12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Math/Float2.h>
- JPH_NAMESPACE_BEGIN
- /// Ellipse centered around the origin
- /// @see https://en.wikipedia.org/wiki/Ellipse
- class Ellipse
- {
- public:
- JPH_OVERRIDE_NEW_DELETE
- /// Construct ellipse with radius A along the X-axis and B along the Y-axis
- Ellipse(float inA, float inB) : mA(inA), mB(inB) { JPH_ASSERT(inA > 0.0f); JPH_ASSERT(inB > 0.0f); }
- /// Check if inPoint is inside the ellipsse
- bool IsInside(const Float2 &inPoint) const
- {
- return Square(inPoint.x / mA) + Square(inPoint.y / mB) <= 1.0f;
- }
- /// Get the closest point on the ellipse to inPoint
- /// Assumes inPoint is outside the ellipse
- /// @see Rotation Joint Limits in Quaterion Space by Gino van den Bergen, section 10.1 in Game Engine Gems 3.
- Float2 GetClosestPoint(const Float2 &inPoint) const
- {
- float a_sq = Square(mA);
- float b_sq = Square(mB);
- // Equation of ellipse: f(x, y) = (x/a)^2 + (y/b)^2 - 1 = 0 [1]
- // Normal on surface: (df/dx, df/dy) = (2 x / a^2, 2 y / b^2)
- // Closest point (x', y') on ellipse to point (x, y): (x', y') + t (x / a^2, y / b^2) = (x, y)
- // <=> (x', y') = (a^2 x / (t + a^2), b^2 y / (t + b^2))
- // Requiring point to be on ellipse (substituting into [1]): g(t) = (a x / (t + a^2))^2 + (b y / (t + b^2))^2 - 1 = 0
- // Newton raphson iteration, starting at t = 0
- float t = 0.0f;
- for (;;)
- {
- // Calculate g(t)
- float t_plus_a_sq = t + a_sq;
- float t_plus_b_sq = t + b_sq;
- float gt = Square(mA * inPoint.x / t_plus_a_sq) + Square(mB * inPoint.y / t_plus_b_sq) - 1.0f;
- // Check if g(t) it is close enough to zero
- if (abs(gt) < 1.0e-6f)
- return Float2(a_sq * inPoint.x / t_plus_a_sq, b_sq * inPoint.y / t_plus_b_sq);
- // Get derivative dg/dt = g'(t) = -2 (b^2 y^2 / (t + b^2)^3 + a^2 x^2 / (t + a^2)^3)
- float gt_accent = -2.0f *
- (a_sq * Square(inPoint.x) / Cubed(t_plus_a_sq)
- + b_sq * Square(inPoint.y) / Cubed(t_plus_b_sq));
- // Calculate t for next iteration: tn+1 = tn - g(t) / g'(t)
- float tn = t - gt / gt_accent;
- t = tn;
- }
- }
- /// Get normal at point inPoint (non-normalized vector)
- Float2 GetNormal(const Float2 &inPoint) const
- {
- // Calculated by [d/dx f(x, y), d/dy f(x, y)], where f(x, y) is the ellipse equation from above
- return Float2(inPoint.x / Square(mA), inPoint.y / Square(mB));
- }
- private:
- float mA; ///< Radius along X-axis
- float mB; ///< Radius along Y-axis
- };
- JPH_NAMESPACE_END
|