123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- // The Jolt headers don't include Jolt.h. Always include Jolt.h before including any other Jolt header.
- // You can use Jolt.h in your precompiled header to speed up compilation.
- #include <Jolt/Jolt.h>
- // Jolt includes
- #include <Jolt/RegisterTypes.h>
- #include <Jolt/Core/Factory.h>
- #include <Jolt/Core/TempAllocator.h>
- #include <Jolt/Core/JobSystemThreadPool.h>
- #include <Jolt/Physics/PhysicsSettings.h>
- #include <Jolt/Physics/PhysicsSystem.h>
- #include <Jolt/Physics/Collision/Shape/BoxShape.h>
- #include <Jolt/Physics/Collision/Shape/SphereShape.h>
- #include <Jolt/Physics/Body/BodyCreationSettings.h>
- #include <Jolt/Physics/Body/BodyActivationListener.h>
- // STL includes
- #include <iostream>
- #include <cstdarg>
- #include <thread>
- // Disable common warnings triggered by Jolt, you can use JPH_SUPPRESS_WARNING_PUSH / JPH_SUPPRESS_WARNING_POP to store and restore the warning state
- JPH_SUPPRESS_WARNINGS
- // All Jolt symbols are in the JPH namespace
- using namespace JPH;
- // We're also using STL classes in this example
- using namespace std;
- // Callback for traces, connect this to your own trace function if you have one
- static void TraceImpl(const char *inFMT, ...)
- {
- // Format the message
- va_list list;
- va_start(list, inFMT);
- char buffer[1024];
- vsnprintf(buffer, sizeof(buffer), inFMT, list);
- va_end(list);
- // Print to the TTY
- cout << buffer << endl;
- }
- #ifdef JPH_ENABLE_ASSERTS
- // Callback for asserts, connect this to your own assert handler if you have one
- static bool AssertFailedImpl(const char *inExpression, const char *inMessage, const char *inFile, uint inLine)
- {
- // Print to the TTY
- cout << inFile << ":" << inLine << ": (" << inExpression << ") " << (inMessage != nullptr? inMessage : "") << endl;
- // Breakpoint
- return true;
- };
- #endif // JPH_ENABLE_ASSERTS
- // Layer that objects can be in, determines which other objects it can collide with
- // Typically you at least want to have 1 layer for moving bodies and 1 layer for static bodies, but you can have more
- // layers if you want. E.g. you could have a layer for high detail collision (which is not used by the physics simulation
- // but only if you do collision testing).
- namespace Layers
- {
- static constexpr uint8 NON_MOVING = 0;
- static constexpr uint8 MOVING = 1;
- static constexpr uint8 NUM_LAYERS = 2;
- };
- // Function that determines if two object layers can collide
- static bool MyObjectCanCollide(ObjectLayer inObject1, ObjectLayer inObject2)
- {
- switch (inObject1)
- {
- case Layers::NON_MOVING:
- return inObject2 == Layers::MOVING; // Non moving only collides with moving
- case Layers::MOVING:
- return true; // Moving collides with everything
- default:
- JPH_ASSERT(false);
- return false;
- }
- };
- // Each broadphase layer results in a separate bounding volume tree in the broad phase. You at least want to have
- // a layer for non-moving and moving objects to avoid having to update a tree full of static objects every frame.
- // You can have a 1-on-1 mapping between object layers and broadphase layers (like in this case) but if you have
- // many object layers you'll be creating many broad phase trees, which is not efficient. If you want to fine tune
- // your broadphase layers define JPH_TRACK_BROADPHASE_STATS and look at the stats reported on the TTY.
- namespace BroadPhaseLayers
- {
- static constexpr BroadPhaseLayer NON_MOVING(0);
- static constexpr BroadPhaseLayer MOVING(1);
- static constexpr uint NUM_LAYERS(2);
- };
- // BroadPhaseLayerInterface implementation
- // This defines a mapping between object and broadphase layers.
- class BPLayerInterfaceImpl final : public BroadPhaseLayerInterface
- {
- public:
- BPLayerInterfaceImpl()
- {
- // Create a mapping table from object to broad phase layer
- mObjectToBroadPhase[Layers::NON_MOVING] = BroadPhaseLayers::NON_MOVING;
- mObjectToBroadPhase[Layers::MOVING] = BroadPhaseLayers::MOVING;
- }
- virtual uint GetNumBroadPhaseLayers() const override
- {
- return BroadPhaseLayers::NUM_LAYERS;
- }
- virtual BroadPhaseLayer GetBroadPhaseLayer(ObjectLayer inLayer) const override
- {
- JPH_ASSERT(inLayer < Layers::NUM_LAYERS);
- return mObjectToBroadPhase[inLayer];
- }
- #if defined(JPH_EXTERNAL_PROFILE) || defined(JPH_PROFILE_ENABLED)
- virtual const char * GetBroadPhaseLayerName(BroadPhaseLayer inLayer) const override
- {
- switch ((BroadPhaseLayer::Type)inLayer)
- {
- case (BroadPhaseLayer::Type)BroadPhaseLayers::NON_MOVING: return "NON_MOVING";
- case (BroadPhaseLayer::Type)BroadPhaseLayers::MOVING: return "MOVING";
- default: JPH_ASSERT(false); return "INVALID";
- }
- }
- #endif // JPH_EXTERNAL_PROFILE || JPH_PROFILE_ENABLED
- private:
- BroadPhaseLayer mObjectToBroadPhase[Layers::NUM_LAYERS];
- };
- // Function that determines if two broadphase layers can collide
- static bool MyBroadPhaseCanCollide(ObjectLayer inLayer1, BroadPhaseLayer inLayer2)
- {
- switch (inLayer1)
- {
- case Layers::NON_MOVING:
- return inLayer2 == BroadPhaseLayers::MOVING;
- case Layers::MOVING:
- return true;
- default:
- JPH_ASSERT(false);
- return false;
- }
- }
- // An example contact listener
- class MyContactListener : public ContactListener
- {
- public:
- // See: ContactListener
- virtual ValidateResult OnContactValidate(const Body &inBody1, const Body &inBody2, const CollideShapeResult &inCollisionResult) override
- {
- cout << "Contact validate callback" << endl;
- // Allows you to ignore a contact before it is created (using layers to not make objects collide is cheaper!)
- return ValidateResult::AcceptAllContactsForThisBodyPair;
- }
- virtual void OnContactAdded(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
- {
- cout << "A contact was added" << endl;
- }
- virtual void OnContactPersisted(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &ioSettings) override
- {
- cout << "A contact was persisted" << endl;
- }
- virtual void OnContactRemoved(const SubShapeIDPair &inSubShapePair) override
- {
- cout << "A contact was removed" << endl;
- }
- };
- // An example activation listener
- class MyBodyActivationListener : public BodyActivationListener
- {
- public:
- virtual void OnBodyActivated(const BodyID &inBodyID, uint64 inBodyUserData) override
- {
- cout << "A body got activated" << endl;
- }
- virtual void OnBodyDeactivated(const BodyID &inBodyID, uint64 inBodyUserData) override
- {
- cout << "A body went to sleep" << endl;
- }
- };
- // Program entry point
- int main(int argc, char** argv)
- {
- // Register allocation hook
- RegisterDefaultAllocator();
- // Install callbacks
- Trace = TraceImpl;
- JPH_IF_ENABLE_ASSERTS(AssertFailed = AssertFailedImpl;)
- // Create a factory
- Factory::sInstance = new Factory();
- // Register all Jolt physics types
- RegisterTypes();
- // We need a temp allocator for temporary allocations during the physics update. We're
- // pre-allocating 10 MB to avoid having to do allocations during the physics update.
- // B.t.w. 10 MB is way too much for this example but it is a typical value you can use.
- // If you don't want to pre-allocate you can also use TempAllocatorMalloc to fall back to
- // malloc / free.
- TempAllocatorImpl temp_allocator(10 * 1024 * 1024);
- // We need a job system that will execute physics jobs on multiple threads. Typically
- // you would implement the JobSystem interface yourself and let Jolt Physics run on top
- // of your own job scheduler. JobSystemThreadPool is an example implementation.
- JobSystemThreadPool job_system(cMaxPhysicsJobs, cMaxPhysicsBarriers, thread::hardware_concurrency() - 1);
- // This is the max amount of rigid bodies that you can add to the physics system. If you try to add more you'll get an error.
- // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
- const uint cMaxBodies = 1024;
- // This determines how many mutexes to allocate to protect rigid bodies from concurrent access. Set it to 0 for the default settings.
- const uint cNumBodyMutexes = 0;
- // This is the max amount of body pairs that can be queued at any time (the broad phase will detect overlapping
- // body pairs based on their bounding boxes and will insert them into a queue for the narrowphase). If you make this buffer
- // too small the queue will fill up and the broad phase jobs will start to do narrow phase work. This is slightly less efficient.
- // Note: This value is low because this is a simple test. For a real project use something in the order of 65536.
- const uint cMaxBodyPairs = 1024;
- // This is the maximum size of the contact constraint buffer. If more contacts (collisions between bodies) are detected than this
- // number then these contacts will be ignored and bodies will start interpenetrating / fall through the world.
- // Note: This value is low because this is a simple test. For a real project use something in the order of 10240.
- const uint cMaxContactConstraints = 1024;
- // Create mapping table from object layer to broadphase layer
- // Note: As this is an interface, PhysicsSystem will take a reference to this so this instance needs to stay alive!
- BPLayerInterfaceImpl broad_phase_layer_interface;
- // Now we can create the actual physics system.
- PhysicsSystem physics_system;
- physics_system.Init(cMaxBodies, cNumBodyMutexes, cMaxBodyPairs, cMaxContactConstraints, broad_phase_layer_interface, MyBroadPhaseCanCollide, MyObjectCanCollide);
- // A body activation listener gets notified when bodies activate and go to sleep
- // Note that this is called from a job so whatever you do here needs to be thread safe.
- // Registering one is entirely optional.
- MyBodyActivationListener body_activation_listener;
- physics_system.SetBodyActivationListener(&body_activation_listener);
- // A contact listener gets notified when bodies (are about to) collide, and when they separate again.
- // Note that this is called from a job so whatever you do here needs to be thread safe.
- // Registering one is entirely optional.
- MyContactListener contact_listener;
- physics_system.SetContactListener(&contact_listener);
- // The main way to interact with the bodies in the physics system is through the body interface. There is a locking and a non-locking
- // variant of this. We're going to use the locking version (even though we're not planning to access bodies from multiple threads)
- BodyInterface &body_interface = physics_system.GetBodyInterface();
- // Next we can create a rigid body to serve as the floor, we make a large box
- // Create the settings for the collision volume (the shape).
- // Note that for simple shapes (like boxes) you can also directly construct a BoxShape.
- BoxShapeSettings floor_shape_settings(Vec3(100.0f, 1.0f, 100.0f));
- // Create the shape
- ShapeSettings::ShapeResult floor_shape_result = floor_shape_settings.Create();
- ShapeRefC floor_shape = floor_shape_result.Get(); // We don't expect an error here, but you can check floor_shape_result for HasError() / GetError()
- // Create the settings for the body itself. Note that here you can also set other properties like the restitution / friction.
- BodyCreationSettings floor_settings(floor_shape, Vec3(0.0f, -1.0f, 0.0f), Quat::sIdentity(), EMotionType::Static, Layers::NON_MOVING);
- // Create the actual rigid body
- Body *floor = body_interface.CreateBody(floor_settings); // Note that if we run out of bodies this can return nullptr
- // Add it to the world
- body_interface.AddBody(floor->GetID(), EActivation::DontActivate);
- // Now create a dynamic body to bounce on the floor
- // Note that this uses the shorthand version of creating and adding a body to the world
- BodyCreationSettings sphere_settings(new SphereShape(0.5f), Vec3(0.0f, 2.0f, 0.0f), Quat::sIdentity(), EMotionType::Dynamic, Layers::MOVING);
- BodyID sphere_id = body_interface.CreateAndAddBody(sphere_settings, EActivation::Activate);
- // Now you can interact with the dynamic body, in this case we're going to give it a velocity.
- // (note that if we had used CreateBody then we could have set the velocity straight on the body before adding it to the physics system)
- body_interface.SetLinearVelocity(sphere_id, Vec3(0.0f, -5.0f, 0.0f));
- // We simulate the physics world in discrete time steps. 60 Hz is a good rate to update the physics system.
- const float cDeltaTime = 1.0f / 60.0f;
- // Optional step: Before starting the physics simulation you can optimize the broad phase. This improves collision detection performance (it's pointless here because we only have 2 bodies).
- // You should definitely not call this every frame or when e.g. streaming in a new level section as it is an expensive operation.
- // Instead insert all new objects in batches instead of 1 at a time to keep the broad phase efficient.
- physics_system.OptimizeBroadPhase();
- // Now we're ready to simulate the body, keep simulating until it goes to sleep
- uint step = 0;
- while (body_interface.IsActive(sphere_id))
- {
- // Next step
- ++step;
- // Output current position and velocity of the sphere
- Vec3 position = body_interface.GetCenterOfMassPosition(sphere_id);
- Vec3 velocity = body_interface.GetLinearVelocity(sphere_id);
- cout << "Step " << step << ": Position = (" << position.GetX() << ", " << position.GetY() << ", " << position.GetZ() << "), Velocity = (" << velocity.GetX() << ", " << velocity.GetY() << ", " << velocity.GetZ() << ")" << endl;
- // If you take larger steps than 1 / 60th of a second you need to do multiple collision steps in order to keep the simulation stable. Do 1 collision step per 1 / 60th of a second (round up).
- const int cCollisionSteps = 1;
- // If you want more accurate step results you can do multiple sub steps within a collision step. Usually you would set this to 1.
- const int cIntegrationSubSteps = 1;
- // Step the world
- physics_system.Update(cDeltaTime, cCollisionSteps, cIntegrationSubSteps, &temp_allocator, &job_system);
- }
- // Remove the sphere from the physics system. Note that the sphere itself keeps all of its state and can be re-added at any time.
- body_interface.RemoveBody(sphere_id);
- // Destroy the sphere. After this the sphere ID is no longer valid.
- body_interface.DestroyBody(sphere_id);
- // Remove and destroy the floor
- body_interface.RemoveBody(floor->GetID());
- body_interface.DestroyBody(floor->GetID());
- // Destroy the factory
- delete Factory::sInstance;
- Factory::sInstance = nullptr;
- return 0;
- }
|