123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/Body/Body.h>
- #include <Jolt/Physics/StateRecorder.h>
- #include <Jolt/Math/Vector.h>
- #include <Jolt/Math/Matrix.h>
- JPH_NAMESPACE_BEGIN
- /// Constrains movement on 2 axis
- ///
- /// @see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.3.1
- ///
- /// Constraint equation (eq 51):
- ///
- /// \f[C = \begin{bmatrix} (p_2 - p_1) \cdot n_1 \\ (p_2 - p_1) \cdot n_2\end{bmatrix}\f]
- ///
- /// Jacobian (transposed) (eq 55):
- ///
- /// \f[J^T = \begin{bmatrix}
- /// -n_1 & -n_2 \\
- /// -(r_1 + u) \times n_1 & -(r_1 + u) \times n_2 \\
- /// n_1 & n_2 \\
- /// r_2 \times n_1 & r_2 \times n_2
- /// \end{bmatrix}\f]
- ///
- /// Used terms (here and below, everything in world space):\n
- /// n1, n2 = constraint axis (normalized).\n
- /// p1, p2 = constraint points.\n
- /// r1 = p1 - x1.\n
- /// r2 = p2 - x2.\n
- /// u = x2 + r2 - x1 - r1 = p2 - p1.\n
- /// x1, x2 = center of mass for the bodies.\n
- /// v = [v1, w1, v2, w2].\n
- /// v1, v2 = linear velocity of body 1 and 2.\n
- /// w1, w2 = angular velocity of body 1 and 2.\n
- /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
- /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
- /// b = velocity bias.\n
- /// \f$\beta\f$ = baumgarte constant.
- class DualAxisConstraintPart
- {
- public:
- using Vec2 = Vector<2>;
- using Mat22 = Matrix<2, 2>;
- private:
- /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
- JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, const Vec2 &inLambda) const
- {
- // Apply impulse if delta is not zero
- if (!inLambda.IsZero())
- {
- // Calculate velocity change due to constraint
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler velocity integration:
- // v' = v + M^-1 P
- Vec3 impulse = inN1 * inLambda[0] + inN2 * inLambda[1];
- if (ioBody1.IsDynamic())
- {
- MotionProperties *mp1 = ioBody1.GetMotionProperties();
- mp1->SubLinearVelocityStep(mp1->GetInverseMass() * impulse);
- mp1->SubAngularVelocityStep(mInvI1_R1PlusUxN1 * inLambda[0] + mInvI1_R1PlusUxN2 * inLambda[1]);
- }
- if (ioBody2.IsDynamic())
- {
- MotionProperties *mp2 = ioBody2.GetMotionProperties();
- mp2->AddLinearVelocityStep(mp2->GetInverseMass() * impulse);
- mp2->AddAngularVelocityStep(mInvI2_R2xN1 * inLambda[0] + mInvI2_R2xN2 * inLambda[1]);
- }
- return true;
- }
- return false;
- }
-
- /// Internal helper function to calculate the lagrange multiplier
- inline void CalculateLagrangeMultiplier(const Body &inBody1, const Body &inBody2, Vec3Arg inN1, Vec3Arg inN2, Vec2 &outLambda) const
- {
- // Calculate lagrange multiplier:
- //
- // lambda = -K^-1 (J v + b)
- Vec3 delta_lin = inBody1.GetLinearVelocity() - inBody2.GetLinearVelocity();
- Vec2 jv;
- jv[0] = inN1.Dot(delta_lin) + mR1PlusUxN1.Dot(inBody1.GetAngularVelocity()) - mR2xN1.Dot(inBody2.GetAngularVelocity());
- jv[1] = inN2.Dot(delta_lin) + mR1PlusUxN2.Dot(inBody1.GetAngularVelocity()) - mR2xN2.Dot(inBody2.GetAngularVelocity());
- outLambda = mEffectiveMass * jv;
- }
- public:
- /// Calculate properties used during the functions below
- /// All input vectors are in world space
- inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inR1PlusU, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inR2, Vec3Arg inN1, Vec3Arg inN2)
- {
- JPH_ASSERT(inN1.IsNormalized(1.0e-5f));
- JPH_ASSERT(inN2.IsNormalized(1.0e-5f));
- // Calculate properties used during constraint solving
- mR1PlusUxN1 = inR1PlusU.Cross(inN1);
- mR1PlusUxN2 = inR1PlusU.Cross(inN2);
- mR2xN1 = inR2.Cross(inN1);
- mR2xN2 = inR2.Cross(inN2);
- // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1, eq 59
- Mat22 inv_effective_mass;
- if (inBody1.IsDynamic())
- {
- const MotionProperties *mp1 = inBody1.GetMotionProperties();
- Mat44 inv_i1 = mp1->GetInverseInertiaForRotation(inRotation1);
- mInvI1_R1PlusUxN1 = inv_i1.Multiply3x3(mR1PlusUxN1);
- mInvI1_R1PlusUxN2 = inv_i1.Multiply3x3(mR1PlusUxN2);
- inv_effective_mass(0, 0) = mp1->GetInverseMass() + mR1PlusUxN1.Dot(mInvI1_R1PlusUxN1);
- inv_effective_mass(0, 1) = mR1PlusUxN1.Dot(mInvI1_R1PlusUxN2);
- inv_effective_mass(1, 0) = mR1PlusUxN2.Dot(mInvI1_R1PlusUxN1);
- inv_effective_mass(1, 1) = mp1->GetInverseMass() + mR1PlusUxN2.Dot(mInvI1_R1PlusUxN2);
- }
- else
- {
- JPH_IF_DEBUG(mInvI1_R1PlusUxN1 = Vec3::sNaN();)
- JPH_IF_DEBUG(mInvI1_R1PlusUxN2 = Vec3::sNaN();)
- inv_effective_mass = Mat22::sZero();
- }
- if (inBody2.IsDynamic())
- {
- const MotionProperties *mp2 = inBody2.GetMotionProperties();
- Mat44 inv_i2 = mp2->GetInverseInertiaForRotation(inRotation2);
- mInvI2_R2xN1 = inv_i2.Multiply3x3(mR2xN1);
- mInvI2_R2xN2 = inv_i2.Multiply3x3(mR2xN2);
- inv_effective_mass(0, 0) += mp2->GetInverseMass() + mR2xN1.Dot(mInvI2_R2xN1);
- inv_effective_mass(0, 1) += mR2xN1.Dot(mInvI2_R2xN2);
- inv_effective_mass(1, 0) += mR2xN2.Dot(mInvI2_R2xN1);
- inv_effective_mass(1, 1) += mp2->GetInverseMass() + mR2xN2.Dot(mInvI2_R2xN2);
- }
- else
- {
- JPH_IF_DEBUG(mInvI2_R2xN1 = Vec3::sNaN();)
- JPH_IF_DEBUG(mInvI2_R2xN2 = Vec3::sNaN();)
- }
- if (!mEffectiveMass.SetInversed(inv_effective_mass))
- {
- JPH_ASSERT(false, "Determinant is zero!");
- Deactivate();
- }
- }
- /// Deactivate this constraint
- inline void Deactivate()
- {
- mEffectiveMass.SetZero();
- mTotalLambda.SetZero();
- }
- /// Check if constraint is active
- inline bool IsActive() const
- {
- return !mEffectiveMass.IsZero();
- }
- /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
- /// All input vectors are in world space
- inline void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inWarmStartImpulseRatio)
- {
- mTotalLambda *= inWarmStartImpulseRatio;
- ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, mTotalLambda);
- }
- /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
- /// All input vectors are in world space
- inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2)
- {
- Vec2 lambda;
- CalculateLagrangeMultiplier(ioBody1, ioBody2, inN1, inN2, lambda);
-
- // Store accumulated lambda
- mTotalLambda += lambda;
-
- return ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, lambda);
- }
-
- /// Iteratively update the position constraint. Makes sure C(...) = 0.
- /// All input vectors are in world space
- inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inU, Vec3Arg inN1, Vec3Arg inN2, float inBaumgarte) const
- {
- Vec2 c;
- c[0] = inU.Dot(inN1);
- c[1] = inU.Dot(inN2);
- if (!c.IsZero())
- {
- // Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
- //
- // lambda = -K^-1 * beta / dt * C
- //
- // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
- Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
- // Directly integrate velocity change for one time step
- //
- // Euler velocity integration:
- // dv = M^-1 P
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler position integration:
- // x' = x + dv * dt
- //
- // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
- // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
- // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
- // integrate + a position integrate and then discard the velocity change.
- Vec3 impulse = inN1 * lambda[0] + inN2 * lambda[1];
- if (ioBody1.IsDynamic())
- {
- ioBody1.SubPositionStep(ioBody1.GetMotionProperties()->GetInverseMass() * impulse);
- ioBody1.SubRotationStep(mInvI1_R1PlusUxN1 * lambda[0] + mInvI1_R1PlusUxN2 * lambda[1]);
- }
- if (ioBody2.IsDynamic())
- {
- ioBody2.AddPositionStep(ioBody2.GetMotionProperties()->GetInverseMass() * impulse);
- ioBody2.AddRotationStep(mInvI2_R2xN1 * lambda[0] + mInvI2_R2xN2 * lambda[1]);
- }
- return true;
- }
- return false;
- }
- /// Override total lagrange multiplier, can be used to set the initial value for warm starting
- inline void SetTotalLambda(const Vec2 &inLambda)
- {
- mTotalLambda = inLambda;
- }
- /// Return lagrange multiplier
- inline const Vec2 & GetTotalLambda() const
- {
- return mTotalLambda;
- }
- /// Save state of this constraint part
- void SaveState(StateRecorder &inStream) const
- {
- inStream.Write(mTotalLambda);
- }
- /// Restore state of this constraint part
- void RestoreState(StateRecorder &inStream)
- {
- inStream.Read(mTotalLambda);
- }
- private:
- Vec3 mR1PlusUxN1;
- Vec3 mR1PlusUxN2;
- Vec3 mR2xN1;
- Vec3 mR2xN2;
- Vec3 mInvI1_R1PlusUxN1;
- Vec3 mInvI1_R1PlusUxN2;
- Vec3 mInvI2_R2xN1;
- Vec3 mInvI2_R2xN2;
- Mat22 mEffectiveMass;
- Vec2 mTotalLambda { Vec2::sZero() };
- };
- JPH_NAMESPACE_END
|