123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242 |
- // SPDX-FileCopyrightText: 2022 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Physics/Body/Body.h>
- #include <Jolt/Physics/StateRecorder.h>
- JPH_NAMESPACE_BEGIN
- /// Constraint part to an AxisConstraintPart but both bodies have an independent axis on which the force is applied.
- ///
- /// Constraint equation:
- ///
- /// \f[C = (x_1 + r_1 - f_1) . n_1 + r (x_2 + r_2 - f_2) \cdot n_2\f]
- ///
- /// Calculating the Jacobian:
- ///
- /// \f[dC/dt = (v_1 + w_1 \times r_1) \cdot n_1 + (x_1 + r_1 - f_1) \cdot d n_1/dt + r (v_2 + w_2 \times r_2) \cdot n_2 + r (x_2 + r_2 - f_2) \cdot d n_2/dt\f]
- ///
- /// Assuming that d n1/dt and d n2/dt are small this becomes:
- ///
- /// \f[(v_1 + w_1 \times r_1) \cdot n_1 + r (v_2 + w_2 \times r_2) \cdot n_2\f]
- /// \f[= v_1 \cdot n_1 + r_1 \times n_1 \cdot w_1 + r v_2 \cdot n_2 + r r_2 \times n_2 \cdot w_2\f]
- ///
- /// Jacobian:
- ///
- /// \f[J = \begin{bmatrix}n_1 & r_1 \times n_1 & r n_2 & r r_2 \times n_2\end{bmatrix}\f]
- ///
- /// Effective mass:
- ///
- /// \f[K = m_1^{-1} + r_1 \times n_1 I_1^{-1} r_1 \times n_1 + r^2 m_2^{-1} + r^2 r_2 \times n_2 I_2^{-1} r_2 \times n_2\f]
- ///
- /// Used terms (here and below, everything in world space):\n
- /// n1 = (x1 + r1 - f1) / |x1 + r1 - f1|, axis along which the force is applied for body 1\n
- /// n2 = (x2 + r2 - f2) / |x2 + r2 - f2|, axis along which the force is applied for body 2\n
- /// r = ratio how forces are applied between bodies.\n
- /// x1, x2 = center of mass for the bodies.\n
- /// v = [v1, w1, v2, w2].\n
- /// v1, v2 = linear velocity of body 1 and 2.\n
- /// w1, w2 = angular velocity of body 1 and 2.\n
- /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
- /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
- /// b = velocity bias.\n
- /// \f$\beta\f$ = baumgarte constant.
- class IndependentAxisConstraintPart
- {
- /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
- JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inRatio, float inLambda) const
- {
- // Apply impulse if delta is not zero
- if (inLambda != 0.0f)
- {
- // Calculate velocity change due to constraint
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler velocity integration:
- // v' = v + M^-1 P
- if (ioBody1.IsDynamic())
- {
- MotionProperties *mp1 = ioBody1.GetMotionProperties();
- mp1->AddLinearVelocityStep((mp1->GetInverseMass() * inLambda) * inN1);
- mp1->AddAngularVelocityStep(mInvI1_R1xN1 * inLambda);
- }
- if (ioBody2.IsDynamic())
- {
- MotionProperties *mp2 = ioBody2.GetMotionProperties();
- mp2->AddLinearVelocityStep((inRatio * mp2->GetInverseMass() * inLambda) * inN2);
- mp2->AddAngularVelocityStep(mInvI2_RatioR2xN2 * inLambda);
- }
- return true;
- }
- return false;
- }
- public:
- /// Calculate properties used during the functions below
- /// @param inBody1 The first body that this constraint is attached to
- /// @param inBody2 The second body that this constraint is attached to
- /// @param inR1 The position on which the constraint operates on body 1 relative to COM
- /// @param inN1 The world space normal in which the constraint operates for body 1
- /// @param inR2 The position on which the constraint operates on body 1 relative to COM
- /// @param inN2 The world space normal in which the constraint operates for body 2
- /// @param inRatio The ratio how forces are applied between bodies
- inline void CalculateConstraintProperties(const Body &inBody1, const Body &inBody2, Vec3Arg inR1, Vec3Arg inN1, Vec3Arg inR2, Vec3Arg inN2, float inRatio)
- {
- JPH_ASSERT(inN1.IsNormalized(1.0e-4f) && inN2.IsNormalized(1.0e-4f));
- float inv_effective_mass = 0.0f;
- if (!inBody1.IsStatic())
- {
- const MotionProperties *mp1 = inBody1.GetMotionProperties();
-
- mR1xN1 = inR1.Cross(inN1);
- mInvI1_R1xN1 = mp1->MultiplyWorldSpaceInverseInertiaByVector(inBody1.GetRotation(), mR1xN1);
-
- inv_effective_mass += mp1->GetInverseMass() + mInvI1_R1xN1.Dot(mR1xN1);
- }
- if (!inBody2.IsStatic())
- {
- const MotionProperties *mp2 = inBody2.GetMotionProperties();
- mRatioR2xN2 = inRatio * inR2.Cross(inN2);
- mInvI2_RatioR2xN2 = mp2->MultiplyWorldSpaceInverseInertiaByVector(inBody2.GetRotation(), mRatioR2xN2);
- inv_effective_mass += Square(inRatio) * mp2->GetInverseMass() + mInvI2_RatioR2xN2.Dot(mRatioR2xN2);
- }
- // Calculate inverse effective mass: K = J M^-1 J^T
- mEffectiveMass = 1.0f / inv_effective_mass;
- }
- /// Deactivate this constraint
- inline void Deactivate()
- {
- mEffectiveMass = 0.0f;
- mTotalLambda = 0.0f;
- }
- /// Check if constraint is active
- inline bool IsActive() const
- {
- return mEffectiveMass != 0.0f;
- }
- /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inN1 The world space normal in which the constraint operates for body 1
- /// @param inN2 The world space normal in which the constraint operates for body 2
- /// @param inRatio The ratio how forces are applied between bodies
- /// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
- inline void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inRatio, float inWarmStartImpulseRatio)
- {
- mTotalLambda *= inWarmStartImpulseRatio;
- ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, inRatio, mTotalLambda);
- }
- /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inN1 The world space normal in which the constraint operates for body 1
- /// @param inN2 The world space normal in which the constraint operates for body 2
- /// @param inRatio The ratio how forces are applied between bodies
- /// @param inMinLambda Minimum angular impulse to apply (N m s)
- /// @param inMaxLambda Maximum angular impulse to apply (N m s)
- inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inRatio, float inMinLambda, float inMaxLambda)
- {
- // Lagrange multiplier is:
- //
- // lambda = -K^-1 (J v + b)
- float lambda = -mEffectiveMass * (inN1.Dot(ioBody1.GetLinearVelocity()) + mR1xN1.Dot(ioBody1.GetAngularVelocity()) + inRatio * inN2.Dot(ioBody2.GetLinearVelocity()) + mRatioR2xN2.Dot(ioBody2.GetAngularVelocity()));
- float new_lambda = Clamp(mTotalLambda + lambda, inMinLambda, inMaxLambda); // Clamp impulse
- lambda = new_lambda - mTotalLambda; // Lambda potentially got clamped, calculate the new impulse to apply
- mTotalLambda = new_lambda; // Store accumulated impulse
- return ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, inRatio, lambda);
- }
- /// Return lagrange multiplier
- float GetTotalLambda() const
- {
- return mTotalLambda;
- }
- /// Iteratively update the position constraint. Makes sure C(...) == 0.
- /// @param ioBody1 The first body that this constraint is attached to
- /// @param ioBody2 The second body that this constraint is attached to
- /// @param inN1 The world space normal in which the constraint operates for body 1
- /// @param inN2 The world space normal in which the constraint operates for body 2
- /// @param inRatio The ratio how forces are applied between bodies
- /// @param inC Value of the constraint equation (C)
- /// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
- inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inRatio, float inC, float inBaumgarte) const
- {
- if (inC != 0.0f)
- {
- // Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
- //
- // lambda = -K^-1 * beta / dt * C
- //
- // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
- float lambda = -mEffectiveMass * inBaumgarte * inC;
- // Directly integrate velocity change for one time step
- //
- // Euler velocity integration:
- // dv = M^-1 P
- //
- // Impulse:
- // P = J^T lambda
- //
- // Euler position integration:
- // x' = x + dv * dt
- //
- // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
- // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
- // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
- // integrate + a position integrate and then discard the velocity change.
- if (ioBody1.IsDynamic())
- {
- ioBody1.AddPositionStep((lambda * ioBody1.GetMotionPropertiesUnchecked()->GetInverseMass()) * inN1);
- ioBody1.AddRotationStep(lambda * mInvI1_R1xN1);
- }
- if (ioBody2.IsDynamic())
- {
- ioBody2.AddPositionStep((lambda * inRatio * ioBody2.GetMotionPropertiesUnchecked()->GetInverseMass()) * inN2);
- ioBody2.AddRotationStep(lambda * mInvI2_RatioR2xN2);
- }
- return true;
- }
- return false;
- }
- /// Save state of this constraint part
- void SaveState(StateRecorder &inStream) const
- {
- inStream.Write(mTotalLambda);
- }
- /// Restore state of this constraint part
- void RestoreState(StateRecorder &inStream)
- {
- inStream.Read(mTotalLambda);
- }
- private:
- Vec3 mR1xN1;
- Vec3 mInvI1_R1xN1;
- Vec3 mRatioR2xN2;
- Vec3 mInvI2_RatioR2xN2;
- float mEffectiveMass = 0.0f;
- float mTotalLambda = 0.0f;
- };
- JPH_NAMESPACE_END
|