| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2026 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #include "HairCalculateCollisionPlanesBindings.h"
- #include "HairCommon.h"
- JPH_SHADER_FUNCTION_BEGIN(void, main, cHairPerVertexBatch, 1, 1)
- JPH_SHADER_PARAM_THREAD_ID(tid)
- JPH_SHADER_FUNCTION_END
- {
- // Check if this is a valid vertex
- uint vtx = tid.x + cNumStrands; // Skip the root of each strand, it's fixed
- if (vtx >= cNumVertices)
- return;
- // Load the vertex
- float3 pos = gPositions[vtx].mPosition;
- // Start with a plane that is far away (i.e. no collision)
- JPH_HairCollisionPlane collision_plane;
- collision_plane.mPlane = float4(1, 0, 0, 1.0e6f);
- collision_plane.mShapeIndex = 0;
- float largest_penetration = -1.0e6f;
- // Loop over all shapes
- uint current_idx = 0;
- uint current_plane = 0;
- for (uint current_shape_idx = 0;; ++current_shape_idx)
- {
- // Find most facing plane
- float max_distance = -1.0e6f;
- float3 max_plane_normal = float3(0, 0, 0);
- uint max_plane_face_info = 0;
- // Get number of faces in this shape
- uint nf = gShapeIndices[current_idx++];
- if (nf == 0)
- break;
- for (uint f = 0; f < nf; ++f)
- {
- // Get the plane
- JPH_Plane plane = gShapePlanes[current_plane++];
- float distance = JPH_PlaneSignedDistance(plane, pos);
- if (distance > max_distance)
- {
- max_distance = distance;
- max_plane_normal = JPH_PlaneGetNormal(plane);
- max_plane_face_info = current_idx;
- }
- // Skip over vertex start and end
- current_idx += 2;
- }
- // Project point onto that plane, in local space to the vertex
- float3 closest_point = -max_distance * max_plane_normal;
- // Check edges if we're outside the hull (when inside we know the closest face is also the closest point to the surface)
- bool is_outside = max_distance > 0.0f;
- if (is_outside)
- {
- // Loop over edges
- float closest_point_dist_sq = 1.0e12f;
- uint vi = gShapeIndices[max_plane_face_info];
- uint vi_end = gShapeIndices[max_plane_face_info + 1];
- float3 p1 = gShapeVertices[gShapeIndices[vi_end - 1]];
- for (; vi < vi_end; ++vi)
- {
- // Get edge points
- float3 p2 = gShapeVertices[gShapeIndices[vi]];
- // Check if the position is outside the edge (if not, the face will be closer)
- float3 p1_p2 = p2 - p1;
- float3 p1_pos = p1 - pos;
- float3 edge_normal = cross(p1_p2, max_plane_normal);
- if (dot(edge_normal, p1_pos) <= 0.0f)
- {
- // Get closest point on edge
- float3 closest = JPH_GetClosestPointOnLine(p1_pos, p1_p2);
- float distance_sq = dot(closest, closest);
- if (distance_sq < closest_point_dist_sq)
- {
- closest_point_dist_sq = distance_sq;
- closest_point = closest;
- }
- }
- // Cycle vertex
- p1 = p2;
- }
- }
- // Check if this is the largest penetration
- float3 normal = -closest_point;
- float normal_length = length(normal);
- float penetration = normal_length;
- if (is_outside)
- penetration = -penetration;
- else
- normal = -normal;
- if (penetration > largest_penetration)
- {
- // Calculate contact plane
- normal = normal_length > 0.0f? normal / normal_length : max_plane_normal;
- collision_plane.mPlane = JPH_PlaneFromPointAndNormal(pos + closest_point, normal);
- collision_plane.mShapeIndex = current_shape_idx;
- largest_penetration = penetration;
- }
- }
- gCollisionPlanes[vtx] = collision_plane;
- }
|