12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/PhysicsSettings.h>
- JPH_NAMESPACE_BEGIN
- /// Helper functions to get properties of a scaling vector
- namespace ScaleHelpers
- {
- /// The tolerance used to check if components of the scale vector are the same
- static constexpr float cScaleToleranceSq = 1.0e-8f;
- /// Test if a scale is identity
- inline bool IsNotScaled(Vec3Arg inScale) { return inScale.IsClose(Vec3::sReplicate(1.0f), cScaleToleranceSq); }
- /// Test if a scale is uniform
- inline bool IsUniformScale(Vec3Arg inScale) { return inScale.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>().IsClose(inScale, cScaleToleranceSq); }
- /// Scale the convex radius of an object
- inline float ScaleConvexRadius(float inConvexRadius, Vec3Arg inScale) { return min(inConvexRadius * inScale.Abs().ReduceMin(), cDefaultConvexRadius); }
- /// Test if a scale flips an object inside out (which requires flipping all normals and polygon windings)
- inline bool IsInsideOut(Vec3Arg inScale) { return (CountBits(Vec3::sLess(inScale, Vec3::sZero()).GetTrues() & 0x7) & 1) != 0; }
- /// Get the average scale if inScale, used to make the scale uniform when a shape doesn't support non-uniform scale
- inline Vec3 MakeUniformScale(Vec3Arg inScale) { return Vec3::sReplicate((inScale.GetX() + inScale.GetY() + inScale.GetZ()) / 3.0f); }
- /// Checks in scale can be rotated to child shape
- /// @param inRotation Rotation of child shape
- /// @param inScale Scale in local space of parent shape
- /// @return True if the scale is valid (no shearing introduced)
- inline bool CanScaleBeRotated(QuatArg inRotation, Vec3Arg inScale)
- {
- // inScale is a scale in local space of the shape, so the transform for the shape (ignoring translation) is: T = Mat44::sScale(inScale) * mRotation.
- // when we pass the scale to the child it needs to be local to the child, so we want T = mRotation * Mat44::sScale(ChildScale).
- // Solving for ChildScale: ChildScale = mRotation^-1 * Mat44::sScale(inScale) * mRotation = mRotation^T * Mat44::sScale(inScale) * mRotation
- // If any of the off diagonal elements are non-zero, it means the scale / rotation is not compatible.
- Mat44 r = Mat44::sRotation(inRotation);
- Mat44 child_scale = r.Multiply3x3LeftTransposed(r.PostScaled(inScale));
- // Get the columns, but zero the diagonal
- Vec4 zero = Vec4::sZero();
- Vec4 c0 = Vec4::sSelect(child_scale.GetColumn4(0), zero, UVec4(0xffffffff, 0, 0, 0)).Abs();
- Vec4 c1 = Vec4::sSelect(child_scale.GetColumn4(1), zero, UVec4(0, 0xffffffff, 0, 0)).Abs();
- Vec4 c2 = Vec4::sSelect(child_scale.GetColumn4(2), zero, UVec4(0, 0, 0xffffffff, 0)).Abs();
- // Check if all elements are less than epsilon
- Vec4 epsilon = Vec4::sReplicate(1.0e-6f);
- return UVec4::sAnd(UVec4::sAnd(Vec4::sLess(c0, epsilon), Vec4::sLess(c1, epsilon)), Vec4::sLess(c2, epsilon)).TestAllTrue();
- }
- /// Adjust scale for rotated child shape
- /// @param inRotation Rotation of child shape
- /// @param inScale Scale in local space of parent shape
- /// @return Rotated scale
- inline Vec3 RotateScale(QuatArg inRotation, Vec3Arg inScale)
- {
- // Get the diagonal of mRotation^T * Mat44::sScale(inScale) * mRotation (see comment at CanScaleBeRotated)
- Mat44 r = Mat44::sRotation(inRotation);
- return r.Multiply3x3LeftTransposed(r.PostScaled(inScale)).GetDiagonal3();
- }
- }
- JPH_NAMESPACE_END
|