123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Math/Float4.h>
- #include <Jolt/Math/Swizzle.h>
- #include <Jolt/Math/MathTypes.h>
- JPH_NAMESPACE_BEGIN
- class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Vec4
- {
- public:
- JPH_OVERRIDE_NEW_DELETE
- // Underlying vector type
- #if defined(JPH_USE_SSE)
- using Type = __m128;
- #elif defined(JPH_USE_NEON)
- using Type = float32x4_t;
- #else
- using Type = struct { float mData[4]; };
- #endif
- /// Constructor
- Vec4() = default; ///< Intentionally not initialized for performance reasons
- Vec4(const Vec4 &inRHS) = default;
- explicit JPH_INLINE Vec4(Vec3Arg inRHS); ///< WARNING: W component undefined!
- JPH_INLINE Vec4(Vec3Arg inRHS, float inW);
- JPH_INLINE Vec4(Type inRHS) : mValue(inRHS) { }
- /// Create a vector from 4 components
- JPH_INLINE Vec4(float inX, float inY, float inZ, float inW);
- /// Vector with all zeros
- static JPH_INLINE Vec4 sZero();
- /// Vector with all NaN's
- static JPH_INLINE Vec4 sNaN();
- /// Replicate inV across all components
- static JPH_INLINE Vec4 sReplicate(float inV);
- /// Load 4 floats from memory
- static JPH_INLINE Vec4 sLoadFloat4(const Float4 *inV);
- /// Load 4 floats from memory, 16 bytes aligned
- static JPH_INLINE Vec4 sLoadFloat4Aligned(const Float4 *inV);
- /// Gather 4 floats from memory at inBase + inOffsets[i] * Scale
- template <const int Scale>
- static JPH_INLINE Vec4 sGatherFloat4(const float *inBase, UVec4Arg inOffsets);
- /// Return the minimum value of each of the components
- static JPH_INLINE Vec4 sMin(Vec4Arg inV1, Vec4Arg inV2);
- /// Return the maximum of each of the components
- static JPH_INLINE Vec4 sMax(Vec4Arg inV1, Vec4Arg inV2);
- /// Equals (component wise)
- static JPH_INLINE UVec4 sEquals(Vec4Arg inV1, Vec4Arg inV2);
- /// Less than (component wise)
- static JPH_INLINE UVec4 sLess(Vec4Arg inV1, Vec4Arg inV2);
- /// Less than or equal (component wise)
- static JPH_INLINE UVec4 sLessOrEqual(Vec4Arg inV1, Vec4Arg inV2);
- /// Greater than (component wise)
- static JPH_INLINE UVec4 sGreater(Vec4Arg inV1, Vec4Arg inV2);
- /// Greater than or equal (component wise)
- static JPH_INLINE UVec4 sGreaterOrEqual(Vec4Arg inV1, Vec4Arg inV2);
- /// Calculates inMul1 * inMul2 + inAdd
- static JPH_INLINE Vec4 sFusedMultiplyAdd(Vec4Arg inMul1, Vec4Arg inMul2, Vec4Arg inAdd);
- /// Component wise select, returns inV1 when highest bit of inControl = 0 and inV2 when highest bit of inControl = 1
- static JPH_INLINE Vec4 sSelect(Vec4Arg inV1, Vec4Arg inV2, UVec4Arg inControl);
- /// Logical or (component wise)
- static JPH_INLINE Vec4 sOr(Vec4Arg inV1, Vec4Arg inV2);
- /// Logical xor (component wise)
- static JPH_INLINE Vec4 sXor(Vec4Arg inV1, Vec4Arg inV2);
- /// Logical and (component wise)
- static JPH_INLINE Vec4 sAnd(Vec4Arg inV1, Vec4Arg inV2);
-
- /// Sort the four elements of ioValue and sort ioIndex at the same time.
- /// Based on a sorting network: http://en.wikipedia.org/wiki/Sorting_network
- static JPH_INLINE void sSort4(Vec4 &ioValue, UVec4 &ioIndex);
- /// Reverse sort the four elements of ioValue (highest first) and sort ioIndex at the same time.
- /// Based on a sorting network: http://en.wikipedia.org/wiki/Sorting_network
- static JPH_INLINE void sSort4Reverse(Vec4 &ioValue, UVec4 &ioIndex);
- /// Get individual components
- #if defined(JPH_USE_SSE)
- JPH_INLINE float GetX() const { return _mm_cvtss_f32(mValue); }
- JPH_INLINE float GetY() const { return mF32[1]; }
- JPH_INLINE float GetZ() const { return mF32[2]; }
- JPH_INLINE float GetW() const { return mF32[3]; }
- #elif defined(JPH_USE_NEON)
- JPH_INLINE float GetX() const { return vgetq_lane_f32(mValue, 0); }
- JPH_INLINE float GetY() const { return vgetq_lane_f32(mValue, 1); }
- JPH_INLINE float GetZ() const { return vgetq_lane_f32(mValue, 2); }
- JPH_INLINE float GetW() const { return vgetq_lane_f32(mValue, 3); }
- #else
- JPH_INLINE float GetX() const { return mF32[0]; }
- JPH_INLINE float GetY() const { return mF32[1]; }
- JPH_INLINE float GetZ() const { return mF32[2]; }
- JPH_INLINE float GetW() const { return mF32[3]; }
- #endif
- /// Set individual components
- JPH_INLINE void SetX(float inX) { mF32[0] = inX; }
- JPH_INLINE void SetY(float inY) { mF32[1] = inY; }
- JPH_INLINE void SetZ(float inZ) { mF32[2] = inZ; }
- JPH_INLINE void SetW(float inW) { mF32[3] = inW; }
- /// Get float component by index
- JPH_INLINE float operator [] (uint inCoordinate) const { JPH_ASSERT(inCoordinate < 4); return mF32[inCoordinate]; }
- JPH_INLINE float & operator [] (uint inCoordinate) { JPH_ASSERT(inCoordinate < 4); return mF32[inCoordinate]; }
- /// Comparison
- JPH_INLINE bool operator == (Vec4Arg inV2) const;
- JPH_INLINE bool operator != (Vec4Arg inV2) const { return !(*this == inV2); }
- /// Test if two vectors are close
- JPH_INLINE bool IsClose(Vec4Arg inV2, float inMaxDistSq = 1.0e-12f) const;
- /// Test if vector is normalized
- JPH_INLINE bool IsNormalized(float inTolerance = 1.0e-6f) const;
- /// Test if vector contains NaN elements
- JPH_INLINE bool IsNaN() const;
- /// Multiply two float vectors (component wise)
- JPH_INLINE Vec4 operator * (Vec4Arg inV2) const;
- /// Multiply vector with float
- JPH_INLINE Vec4 operator * (float inV2) const;
- /// Multiply vector with float
- friend JPH_INLINE Vec4 operator * (float inV1, Vec4Arg inV2);
- /// Divide vector by float
- JPH_INLINE Vec4 operator / (float inV2) const;
- /// Multiply vector with float
- JPH_INLINE Vec4 & operator *= (float inV2);
- /// Multiply vector with vector
- JPH_INLINE Vec4 & operator *= (Vec4Arg inV2);
- /// Divide vector by float
- JPH_INLINE Vec4 & operator /= (float inV2);
- /// Add two float vectors (component wise)
- JPH_INLINE Vec4 operator + (Vec4Arg inV2) const;
- /// Add two float vectors (component wise)
- JPH_INLINE Vec4 & operator += (Vec4Arg inV2);
- /// Negate
- JPH_INLINE Vec4 operator - () const;
- /// Subtract two float vectors (component wise)
- JPH_INLINE Vec4 operator - (Vec4Arg inV2) const;
- /// Add two float vectors (component wise)
- JPH_INLINE Vec4 & operator -= (Vec4Arg inV2);
- /// Divide (component wise)
- JPH_INLINE Vec4 operator / (Vec4Arg inV2) const;
- /// Swizzle the elements in inV
- template<uint32 SwizzleX, uint32 SwizzleY, uint32 SwizzleZ, uint32 SwizzleW>
- JPH_INLINE Vec4 Swizzle() const;
- /// Replicate the X component to all components
- JPH_INLINE Vec4 SplatX() const;
- /// Replicate the Y component to all components
- JPH_INLINE Vec4 SplatY() const;
- /// Replicate the Z component to all components
- JPH_INLINE Vec4 SplatZ() const;
- /// Replicate the W component to all components
- JPH_INLINE Vec4 SplatW() const;
- /// Return the absolute value of each of the components
- JPH_INLINE Vec4 Abs() const;
- /// Reciprocal vector (1 / value) for each of the components
- JPH_INLINE Vec4 Reciprocal() const;
-
- /// Dot product, returns the dot product in X, Y and Z components
- JPH_INLINE Vec4 DotV(Vec4Arg inV2) const;
-
- /// Dot product
- JPH_INLINE float Dot(Vec4Arg inV2) const;
- /// Squared length of vector
- JPH_INLINE float LengthSq() const;
- /// Length of vector
- JPH_INLINE float Length() const;
- /// Normalize vector
- JPH_INLINE Vec4 Normalized() const;
- /// Store 4 floats to memory
- JPH_INLINE void StoreFloat4(Float4 *outV) const;
- /// Convert each component from a float to an int
- JPH_INLINE UVec4 ToInt() const;
- /// Reinterpret Vec4 as a UVec4 (doesn't change the bits)
- JPH_INLINE UVec4 ReinterpretAsInt() const;
- /// Store if X is negative in bit 0, Y in bit 1, Z in bit 2 and W in bit 3
- JPH_INLINE int GetSignBits() const;
- /// Get the minimum of X, Y, Z and W
- JPH_INLINE float ReduceMin() const;
- /// Get the maximum of X, Y, Z and W
- JPH_INLINE float ReduceMax() const;
- /// Component wise square root
- JPH_INLINE Vec4 Sqrt() const;
- /// Get vector that contains the sign of each element (returns 1.0f if positive, -1.0f if negative)
- JPH_INLINE Vec4 GetSign() const;
- /// Calcluate the sine and cosine for each element of this vector (input in radians)
- inline void SinCos(Vec4 &outSin, Vec4 &outCos) const;
- /// Calcluate the tangent for each element of this vector (input in radians)
- inline Vec4 Tan() const;
- /// Calculate the arc sine for each element of this vector (returns value in the range [-PI / 2, PI / 2])
- /// Note that all input values will be clamped to the range [-1, 1] and this function will not return NaNs like std::asin
- inline Vec4 ASin() const;
- /// Calculate the arc cosine for each element of this vector (returns value in the range [0, PI])
- /// Note that all input values will be clamped to the range [-1, 1] and this function will not return NaNs like std::acos
- inline Vec4 ACos() const;
- /// Calculate the arc tangent for each element of this vector (returns value in the range [-PI / 2, PI / 2])
- inline Vec4 ATan() const;
- /// Calculate the arc tangent of y / x using the signs of the arguments to determine the correct quadrant (returns value in the range [-PI, PI])
- inline static Vec4 sATan2(Vec4Arg inY, Vec4Arg inX);
- /// To String
- friend ostream & operator << (ostream &inStream, Vec4Arg inV)
- {
- inStream << inV.mF32[0] << ", " << inV.mF32[1] << ", " << inV.mF32[2] << ", " << inV.mF32[3];
- return inStream;
- }
- union
- {
- Type mValue;
- float mF32[4];
- };
- };
- static_assert(is_trivial<Vec4>(), "Is supposed to be a trivial type!");
- JPH_NAMESPACE_END
- #include "Vec4.inl"
|