361. {
  362. // Test if this face includes the reference point
  363. if ((f[4] & reference_point_bit) == 0)
  364. {
  365. // Triangulate the face (a quad)
  366. submerged_vol_calc.AddFace(f[0], f[1], f[2]);
  367. submerged_vol_calc.AddFace(f[0], f[2], f[3]);
  368. }
  369. }
  370. submerged_vol_calc.GetResult(outSubmergedVolume, outCenterOfBuoyancy);
  371. }
  372. }
  373. #ifdef JPH_DEBUG_RENDERER
  374. void ConvexShape::DrawGetSupportFunction(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inDrawSupportDirection) const
  375. {
  376. // Get the support function with convex radius
  377. SupportBuffer buffer;
  378. const Support *support = GetSupportFunction(ESupportMode::ExcludeConvexRadius, buffer, inScale);
  379. AddConvexRadius add_convex(*support, support->GetConvexRadius());
  380. // Draw the shape
  381. DebugRenderer::GeometryRef geometry = inRenderer->CreateTriangleGeometryForConvex([&add_convex](Vec3Arg inDirection) { return add_convex.GetSupport(inDirection); });
  382. AABox bounds = geometry->mBounds.Transformed(inCenterOfMassTransform);
  383. float lod_scale_sq = geometry->mBounds.GetExtent().LengthSq();
  384. inRenderer->DrawGeometry(inCenterOfMassTransform, bounds, lod_scale_sq, inColor, geometry);
  385. if (inDrawSupportDirection)
  386. {
  387. // Iterate on all directions and draw the support point and an arrow in the direction that was sampled to test if the support points make sense
  388. for (Vec3 v : Vec3::sUnitSphere)
  389. {
  390. Vec3 direction = 0.05f * v;
  391. Vec3 pos = add_convex.GetSupport(direction);
  392. RVec3 from = inCenterOfMassTransform * pos;
  393. RVec3 to = inCenterOfMassTransform * (pos + direction);
  394. inRenderer->DrawMarker(from, Color::sWhite, 0.001f);
  395. inRenderer->DrawArrow(from, to, Color::sWhite, 0.001f);
  396. }
  397. }
  398. }
  399. void ConvexShape::DrawGetSupportingFace(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
  400. {
  401. // Sample directions and map which faces belong to which directions
  402. using FaceToDirection = UnorderedMap<SupportingFace, Array<Vec3>>;
  403. FaceToDirection faces;
  404. for (Vec3 v : Vec3::sUnitSphere)
  405. {
  406. Vec3 direction = 0.05f * v;
  407. SupportingFace face;
  408. GetSupportingFace(SubShapeID(), direction, inScale, Mat44::sIdentity(), face);
  409. if (!face.empty())
  410. {
  411. JPH_ASSERT(face.size() >= 2, "The GetSupportingFace function should either return nothing or at least an edge");
  412. faces[face].push_back(direction);
  413. }
  414. }
  415. // Draw each face in a unique color and draw corresponding directions
  416. int color_it = 0;
  417. for (FaceToDirection::value_type &ftd : faces)
  418. {
  419. Color color = Color::sGetDistinctColor(color_it++);
  420. // Create copy of face (key in map is read only)
  421. SupportingFace face = ftd.first;
  422. // Displace the face a little bit forward so it is easier to see
  423. Vec3 normal = face.size() >= 3? (face[2] - face[1]).Cross(face[0] - face[1]).NormalizedOr(Vec3::sZero()) : Vec3::sZero();
  424. Vec3 displacement = 0.001f * normal;
  425. // Transform face to world space and calculate center of mass
  426. Vec3 com_ls = Vec3::sZero();
  427. for (Vec3 &v : face)
  428. {
  429. v = inCenterOfMassTransform.Multiply3x3(v + displacement);
  430. com_ls += v;
  431. }
  432. RVec3 com = inCenterOfMassTransform.GetTranslation() + com_ls / (float)face.size();
  433. // Draw the polygon and directions
  434. inRenderer->DrawWirePolygon(RMat44::sTranslation(inCenterOfMassTransform.GetTranslation()), face, color, face.size() >= 3? 0.001f : 0.0f);
  435. if (face.size() >= 3)
  436. inRenderer->DrawArrow(com, com + inCenterOfMassTransform.Multiply3x3(normal), color, 0.01f);
  437. for (Vec3 &v : ftd.second)
  438. inRenderer->DrawArrow(com, com + inCenterOfMassTransform.Multiply3x3(-v), color, 0.001f);
  439. }
  440. }
  441. #endif // JPH_DEBUG_RENDERER
  442. void ConvexShape::SaveBinaryState(StreamOut &inStream) const
  443. {
  444. Shape::SaveBinaryState(inStream);
  445. inStream.Write(mDensity);
  446. }
  447. void ConvexShape::RestoreBinaryState(StreamIn &inStream)
  448. {
  449. Shape::RestoreBinaryState(inStream);
  450. inStream.Read(mDensity);
  451. }
  452. void ConvexShape::SaveMaterialState(PhysicsMaterialList &outMaterials) const
  453. {
  454. outMaterials.clear();
  455. outMaterials.push_back(mMaterial);
  456. }
  457. void ConvexShape::RestoreMaterialState(const PhysicsMaterialRefC *inMaterials, uint inNumMaterials)
  458. {
  459. JPH_ASSERT(inNumMaterials == 1);
  460. mMaterial = inMaterials[0];
  461. }
  462. void ConvexShape::sRegister()
  463. {
  464. for (EShapeSubType s1 : sConvexSubShapeTypes)
  465. for (EShapeSubType s2 : sConvexSubShapeTypes)
  466. {
  467. CollisionDispatch::sRegisterCollideShape(s1, s2, sCollideConvexVsConvex);
  468. CollisionDispatch::sRegisterCastShape(s1, s2, sCastConvexVsConvex);
  469. }
  470. }
  471. JPH_NAMESPACE_END