123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/Constraints/TwoBodyConstraint.h>
- #include <Jolt/Physics/Constraints/ConstraintPart/PointConstraintPart.h>
- #include <Jolt/Physics/Constraints/ConstraintPart/AngleConstraintPart.h>
- JPH_NAMESPACE_BEGIN
- /// Cone constraint settings, used to create a cone constraint
- class ConeConstraintSettings final : public TwoBodyConstraintSettings
- {
- public:
- JPH_DECLARE_SERIALIZABLE_VIRTUAL(ConeConstraintSettings)
- // See: ConstraintSettings::SaveBinaryState
- virtual void SaveBinaryState(StreamOut &inStream) const override;
- /// Create an an instance of this constraint
- virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
- /// This determines in which space the constraint is setup, all properties below should be in the specified space
- EConstraintSpace mSpace = EConstraintSpace::WorldSpace;
- /// Body 1 constraint reference frame (space determined by mSpace)
- Vec3 mPoint1 = Vec3::sZero();
- Vec3 mTwistAxis1 = Vec3::sAxisX();
- /// Body 2 constraint reference frame (space determined by mSpace)
- Vec3 mPoint2 = Vec3::sZero();
- Vec3 mTwistAxis2 = Vec3::sAxisX();
- /// Half of maximum angle between twist axis of body 1 and 2
- float mHalfConeAngle = 0.0f;
- protected:
- // See: ConstraintSettings::RestoreBinaryState
- virtual void RestoreBinaryState(StreamIn &inStream) override;
- };
- /// A cone constraint constraints 2 bodies to a single point and limits the swing between the twist axis within a cone:
- ///
- /// t1 . t2 <= cos(theta)
- ///
- /// Where:
- ///
- /// t1 = twist axis of body 1.
- /// t2 = twist axis of body 2.
- /// theta = half cone angle (angle from the principal axis of the cone to the edge).
- ///
- /// Calculating the Jacobian:
- ///
- /// Constraint equation:
- ///
- /// C = t1 . t2 - cos(theta)
- ///
- /// Derivative:
- ///
- /// d/dt C = d/dt (t1 . t2) = (d/dt t1) . t2 + t1 . (d/dt t2) = (w1 x t1) . t2 + t1 . (w2 x t2) = (t1 x t2) . w1 + (t2 x t1) . w2
- ///
- /// d/dt C = J v = [0, -t2 x t1, 0, t2 x t1] [v1, w1, v2, w2]
- ///
- /// Where J is the Jacobian.
- ///
- /// Note that this is the exact same equation as used in AngleConstraintPart if we use t2 x t1 as the world space axis
- class ConeConstraint final : public TwoBodyConstraint
- {
- public:
- JPH_OVERRIDE_NEW_DELETE
- /// Construct cone constraint
- ConeConstraint(Body &inBody1, Body &inBody2, const ConeConstraintSettings &inSettings);
- // Generic interface of a constraint
- virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::Cone; }
- virtual void SetupVelocityConstraint(float inDeltaTime) override;
- virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
- virtual bool SolveVelocityConstraint(float inDeltaTime) override;
- virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
- #ifdef JPH_DEBUG_RENDERER
- virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
- virtual void DrawConstraintLimits(DebugRenderer *inRenderer) const override;
- #endif // JPH_DEBUG_RENDERER
- virtual void SaveState(StateRecorder &inStream) const override;
- virtual void RestoreState(StateRecorder &inStream) override;
- virtual Ref<ConstraintSettings> GetConstraintSettings() const override;
- // See: TwoBodyConstraint
- virtual Mat44 GetConstraintToBody1Matrix() const override;
- virtual Mat44 GetConstraintToBody2Matrix() const override;
- /// Update maximum angle between body 1 and 2 (see ConeConstraintSettings)
- void SetHalfConeAngle(float inHalfConeAngle) { JPH_ASSERT(inHalfConeAngle >= 0.0f && inHalfConeAngle <= JPH_PI); mCosHalfConeAngle = Cos(inHalfConeAngle); }
- float GetCosHalfConeAngle() const { return mCosHalfConeAngle; }
- ///@name Get Lagrange multiplier from last physics update (relates to how much force/torque was applied to satisfy the constraint)
- inline Vec3 GetTotalLambdaPosition() const { return mPointConstraintPart.GetTotalLambda(); }
- inline float GetTotalLambdaRotation() const { return mAngleConstraintPart.GetTotalLambda(); }
- private:
- // Internal helper function to calculate the values below
- void CalculateRotationConstraintProperties(float inDeltaTime, Mat44Arg inRotation1, Mat44Arg inRotation2);
- // CONFIGURATION PROPERTIES FOLLOW
- // Local space constraint positions
- Vec3 mLocalSpacePosition1;
- Vec3 mLocalSpacePosition2;
- // Local space constraint axis
- Vec3 mLocalSpaceTwistAxis1;
- Vec3 mLocalSpaceTwistAxis2;
- // Angular limits
- float mCosHalfConeAngle;
- // RUN TIME PROPERTIES FOLLOW
- // Axis and angle of rotation between the two bodies
- Vec3 mWorldSpaceRotationAxis;
- float mCosTheta;
- // The constraint parts
- PointConstraintPart mPointConstraintPart;
- AngleConstraintPart mAngleConstraintPart;
- };
- JPH_NAMESPACE_END
|