Reference.h 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #pragma once
  4. #include <Jolt/Core/Atomics.h>
  5. JPH_NAMESPACE_BEGIN
  6. // Forward declares
  7. template <class T> class Ref;
  8. template <class T> class RefConst;
  9. /// Simple class to facilitate reference counting / releasing
  10. /// Derive your class from RefTarget and you can reference it by using Ref<classname> or RefConst<classname>
  11. ///
  12. /// Reference counting classes keep an integer which indicates how many references
  13. /// to the object are active. Reference counting objects are derived from RefTarget
  14. /// and staT & their life with a reference count of zero. They can then be assigned
  15. /// to equivalents of pointers (Ref) which will increase the reference count immediately.
  16. /// If the destructor of Ref is called or another object is assigned to the reference
  17. /// counting pointer it will decrease the reference count of the object again. If this
  18. /// reference count becomes zero, the object is destroyed.
  19. ///
  20. /// This provides a very powerful mechanism to prevent memory leaks, but also gives
  21. /// some responsibility to the programmer. The most notable point is that you cannot
  22. /// have one object reference another and have the other reference the first one
  23. /// back, because this way the reference count of both objects will never become
  24. /// lower than 1, resulting in a memory leak. By carefully designing your classses
  25. /// (and particularly identifying who owns who in the class hierarchy) you can avoid
  26. /// these problems.
  27. template <class T>
  28. class RefTarget
  29. {
  30. public:
  31. /// Constructor
  32. inline RefTarget() = default;
  33. inline RefTarget(const RefTarget &) { /* Do not copy refcount */ }
  34. inline ~RefTarget() { JPH_IF_ENABLE_ASSERTS(uint32 value = mRefCount.load(memory_order_relaxed);) JPH_ASSERT(value == 0 || value == cEmbedded); } ///< assert no one is referencing us
  35. /// Mark this class as embedded, this means the type can be used in a compound or constructed on the stack.
  36. /// The Release function will never destruct the object, it is assumed the destructor will be called by whoever allocated
  37. /// the object and at that point in time it is checked that no references are left to the structure.
  38. inline void SetEmbedded() const { JPH_IF_ENABLE_ASSERTS(uint32 old = ) mRefCount.fetch_add(cEmbedded, memory_order_relaxed); JPH_ASSERT(old < cEmbedded); }
  39. /// Assignment operator
  40. inline RefTarget & operator = (const RefTarget &) { /* Don't copy refcount */ return *this; }
  41. /// Get current refcount of this object
  42. uint32 GetRefCount() const { return mRefCount.load(memory_order_relaxed); }
  43. /// Add or release a reference to this object
  44. inline void AddRef() const
  45. {
  46. // Adding a reference can use relaxed memory ordering
  47. mRefCount.fetch_add(1, memory_order_relaxed);
  48. }
  49. inline void Release() const
  50. {
  51. // Releasing a reference must use release semantics...
  52. if (mRefCount.fetch_sub(1, memory_order_release) == 1)
  53. {
  54. // ... so that we can use aquire to ensure that we see any updates from other threads that released a ref before deleting the object
  55. atomic_thread_fence(memory_order_acquire);
  56. delete static_cast<const T *>(this);
  57. }
  58. }
  59. /// INTERNAL HELPER FUNCTION USED BY SERIALIZATION
  60. static int sInternalGetRefCountOffset() { return offsetof(T, mRefCount); }
  61. protected:
  62. static constexpr uint32 cEmbedded = 0x0ebedded; ///< A large value that gets added to the refcount to mark the object as embedded
  63. mutable atomic<uint32> mRefCount = 0; ///< Current reference count
  64. };
  65. /// Pure virtual version of RefTarget
  66. class RefTargetVirtual
  67. {
  68. public:
  69. /// Virtual destructor
  70. virtual ~RefTargetVirtual() = default;
  71. /// Virtual add reference
  72. virtual void AddRef() = 0;
  73. /// Virtual release reference
  74. virtual void Release() = 0;
  75. };
  76. /// Class for automatic referencing, this is the equivalent of a pointer to type T
  77. /// if you assign a value to this class it will increment the reference count by one
  78. /// of this object, and if you assign something else it will decrease the reference
  79. /// count of the first object again. If it reaches a reference count of zero it will
  80. /// be deleted
  81. template <class T>
  82. class Ref
  83. {
  84. public:
  85. /// Constructor
  86. inline Ref() : mPtr(nullptr) { }
  87. inline Ref(T *inRHS) : mPtr(inRHS) { AddRef(); }
  88. inline Ref(const Ref<T> &inRHS) : mPtr(inRHS.mPtr) { AddRef(); }
  89. inline Ref(Ref<T> &&inRHS) noexcept : mPtr(inRHS.mPtr) { inRHS.mPtr = nullptr; }
  90. inline ~Ref() { Release(); }
  91. /// Assignment operators
  92. inline Ref<T> & operator = (T *inRHS) { if (mPtr != inRHS) { Release(); mPtr = inRHS; AddRef(); } return *this; }
  93. inline Ref<T> & operator = (const Ref<T> &inRHS) { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; AddRef(); } return *this; }
  94. inline Ref<T> & operator = (Ref<T> &&inRHS) noexcept { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; inRHS.mPtr = nullptr; } return *this; }
  95. /// Casting operators
  96. inline operator T * const () const { return mPtr; }
  97. inline operator T *() { return mPtr; }
  98. /// Access like a normal pointer
  99. inline T * const operator -> () const { return mPtr; }
  100. inline T * operator -> () { return mPtr; }
  101. inline T & operator * () const { return *mPtr; }
  102. /// Comparison
  103. inline bool operator == (const T * inRHS) const { return mPtr == inRHS; }
  104. inline bool operator == (const Ref<T> &inRHS) const { return mPtr == inRHS.mPtr; }
  105. inline bool operator != (const T * inRHS) const { return mPtr != inRHS; }
  106. inline bool operator != (const Ref<T> &inRHS) const { return mPtr != inRHS.mPtr; }
  107. /// Get pointer
  108. inline T * GetPtr() const { return mPtr; }
  109. inline T * GetPtr() { return mPtr; }
  110. /// INTERNAL HELPER FUNCTION USED BY SERIALIZATION
  111. void ** InternalGetPointer() { return reinterpret_cast<void **>(&mPtr); }
  112. private:
  113. template <class T2> friend class RefConst;
  114. /// Use "variable = nullptr;" to release an object, do not call these functions
  115. inline void AddRef() { if (mPtr != nullptr) mPtr->AddRef(); }
  116. inline void Release() { if (mPtr != nullptr) mPtr->Release(); }
  117. T * mPtr; ///< Pointer to object that we are reference counting
  118. };
  119. /// Class for automatic referencing, this is the equivalent of a CONST pointer to type T
  120. /// if you assign a value to this class it will increment the reference count by one
  121. /// of this object, and if you assign something else it will decrease the reference
  122. /// count of the first object again. If it reaches a reference count of zero it will
  123. /// be deleted
  124. template <class T>
  125. class RefConst
  126. {
  127. public:
  128. /// Constructor
  129. inline RefConst() : mPtr(nullptr) { }
  130. inline RefConst(const T * inRHS) : mPtr(inRHS) { AddRef(); }
  131. inline RefConst(const RefConst<T> &inRHS) : mPtr(inRHS.mPtr) { AddRef(); }
  132. inline RefConst(RefConst<T> &&inRHS) noexcept : mPtr(inRHS.mPtr) { inRHS.mPtr = nullptr; }
  133. inline RefConst(const Ref<T> &inRHS) : mPtr(inRHS.mPtr) { AddRef(); }
  134. inline RefConst(Ref<T> &&inRHS) noexcept : mPtr(inRHS.mPtr) { inRHS.mPtr = nullptr; }
  135. inline ~RefConst() { Release(); }
  136. /// Assignment operators
  137. inline RefConst<T> & operator = (const T * inRHS) { if (mPtr != inRHS) { Release(); mPtr = inRHS; AddRef(); } return *this; }
  138. inline RefConst<T> & operator = (const RefConst<T> &inRHS) { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; AddRef(); } return *this; }
  139. inline RefConst<T> & operator = (RefConst<T> &&inRHS) noexcept { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; inRHS.mPtr = nullptr; } return *this; }
  140. inline RefConst<T> & operator = (const Ref<T> &inRHS) { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; AddRef(); } return *this; }
  141. inline RefConst<T> & operator = (Ref<T> &&inRHS) noexcept { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; inRHS.mPtr = nullptr; } return *this; }
  142. /// Casting operators
  143. inline operator const T * () const { return mPtr; }
  144. /// Access like a normal pointer
  145. inline const T * operator -> () const { return mPtr; }
  146. inline const T & operator * () const { return *mPtr; }
  147. /// Comparison
  148. inline bool operator == (const T * inRHS) const { return mPtr == inRHS; }
  149. inline bool operator == (const RefConst<T> &inRHS) const { return mPtr == inRHS.mPtr; }
  150. inline bool operator == (const Ref<T> &inRHS) const { return mPtr == inRHS.mPtr; }
  151. inline bool operator != (const T * inRHS) const { return mPtr != inRHS; }
  152. inline bool operator != (const RefConst<T> &inRHS) const { return mPtr != inRHS.mPtr; }
  153. inline bool operator != (const Ref<T> &inRHS) const { return mPtr != inRHS.mPtr; }
  154. /// Get pointer
  155. inline const T * GetPtr() const { return mPtr; }
  156. /// INTERNAL HELPER FUNCTION USED BY SERIALIZATION
  157. void ** InternalGetPointer() { return const_cast<void **>(reinterpret_cast<const void **>(&mPtr)); }
  158. private:
  159. /// Use "variable = nullptr;" to release an object, do not call these functions
  160. inline void AddRef() { if (mPtr != nullptr) mPtr->AddRef(); }
  161. inline void Release() { if (mPtr != nullptr) mPtr->Release(); }
  162. const T * mPtr; ///< Pointer to object that we are reference counting
  163. };
  164. JPH_NAMESPACE_END
  165. JPH_SUPPRESS_WARNING_PUSH
  166. JPH_CLANG_SUPPRESS_WARNING("-Wc++98-compat")
  167. namespace std
  168. {
  169. /// Declare std::hash for Ref
  170. template <class T>
  171. struct hash<JPH::Ref<T>>
  172. {
  173. size_t operator () (const JPH::Ref<T> &inRHS) const
  174. {
  175. return hash<T *> { }(inRHS.GetPtr());
  176. }
  177. };
  178. /// Declare std::hash for RefConst
  179. template <class T>
  180. struct hash<JPH::RefConst<T>>
  181. {
  182. size_t operator () (const JPH::RefConst<T> &inRHS) const
  183. {
  184. return hash<const T *> { }(inRHS.GetPtr());
  185. }
  186. };
  187. }
  188. JPH_SUPPRESS_WARNING_POP