123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #include <Jolt/Jolt.h>
- #include <Jolt/Physics/Body/MassProperties.h>
- #include <Jolt/Math/Matrix.h>
- #include <Jolt/Math/Vector.h>
- #include <Jolt/Math/EigenValueSymmetric.h>
- #include <Jolt/ObjectStream/TypeDeclarations.h>
- #include <Jolt/Core/StreamIn.h>
- #include <Jolt/Core/StreamOut.h>
- #include <Jolt/Core/InsertionSort.h>
- JPH_NAMESPACE_BEGIN
- JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(MassProperties)
- {
- JPH_ADD_ATTRIBUTE(MassProperties, mMass)
- JPH_ADD_ATTRIBUTE(MassProperties, mInertia)
- }
- bool MassProperties::DecomposePrincipalMomentsOfInertia(Mat44 &outRotation, Vec3 &outDiagonal) const
- {
- // Using eigendecomposition to get the principal components of the inertia tensor
- // See: https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
- Matrix<3, 3> inertia;
- inertia.CopyPart(mInertia, 0, 0, 3, 3, 0, 0);
- Matrix<3, 3> eigen_vec = Matrix<3, 3>::sIdentity();
- Vector<3> eigen_val;
- if (!EigenValueSymmetric(inertia, eigen_vec, eigen_val))
- return false;
- // Sort so that the biggest value goes first
- int indices[] = { 0, 1, 2 };
- InsertionSort(indices, indices + 3, [&eigen_val](int inLeft, int inRight) { return eigen_val[inLeft] > eigen_val[inRight]; });
-
- // Convert to a regular Mat44 and Vec3
- outRotation = Mat44::sIdentity();
- for (int i = 0; i < 3; ++i)
- {
- outRotation.SetColumn3(i, Vec3(reinterpret_cast<Float3 &>(eigen_vec.GetColumn(indices[i]))));
- outDiagonal.SetComponent(i, eigen_val[indices[i]]);
- }
- // Make sure that the rotation matrix is a right handed matrix
- if (outRotation.GetAxisX().Cross(outRotation.GetAxisY()).Dot(outRotation.GetAxisZ()) < 0.0f)
- outRotation.SetAxisZ(-outRotation.GetAxisZ());
- #ifdef JPH_ENABLE_ASSERTS
- // Validate that the solution is correct, for each axis we want to make sure that the difference in inertia is
- // smaller than some fraction of the inertia itself in that axis
- Mat44 new_inertia = outRotation * Mat44::sScale(outDiagonal) * outRotation.Inversed();
- for (int i = 0; i < 3; ++i)
- JPH_ASSERT(new_inertia.GetColumn3(i).IsClose(mInertia.GetColumn3(i), mInertia.GetColumn3(i).LengthSq() * 1.0e-10f));
- #endif
- return true;
- }
- void MassProperties::SetMassAndInertiaOfSolidBox(Vec3Arg inBoxSize, float inDensity)
- {
- // Calculate mass
- mMass = inBoxSize.GetX() * inBoxSize.GetY() * inBoxSize.GetZ() * inDensity;
- // Calculate inertia
- Vec3 size_sq = inBoxSize * inBoxSize;
- Vec3 scale = (size_sq.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_X>() + size_sq.Swizzle<SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Y>()) * (mMass / 12.0f);
- mInertia = Mat44::sScale(scale);
- }
- void MassProperties::ScaleToMass(float inMass)
- {
- if (mMass > 0.0f)
- {
- // Calculate how much we have to scale the inertia tensor
- float mass_scale = inMass / mMass;
- // Update mass
- mMass = inMass;
- // Update inertia tensor
- for (int i = 0; i < 3; ++i)
- mInertia.SetColumn4(i, mInertia.GetColumn4(i) * mass_scale);
- }
- else
- {
- // Just set the mass
- mMass = inMass;
- }
- }
- Vec3 MassProperties::sGetEquivalentSolidBoxSize(float inMass, Vec3Arg inInertiaDiagonal)
- {
- // Moment of inertia of a solid box has diagonal:
- // mass / 12 * [size_y^2 + size_z^2, size_x^2 + size_z^2, size_x^2 + size_y^2]
- // Solving for size_x, size_y and size_y (diagonal and mass are known):
- Vec3 diagonal = inInertiaDiagonal * (12.0f / inMass);
- return Vec3(sqrt(0.5f * (-diagonal[0] + diagonal[1] + diagonal[2])), sqrt(0.5f * (diagonal[0] - diagonal[1] + diagonal[2])), sqrt(0.5f * (diagonal[0] + diagonal[1] - diagonal[2])));
- }
- void MassProperties::Scale(Vec3Arg inScale)
- {
- // See: https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor
- // The diagonal of the inertia tensor can be calculated like this:
- // Ixx = sum_{k = 1 to n}(m_k * (y_k^2 + z_k^2))
- // Iyy = sum_{k = 1 to n}(m_k * (x_k^2 + z_k^2))
- // Izz = sum_{k = 1 to n}(m_k * (x_k^2 + y_k^2))
- //
- // We want to isolate the terms x_k, y_k and z_k:
- // d = [0.5, 0.5, 0.5].[Ixx, Iyy, Izz]
- // [sum_{k = 1 to n}(m_k * x_k^2), sum_{k = 1 to n}(m_k * y_k^2), sum_{k = 1 to n}(m_k * z_k^2)] = [d, d, d] - [Ixx, Iyy, Izz]
- Vec3 diagonal = mInertia.GetDiagonal3();
- Vec3 xyz_sq = Vec3::sReplicate(Vec3::sReplicate(0.5f).Dot(diagonal)) - diagonal;
- // When scaling a shape these terms change like this:
- // sum_{k = 1 to n}(m_k * (scale_x * x_k)^2) = scale_x^2 * sum_{k = 1 to n}(m_k * x_k^2)
- // Same for y_k and z_k
- // Using these terms we can calculate the new diagonal of the inertia tensor:
- Vec3 xyz_scaled_sq = inScale * inScale * xyz_sq;
- float i_xx = xyz_scaled_sq.GetY() + xyz_scaled_sq.GetZ();
- float i_yy = xyz_scaled_sq.GetX() + xyz_scaled_sq.GetZ();
- float i_zz = xyz_scaled_sq.GetX() + xyz_scaled_sq.GetY();
- // The off diagonal elements are calculated like:
- // Ixy = -sum_{k = 1 to n}(x_k y_k)
- // Ixz = -sum_{k = 1 to n}(x_k z_k)
- // Iyz = -sum_{k = 1 to n}(y_k z_k)
- // Scaling these is simple:
- float i_xy = inScale.GetX() * inScale.GetY() * mInertia(0, 1);
- float i_xz = inScale.GetX() * inScale.GetZ() * mInertia(0, 2);
- float i_yz = inScale.GetY() * inScale.GetZ() * mInertia(1, 2);
- // Update inertia tensor
- mInertia(0, 0) = i_xx;
- mInertia(0, 1) = i_xy;
- mInertia(1, 0) = i_xy;
- mInertia(1, 1) = i_yy;
- mInertia(0, 2) = i_xz;
- mInertia(2, 0) = i_xz;
- mInertia(1, 2) = i_yz;
- mInertia(2, 1) = i_yz;
- mInertia(2, 2) = i_zz;
- // Mass scales linear with volume (note that the scaling can be negative and we don't want the mass to become negative)
- float mass_scale = abs(inScale.GetX() * inScale.GetY() * inScale.GetZ());
- mMass *= mass_scale;
-
- // Inertia scales linear with mass. This updates the m_k terms above.
- mInertia *= mass_scale;
- // Ensure that the bottom right element is a 1 again
- mInertia(3, 3) = 1.0f;
- }
- void MassProperties::Rotate(Mat44Arg inRotation)
- {
- mInertia = inRotation.Multiply3x3(mInertia).Multiply3x3RightTransposed(inRotation);
- }
- void MassProperties::Translate(Vec3Arg inTranslation)
- {
- // Transform the inertia using the parallel axis theorem: I' = I + m * (translation^2 E - translation translation^T)
- // Where I is the original body's inertia and E the identity matrix
- // See: https://en.wikipedia.org/wiki/Parallel_axis_theorem
- mInertia += mMass * (Mat44::sScale(inTranslation.Dot(inTranslation)) - Mat44::sOuterProduct(inTranslation, inTranslation));
- // Ensure that inertia is a 3x3 matrix, adding inertias causes the bottom right element to change
- mInertia.SetColumn4(3, Vec4(0, 0, 0, 1));
- }
- void MassProperties::SaveBinaryState(StreamOut &inStream) const
- {
- inStream.Write(mMass);
- inStream.Write(mInertia);
- }
- void MassProperties::RestoreBinaryState(StreamIn &inStream)
- {
- inStream.Read(mMass);
- inStream.Read(mInertia);
- }
- JPH_NAMESPACE_END
|