Quat.h 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #pragma once
  4. #include <Jolt/Math/Vec3.h>
  5. #include <Jolt/Math/Vec4.h>
  6. JPH_NAMESPACE_BEGIN
  7. /// Quaternion class, quaternions are 4 dimensional vectors which can describe rotations in 3 dimensional
  8. /// space if their length is 1.
  9. ///
  10. /// They are written as:
  11. ///
  12. /// \f$q = w + x \: i + y \: j + z \: k\f$
  13. ///
  14. /// or in vector notation:
  15. ///
  16. /// \f$q = [w, v] = [w, x, y, z]\f$
  17. ///
  18. /// Where:
  19. ///
  20. /// w = the real part
  21. /// v = the imaginary part, (x, y, z)
  22. ///
  23. /// Note that we store the quaternion in a Vec4 as [x, y, z, w] because that makes
  24. /// it easy to extract the rotation axis of the quaternion:
  25. ///
  26. /// q = [cos(angle / 2), sin(angle / 2) * rotation_axis]
  27. class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Quat
  28. {
  29. public:
  30. JPH_OVERRIDE_NEW_DELETE
  31. ///@name Constructors
  32. ///@{
  33. inline Quat() = default; ///< Intentionally not initialized for performance reasons
  34. Quat(const Quat &inRHS) = default;
  35. inline Quat(float inX, float inY, float inZ, float inW) : mValue(inX, inY, inZ, inW) { }
  36. inline explicit Quat(Vec4Arg inV) : mValue(inV) { }
  37. ///@}
  38. ///@name Tests
  39. ///@{
  40. /// Check if two quaternions are exactly equal
  41. inline bool operator == (QuatArg inRHS) const { return mValue == inRHS.mValue; }
  42. /// Check if two quaternions are different
  43. inline bool operator != (QuatArg inRHS) const { return mValue != inRHS.mValue; }
  44. /// If this quaternion is close to inRHS. Note that q and -q represent the same rotation, this is not checked here.
  45. inline bool IsClose(QuatArg inRHS, float inMaxDistSq = 1.0e-12f) const { return mValue.IsClose(inRHS.mValue, inMaxDistSq); }
  46. /// If the length of this quaternion is 1 +/- inTolerance
  47. inline bool IsNormalized(float inTolerance = 1.0e-5f) const { return mValue.IsNormalized(inTolerance); }
  48. /// If any component of this quaternion is a NaN (not a number)
  49. inline bool IsNaN() const { return mValue.IsNaN(); }
  50. ///@}
  51. ///@name Get components
  52. ///@{
  53. /// Get X component (imaginary part i)
  54. JPH_INLINE float GetX() const { return mValue.GetX(); }
  55. /// Get Y component (imaginary part j)
  56. JPH_INLINE float GetY() const { return mValue.GetY(); }
  57. /// Get Z component (imaginary part k)
  58. JPH_INLINE float GetZ() const { return mValue.GetZ(); }
  59. /// Get W component (real part)
  60. JPH_INLINE float GetW() const { return mValue.GetW(); }
  61. /// Get the imaginary part of the quaternion
  62. JPH_INLINE Vec3 GetXYZ() const { return Vec3(mValue); }
  63. /// Get the quaternion as a Vec4
  64. JPH_INLINE Vec4Arg GetXYZW() const { return mValue; }
  65. ///@}
  66. ///@name Default quaternions
  67. ///@{
  68. /// @return [0, 0, 0, 0]
  69. JPH_INLINE static Quat sZero() { return Quat(Vec4::sZero()); }
  70. /// @return [1, 0, 0, 0] (or in storage format Quat(0, 0, 0, 1))
  71. JPH_INLINE static Quat sIdentity() { return Quat(0, 0, 0, 1); }
  72. ///@}
  73. /// Rotation from axis and angle
  74. JPH_INLINE static Quat sRotation(Vec3Arg inAxis, float inAngle);
  75. /// Get axis and angle that represents this quaternion, outAngle will always be in the range \f$[0, \pi]\f$
  76. JPH_INLINE void GetAxisAngle(Vec3 &outAxis, float &outAngle) const;
  77. /// Create quaternion that rotates a vector from the direction of inFrom to the direction of inTo along the shortest path
  78. /// @see https://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm
  79. JPH_INLINE static Quat sFromTo(Vec3Arg inFrom, Vec3Arg inTo);
  80. /// Random unit quaternion
  81. template <class Random>
  82. inline static Quat sRandom(Random &inRandom);
  83. /// Conversion from Euler angles
  84. inline static Quat sEulerAngles(Vec3Arg inAngles);
  85. /// Conversion to Euler angles
  86. inline Vec3 GetEulerAngles() const;
  87. ///@name Length / normalization operations
  88. ///@{
  89. /// Squared length of quaternion.
  90. /// @return Squared length of quaternion (\f$|v|^2\f$)
  91. JPH_INLINE float LengthSq() const { return mValue.LengthSq(); }
  92. /// Length of quaternion.
  93. /// @return Length of quaternion (\f$|v|\f$)
  94. JPH_INLINE float Length() const { return mValue.Length(); }
  95. /// Normalize the quaternion (make it length 1)
  96. JPH_INLINE Quat Normalized() const { return Quat(mValue.Normalized()); }
  97. ///@}
  98. ///@name Additions / multiplications
  99. ///@{
  100. JPH_INLINE void operator += (QuatArg inRHS) { mValue += inRHS.mValue; }
  101. JPH_INLINE void operator -= (QuatArg inRHS) { mValue -= inRHS.mValue; }
  102. JPH_INLINE void operator *= (float inValue) { mValue *= inValue; }
  103. JPH_INLINE void operator /= (float inValue) { mValue /= inValue; }
  104. JPH_INLINE Quat operator - () const { return Quat(-mValue); }
  105. JPH_INLINE Quat operator + (QuatArg inRHS) const { return Quat(mValue + inRHS.mValue); }
  106. JPH_INLINE Quat operator - (QuatArg inRHS) const { return Quat(mValue - inRHS.mValue); }
  107. JPH_INLINE Quat operator * (QuatArg inRHS) const;
  108. JPH_INLINE Quat operator * (float inValue) const { return Quat(mValue * inValue); }
  109. inline friend Quat operator * (float inValue, QuatArg inRHS) { return Quat(inRHS.mValue * inValue); }
  110. JPH_INLINE Quat operator / (float inValue) const { return Quat(mValue / inValue); }
  111. ///@}
  112. /// Rotate a vector by this quaternion
  113. JPH_INLINE Vec3 operator * (Vec3Arg inValue) const;
  114. /// Rotate a vector by the inverse of this quaternion
  115. JPH_INLINE Vec3 InverseRotate(Vec3Arg inValue) const;
  116. /// Rotate a the vector (1, 0, 0) with this quaternion
  117. JPH_INLINE Vec3 RotateAxisX() const;
  118. /// Rotate a the vector (0, 1, 0) with this quaternion
  119. JPH_INLINE Vec3 RotateAxisY() const;
  120. /// Rotate a the vector (0, 0, 1) with this quaternion
  121. JPH_INLINE Vec3 RotateAxisZ() const;
  122. /// Dot product
  123. JPH_INLINE float Dot(QuatArg inRHS) const { return mValue.Dot(inRHS.mValue); }
  124. /// The conjugate [w, -x, -y, -z] is the same as the inverse for unit quaternions
  125. JPH_INLINE Quat Conjugated() const { return Quat(Vec4::sXor(mValue, UVec4(0x80000000, 0x80000000, 0x80000000, 0).ReinterpretAsFloat())); }
  126. /// Get inverse quaternion
  127. JPH_INLINE Quat Inversed() const { return Conjugated() / Length(); }
  128. /// Ensures that the W component is positive by negating the entire quaternion if it is not. This is useful when you want to store a quaternion as a 3 vector by discarding W and reconstructing it as sqrt(1 - x^2 - y^2 - z^2).
  129. JPH_INLINE Quat EnsureWPositive() const { return Quat(Vec4::sXor(mValue, Vec4::sAnd(mValue.SplatW(), UVec4::sReplicate(0x80000000).ReinterpretAsFloat()))); }
  130. /// Get a quaternion that is perpendicular to this quaternion
  131. JPH_INLINE Quat GetPerpendicular() const { return Quat(Vec4(1, -1, 1, -1) * mValue.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W, SWIZZLE_Z>()); }
  132. /// Get rotation angle around inAxis (uses Swing Twist Decomposition to get the twist quaternion and uses q(axis, angle) = [cos(angle / 2), axis * sin(angle / 2)])
  133. JPH_INLINE float GetRotationAngle(Vec3Arg inAxis) const { return GetW() == 0.0f? JPH_PI : 2.0f * ATan(GetXYZ().Dot(inAxis) / GetW()); }
  134. /// Swing Twist Decomposition: any quaternion can be split up as:
  135. ///
  136. /// \f[q = q_{swing} \: q_{twist}\f]
  137. ///
  138. /// where \f$q_{twist}\f$ rotates only around axis v.
  139. ///
  140. /// \f$q_{twist}\f$ is:
  141. ///
  142. /// \f[q_{twist} = \frac{[q_w, q_{ijk} \cdot v \: v]}{\left|[q_w, q_{ijk} \cdot v \: v]\right|}\f]
  143. ///
  144. /// where q_w is the real part of the quaternion and q_i the imaginary part (a 3 vector).
  145. ///
  146. /// The swing can then be calculated as:
  147. ///
  148. /// \f[q_{swing} = q \: q_{twist}^* \f]
  149. ///
  150. /// Where \f$q_{twist}^*\f$ = complex conjugate of \f$q_{twist}\f$
  151. JPH_INLINE Quat GetTwist(Vec3Arg inAxis) const;
  152. /// Decomposes quaternion into swing and twist component:
  153. ///
  154. /// \f$q = q_{swing} \: q_{twist}\f$
  155. ///
  156. /// where \f$q_{swing} \: \hat{x} = q_{twist} \: \hat{y} = q_{twist} \: \hat{z} = 0\f$
  157. ///
  158. /// In other words:
  159. ///
  160. /// - \f$q_{twist}\f$ only rotates around the X-axis.
  161. /// - \f$q_{swing}\f$ only rotates around the Y and Z-axis.
  162. ///
  163. /// @see Gino van den Bergen - Rotational Joint Limits in Quaternion Space - GDC 2016
  164. JPH_INLINE void GetSwingTwist(Quat &outSwing, Quat &outTwist) const;
  165. /// Linear interpolation between two quaternions (for small steps).
  166. /// @param inFraction is in the range [0, 1]
  167. /// @param inDestination The destination quaternion
  168. /// @return (1 - inFraction) * this + fraction * inDestination
  169. JPH_INLINE Quat LERP(QuatArg inDestination, float inFraction) const;
  170. /// Spherical linear interpolation between two quaternions.
  171. /// @param inFraction is in the range [0, 1]
  172. /// @param inDestination The destination quaternion
  173. /// @return When fraction is zero this quaternion is returned, when fraction is 1 inDestination is returned.
  174. /// When fraction is between 0 and 1 an interpolation along the shortest path is returned.
  175. JPH_INLINE Quat SLERP(QuatArg inDestination, float inFraction) const;
  176. /// Load 3 floats from memory (X, Y and Z component and then calculates W) reads 32 bits extra which it doesn't use
  177. static JPH_INLINE Quat sLoadFloat3Unsafe(const Float3 &inV);
  178. /// Store 3 as floats to memory (X, Y and Z component)
  179. JPH_INLINE void StoreFloat3(Float3 *outV) const;
  180. /// To String
  181. friend ostream & operator << (ostream &inStream, QuatArg inQ) { inStream << inQ.mValue; return inStream; }
  182. /// 4 vector that stores [x, y, z, w] parts of the quaternion
  183. Vec4 mValue;
  184. };
  185. static_assert(is_trivial<Quat>(), "Is supposed to be a trivial type!");
  186. JPH_NAMESPACE_END
  187. #include "Quat.inl"