HingeConstraint.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt/Jolt.h>
  4. #include <Jolt/Physics/Constraints/HingeConstraint.h>
  5. #include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. #include <Jolt/ObjectStream/TypeDeclarations.h>
  8. #include <Jolt/Core/StreamIn.h>
  9. #include <Jolt/Core/StreamOut.h>
  10. #ifdef JPH_DEBUG_RENDERER
  11. #include <Jolt/Renderer/DebugRenderer.h>
  12. #endif // JPH_DEBUG_RENDERER
  13. JPH_NAMESPACE_BEGIN
  14. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(HingeConstraintSettings)
  15. {
  16. JPH_ADD_BASE_CLASS(HingeConstraintSettings, TwoBodyConstraintSettings)
  17. JPH_ADD_ENUM_ATTRIBUTE(HingeConstraintSettings, mSpace)
  18. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint1)
  19. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis1)
  20. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis1)
  21. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint2)
  22. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis2)
  23. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis2)
  24. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMin)
  25. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMax)
  26. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMaxFrictionTorque)
  27. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMotorSettings)
  28. }
  29. void HingeConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  30. {
  31. ConstraintSettings::SaveBinaryState(inStream);
  32. inStream.Write(mSpace);
  33. inStream.Write(mPoint1);
  34. inStream.Write(mHingeAxis1);
  35. inStream.Write(mNormalAxis1);
  36. inStream.Write(mPoint2);
  37. inStream.Write(mHingeAxis2);
  38. inStream.Write(mNormalAxis2);
  39. inStream.Write(mLimitsMin);
  40. inStream.Write(mLimitsMax);
  41. inStream.Write(mMaxFrictionTorque);
  42. mMotorSettings.SaveBinaryState(inStream);
  43. }
  44. void HingeConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  45. {
  46. ConstraintSettings::RestoreBinaryState(inStream);
  47. inStream.Read(mSpace);
  48. inStream.Read(mPoint1);
  49. inStream.Read(mHingeAxis1);
  50. inStream.Read(mNormalAxis1);
  51. inStream.Read(mPoint2);
  52. inStream.Read(mHingeAxis2);
  53. inStream.Read(mNormalAxis2);
  54. inStream.Read(mLimitsMin);
  55. inStream.Read(mLimitsMax);
  56. inStream.Read(mMaxFrictionTorque);
  57. mMotorSettings.RestoreBinaryState(inStream);}
  58. TwoBodyConstraint *HingeConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  59. {
  60. return new HingeConstraint(inBody1, inBody2, *this);
  61. }
  62. HingeConstraint::HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings) :
  63. TwoBodyConstraint(inBody1, inBody2, inSettings),
  64. mLocalSpacePosition1(inSettings.mPoint1),
  65. mLocalSpacePosition2(inSettings.mPoint2),
  66. mLocalSpaceHingeAxis1(inSettings.mHingeAxis1),
  67. mLocalSpaceHingeAxis2(inSettings.mHingeAxis2),
  68. mLocalSpaceNormalAxis1(inSettings.mNormalAxis1),
  69. mLocalSpaceNormalAxis2(inSettings.mNormalAxis2),
  70. mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
  71. mMotorSettings(inSettings.mMotorSettings)
  72. {
  73. // Store limits
  74. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax, "Better use a fixed constraint in this case");
  75. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  76. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  77. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXZ(inSettings.mNormalAxis1, inSettings.mHingeAxis1, inSettings.mNormalAxis2, inSettings.mHingeAxis2);
  78. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  79. {
  80. // If all properties were specified in world space, take them to local space now
  81. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  82. mLocalSpacePosition1 = inv_transform1 * mLocalSpacePosition1;
  83. mLocalSpaceHingeAxis1 = inv_transform1.Multiply3x3(mLocalSpaceHingeAxis1).Normalized();
  84. mLocalSpaceNormalAxis1 = inv_transform1.Multiply3x3(mLocalSpaceNormalAxis1).Normalized();
  85. Mat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  86. mLocalSpacePosition2 = inv_transform2 * mLocalSpacePosition2;
  87. mLocalSpaceHingeAxis2 = inv_transform2.Multiply3x3(mLocalSpaceHingeAxis2).Normalized();
  88. mLocalSpaceNormalAxis2 = inv_transform2.Multiply3x3(mLocalSpaceNormalAxis2).Normalized();
  89. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  90. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  91. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  92. }
  93. }
  94. float HingeConstraint::GetCurrentAngle() const
  95. {
  96. // See: CalculateA1AndTheta
  97. Quat rotation1 = mBody1->GetRotation();
  98. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  99. return diff.GetRotationAngle(rotation1 * mLocalSpaceHingeAxis1);
  100. }
  101. void HingeConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  102. {
  103. JPH_ASSERT(inLimitsMin <= 0.0f && inLimitsMin >= -JPH_PI);
  104. JPH_ASSERT(inLimitsMax >= 0.0f && inLimitsMax <= JPH_PI);
  105. mLimitsMin = inLimitsMin;
  106. mLimitsMax = inLimitsMax;
  107. mHasLimits = mLimitsMin > -JPH_PI && mLimitsMax < JPH_PI;
  108. }
  109. void HingeConstraint::CalculateA1AndTheta()
  110. {
  111. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
  112. {
  113. Quat rotation1 = mBody1->GetRotation();
  114. // Calculate relative rotation in world space
  115. //
  116. // The rest rotation is:
  117. //
  118. // q2 = q1 r0
  119. //
  120. // But the actual rotation is
  121. //
  122. // q2 = diff q1 r0
  123. // <=> diff = q2 r0^-1 q1^-1
  124. //
  125. // Where:
  126. // q1 = current rotation of body 1
  127. // q2 = current rotation of body 2
  128. // diff = relative rotation in world space
  129. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  130. // Calculate hinge axis in world space
  131. mA1 = rotation1 * mLocalSpaceHingeAxis1;
  132. // Get rotation angle around the hinge axis
  133. mTheta = diff.GetRotationAngle(mA1);
  134. }
  135. }
  136. void HingeConstraint::CalculateRotationLimitsConstraintProperties(float inDeltaTime)
  137. {
  138. // Apply constraint if outside of limits
  139. if (mHasLimits && (mTheta <= mLimitsMin || mTheta >= mLimitsMax))
  140. mRotationLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1);
  141. else
  142. mRotationLimitsConstraintPart.Deactivate();
  143. }
  144. void HingeConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  145. {
  146. switch (mMotorState)
  147. {
  148. case EMotorState::Off:
  149. if (mMaxFrictionTorque > 0.0f)
  150. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1);
  151. else
  152. mMotorConstraintPart.Deactivate();
  153. break;
  154. case EMotorState::Velocity:
  155. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1, -mTargetAngularVelocity);
  156. break;
  157. case EMotorState::Position:
  158. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, CenterAngleAroundZero(mTheta - mTargetAngle), mMotorSettings.mFrequency, mMotorSettings.mDamping);
  159. break;
  160. }
  161. }
  162. void HingeConstraint::SetupVelocityConstraint(float inDeltaTime)
  163. {
  164. // Cache constraint values that are valid until the bodies move
  165. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  166. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  167. mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
  168. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  169. CalculateA1AndTheta();
  170. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  171. CalculateMotorConstraintProperties(inDeltaTime);
  172. }
  173. void HingeConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  174. {
  175. // Warm starting: Apply previous frame impulse
  176. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  177. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  178. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  179. mRotationLimitsConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  180. }
  181. float HingeConstraint::GetSmallestAngleToLimit() const
  182. {
  183. float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
  184. float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
  185. return abs(dist_to_min) < abs(dist_to_max)? dist_to_min : dist_to_max;
  186. }
  187. bool HingeConstraint::SolveVelocityConstraint(float inDeltaTime)
  188. {
  189. // Solve motor
  190. bool motor = false;
  191. if (mMotorConstraintPart.IsActive())
  192. {
  193. switch (mMotorState)
  194. {
  195. case EMotorState::Off:
  196. {
  197. float max_lambda = mMaxFrictionTorque * inDeltaTime;
  198. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -max_lambda, max_lambda);
  199. break;
  200. }
  201. case EMotorState::Velocity:
  202. case EMotorState::Position:
  203. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, inDeltaTime * mMotorSettings.mMinTorqueLimit, inDeltaTime * mMotorSettings.mMaxTorqueLimit);
  204. break;
  205. }
  206. }
  207. // Solve point constraint
  208. bool pos = mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  209. // Solve rotation constraint
  210. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  211. // Solve rotation limits
  212. bool limit = false;
  213. if (mRotationLimitsConstraintPart.IsActive())
  214. {
  215. if (GetSmallestAngleToLimit() < 0.0f)
  216. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, 0, FLT_MAX);
  217. else
  218. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -FLT_MAX, 0);
  219. }
  220. return motor || pos || rot || limit;
  221. }
  222. bool HingeConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  223. {
  224. // Motor operates on velocities only, don't call SolvePositionConstraint
  225. // Solve point constraint
  226. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  227. bool pos = mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  228. // Solve rotation constraint
  229. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation()); // Note that previous call to GetRotation() is out of date since the rotation has changed
  230. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  231. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  232. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  233. // Solve rotation limits
  234. bool limit = false;
  235. CalculateA1AndTheta();
  236. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  237. if (mRotationLimitsConstraintPart.IsActive())
  238. limit = mRotationLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, GetSmallestAngleToLimit(), inBaumgarte);
  239. return pos || rot || limit;
  240. }
  241. #ifdef JPH_DEBUG_RENDERER
  242. void HingeConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  243. {
  244. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  245. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  246. // Draw constraint
  247. Vec3 constraint_pos1 = transform1 * mLocalSpacePosition1;
  248. inRenderer->DrawMarker(constraint_pos1, Color::sRed, 0.1f);
  249. inRenderer->DrawLine(constraint_pos1, transform1 * (mLocalSpacePosition1 + mDrawConstraintSize * mLocalSpaceHingeAxis1), Color::sRed);
  250. Vec3 constraint_pos2 = transform2 * mLocalSpacePosition2;
  251. inRenderer->DrawMarker(constraint_pos2, Color::sGreen, 0.1f);
  252. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceHingeAxis2), Color::sGreen);
  253. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceNormalAxis2), Color::sWhite);
  254. }
  255. void HingeConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  256. {
  257. if (mHasLimits && mLimitsMax > mLimitsMin)
  258. {
  259. // Get constraint properties in world space
  260. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  261. Vec3 position1 = transform1 * mLocalSpacePosition1;
  262. Vec3 hinge_axis1 = transform1.Multiply3x3(mLocalSpaceHingeAxis1);
  263. Vec3 normal_axis1 = transform1.Multiply3x3(mLocalSpaceNormalAxis1);
  264. inRenderer->DrawPie(position1, mDrawConstraintSize, hinge_axis1, normal_axis1, mLimitsMin, mLimitsMax, Color::sPurple, DebugRenderer::ECastShadow::Off);
  265. }
  266. }
  267. #endif // JPH_DEBUG_RENDERER
  268. void HingeConstraint::SaveState(StateRecorder &inStream) const
  269. {
  270. TwoBodyConstraint::SaveState(inStream);
  271. mMotorConstraintPart.SaveState(inStream);
  272. mRotationConstraintPart.SaveState(inStream);
  273. mPointConstraintPart.SaveState(inStream);
  274. mRotationLimitsConstraintPart.SaveState(inStream);
  275. inStream.Write(mMotorState);
  276. inStream.Write(mTargetAngularVelocity);
  277. inStream.Write(mTargetAngle);
  278. }
  279. void HingeConstraint::RestoreState(StateRecorder &inStream)
  280. {
  281. TwoBodyConstraint::RestoreState(inStream);
  282. mMotorConstraintPart.RestoreState(inStream);
  283. mRotationConstraintPart.RestoreState(inStream);
  284. mPointConstraintPart.RestoreState(inStream);
  285. mRotationLimitsConstraintPart.RestoreState(inStream);
  286. inStream.Read(mMotorState);
  287. inStream.Read(mTargetAngularVelocity);
  288. inStream.Read(mTargetAngle);
  289. }
  290. Ref<ConstraintSettings> HingeConstraint::GetConstraintSettings() const
  291. {
  292. HingeConstraintSettings *settings = new HingeConstraintSettings;
  293. ToConstraintSettings(*settings);
  294. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  295. settings->mPoint1 = mLocalSpacePosition1;
  296. settings->mHingeAxis1 = mLocalSpaceHingeAxis1;
  297. settings->mNormalAxis1 = mLocalSpaceNormalAxis1;
  298. settings->mPoint2 = mLocalSpacePosition2;
  299. settings->mHingeAxis2 = mLocalSpaceHingeAxis2;
  300. settings->mNormalAxis2 = mLocalSpaceNormalAxis2;
  301. settings->mLimitsMin = mLimitsMin;
  302. settings->mLimitsMax = mLimitsMax;
  303. settings->mMaxFrictionTorque = mMaxFrictionTorque;
  304. settings->mMotorSettings = mMotorSettings;
  305. return settings;
  306. }
  307. Mat44 HingeConstraint::GetConstraintToBody1Matrix() const
  308. {
  309. return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(mLocalSpaceNormalAxis1, 0), Vec4(mLocalSpaceHingeAxis1.Cross(mLocalSpaceNormalAxis1), 0), Vec4(mLocalSpacePosition1, 1));
  310. }
  311. Mat44 HingeConstraint::GetConstraintToBody2Matrix() const
  312. {
  313. return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(mLocalSpaceNormalAxis2, 0), Vec4(mLocalSpaceHingeAxis2.Cross(mLocalSpaceNormalAxis2), 0), Vec4(mLocalSpacePosition2, 1));
  314. }
  315. JPH_NAMESPACE_END