SliderConstraint.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt/Jolt.h>
  4. #include <Jolt/Physics/Constraints/SliderConstraint.h>
  5. #include <Jolt/Physics/Body/Body.h>
  6. #include <Jolt/ObjectStream/TypeDeclarations.h>
  7. #include <Jolt/Core/StreamIn.h>
  8. #include <Jolt/Core/StreamOut.h>
  9. #ifdef JPH_DEBUG_RENDERER
  10. #include <Jolt/Renderer/DebugRenderer.h>
  11. #endif // JPH_DEBUG_RENDERER
  12. JPH_NAMESPACE_BEGIN
  13. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
  14. {
  15. JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
  16. JPH_ADD_ENUM_ATTRIBUTE(SliderConstraintSettings, mSpace)
  17. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mAutoDetectPoint)
  18. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
  19. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
  20. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
  21. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
  22. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
  23. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
  24. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
  25. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
  26. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mFrequency)
  27. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mDamping)
  28. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
  29. JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
  30. }
  31. void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
  32. {
  33. JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
  34. mSliderAxis1 = mSliderAxis2 = inSliderAxis;
  35. mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
  36. }
  37. void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  38. {
  39. ConstraintSettings::SaveBinaryState(inStream);
  40. inStream.Write(mSpace);
  41. inStream.Write(mAutoDetectPoint);
  42. inStream.Write(mPoint1);
  43. inStream.Write(mSliderAxis1);
  44. inStream.Write(mNormalAxis1);
  45. inStream.Write(mPoint2);
  46. inStream.Write(mSliderAxis2);
  47. inStream.Write(mNormalAxis2);
  48. inStream.Write(mLimitsMin);
  49. inStream.Write(mLimitsMax);
  50. inStream.Write(mFrequency);
  51. inStream.Write(mDamping);
  52. inStream.Write(mMaxFrictionForce);
  53. mMotorSettings.SaveBinaryState(inStream);
  54. }
  55. void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  56. {
  57. ConstraintSettings::RestoreBinaryState(inStream);
  58. inStream.Read(mSpace);
  59. inStream.Read(mAutoDetectPoint);
  60. inStream.Read(mPoint1);
  61. inStream.Read(mSliderAxis1);
  62. inStream.Read(mNormalAxis1);
  63. inStream.Read(mPoint2);
  64. inStream.Read(mSliderAxis2);
  65. inStream.Read(mNormalAxis2);
  66. inStream.Read(mLimitsMin);
  67. inStream.Read(mLimitsMax);
  68. inStream.Read(mFrequency);
  69. inStream.Read(mDamping);
  70. inStream.Read(mMaxFrictionForce);
  71. mMotorSettings.RestoreBinaryState(inStream);
  72. }
  73. TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  74. {
  75. return new SliderConstraint(inBody1, inBody2, *this);
  76. }
  77. SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
  78. TwoBodyConstraint(inBody1, inBody2, inSettings),
  79. mLocalSpacePosition1(inSettings.mPoint1),
  80. mLocalSpacePosition2(inSettings.mPoint2),
  81. mLocalSpaceSliderAxis1(inSettings.mSliderAxis1),
  82. mLocalSpaceNormal1(inSettings.mNormalAxis1),
  83. mMaxFrictionForce(inSettings.mMaxFrictionForce),
  84. mMotorSettings(inSettings.mMotorSettings)
  85. {
  86. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  87. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXY(inSettings.mSliderAxis1, inSettings.mNormalAxis1, inSettings.mSliderAxis2, inSettings.mNormalAxis2);
  88. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  89. {
  90. if (inSettings.mAutoDetectPoint)
  91. {
  92. // Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point
  93. Vec3 anchor;
  94. if (!inBody1.CanBeKinematicOrDynamic())
  95. anchor = inBody2.GetCenterOfMassPosition();
  96. else if (!inBody2.CanBeKinematicOrDynamic())
  97. anchor = inBody1.GetCenterOfMassPosition();
  98. else
  99. {
  100. // Otherwise use weighted anchor point towards the lightest body
  101. float inv_m1 = inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked();
  102. float inv_m2 = inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked();
  103. anchor = (inv_m1 * inBody1.GetCenterOfMassPosition() + inv_m2 * inBody2.GetCenterOfMassPosition()) / (inv_m1 + inv_m2);
  104. }
  105. mLocalSpacePosition1 = mLocalSpacePosition2 = anchor;
  106. }
  107. // If all properties were specified in world space, take them to local space now
  108. Mat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  109. mLocalSpacePosition1 = inv_transform1 * mLocalSpacePosition1;
  110. mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(mLocalSpaceSliderAxis1).Normalized();
  111. mLocalSpaceNormal1 = inv_transform1.Multiply3x3(mLocalSpaceNormal1).Normalized();
  112. mLocalSpacePosition2 = inBody2.GetInverseCenterOfMassTransform() * mLocalSpacePosition2;
  113. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  114. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  115. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  116. }
  117. // Calculate 2nd local space normal
  118. mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
  119. // Store limits
  120. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mFrequency > 0.0f, "Better use a fixed constraint");
  121. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  122. // Store frequency and damping
  123. SetFrequency(inSettings.mFrequency);
  124. SetDamping(inSettings.mDamping);
  125. }
  126. float SliderConstraint::GetCurrentPosition() const
  127. {
  128. // See: CalculateR1R2U and CalculateSlidingAxisAndPosition
  129. Vec3 r1 = mBody1->GetRotation() * mLocalSpacePosition1;
  130. Vec3 r2 = mBody2->GetRotation() * mLocalSpacePosition2;
  131. Vec3 u = mBody2->GetCenterOfMassPosition() + r2 - mBody1->GetCenterOfMassPosition() - r1;
  132. return u.Dot(mBody1->GetRotation() * mLocalSpaceSliderAxis1);
  133. }
  134. void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  135. {
  136. JPH_ASSERT(inLimitsMin <= 0.0f);
  137. JPH_ASSERT(inLimitsMax >= 0.0f);
  138. mLimitsMin = inLimitsMin;
  139. mLimitsMax = inLimitsMax;
  140. mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
  141. }
  142. void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
  143. {
  144. // Calculate points relative to body
  145. mR1 = inRotation1 * mLocalSpacePosition1;
  146. mR2 = inRotation2 * mLocalSpacePosition2;
  147. // Calculate X2 + R2 - X1 - R1
  148. mU = mBody2->GetCenterOfMassPosition() + mR2 - mBody1->GetCenterOfMassPosition() - mR1;
  149. }
  150. void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
  151. {
  152. // Calculate world space normals
  153. mN1 = inRotation1 * mLocalSpaceNormal1;
  154. mN2 = inRotation1 * mLocalSpaceNormal2;
  155. mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
  156. }
  157. void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
  158. {
  159. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
  160. {
  161. // Calculate world space slider axis
  162. mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
  163. // Calculate slide distance along axis
  164. mD = mU.Dot(mWorldSpaceSliderAxis);
  165. }
  166. }
  167. void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime)
  168. {
  169. // Check if distance is within limits
  170. bool below_min = mD <= mLimitsMin;
  171. if (mHasLimits && (below_min || mD >= mLimitsMax))
  172. mPositionLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - (below_min? mLimitsMin : mLimitsMax), mFrequency, mDamping);
  173. else
  174. mPositionLimitsConstraintPart.Deactivate();
  175. }
  176. void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  177. {
  178. switch (mMotorState)
  179. {
  180. case EMotorState::Off:
  181. if (mMaxFrictionForce > 0.0f)
  182. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
  183. else
  184. mMotorConstraintPart.Deactivate();
  185. break;
  186. case EMotorState::Velocity:
  187. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
  188. break;
  189. case EMotorState::Position:
  190. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mFrequency, mMotorSettings.mDamping);
  191. break;
  192. }
  193. }
  194. void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
  195. {
  196. // Calculate constraint properties that are constant while bodies don't move
  197. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  198. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  199. CalculateR1R2U(rotation1, rotation2);
  200. CalculatePositionConstraintProperties(rotation1, rotation2);
  201. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
  202. CalculateSlidingAxisAndPosition(rotation1);
  203. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  204. CalculateMotorConstraintProperties(inDeltaTime);
  205. }
  206. void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  207. {
  208. // Warm starting: Apply previous frame impulse
  209. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  210. mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
  211. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  212. mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
  213. }
  214. bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
  215. {
  216. // Solve motor
  217. bool motor = false;
  218. if (mMotorConstraintPart.IsActive())
  219. {
  220. switch (mMotorState)
  221. {
  222. case EMotorState::Off:
  223. {
  224. float max_lambda = mMaxFrictionForce * inDeltaTime;
  225. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
  226. break;
  227. }
  228. case EMotorState::Velocity:
  229. case EMotorState::Position:
  230. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
  231. break;
  232. }
  233. }
  234. // Solve position constraint along 2 axis
  235. bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
  236. // Solve rotation constraint
  237. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  238. // Solve limits along slider axis
  239. bool limit = false;
  240. if (mPositionLimitsConstraintPart.IsActive())
  241. {
  242. if (mD <= mLimitsMin)
  243. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, 0, FLT_MAX);
  244. else
  245. {
  246. JPH_ASSERT(mD >= mLimitsMax);
  247. limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -FLT_MAX, 0);
  248. }
  249. }
  250. return motor || pos || rot || limit;
  251. }
  252. bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  253. {
  254. // Motor operates on velocities only, don't call SolvePositionConstraint
  255. // Solve position constraint along 2 axis
  256. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  257. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  258. CalculateR1R2U(rotation1, rotation2);
  259. CalculatePositionConstraintProperties(rotation1, rotation2);
  260. bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
  261. // Solve rotation constraint
  262. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
  263. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
  264. // Solve limits along slider axis
  265. bool limit = false;
  266. if (mHasLimits && mFrequency <= 0.0f)
  267. {
  268. rotation1 = Mat44::sRotation(mBody1->GetRotation());
  269. rotation2 = Mat44::sRotation(mBody2->GetRotation());
  270. CalculateR1R2U(rotation1, rotation2);
  271. CalculateSlidingAxisAndPosition(rotation1);
  272. CalculatePositionLimitsConstraintProperties(inDeltaTime);
  273. if (mPositionLimitsConstraintPart.IsActive())
  274. {
  275. if (mD <= mLimitsMin)
  276. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
  277. else
  278. {
  279. JPH_ASSERT(mD >= mLimitsMax);
  280. limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
  281. }
  282. }
  283. }
  284. return pos || rot || limit;
  285. }
  286. #ifdef JPH_DEBUG_RENDERER
  287. void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  288. {
  289. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  290. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  291. // Transform the local positions into world space
  292. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  293. Vec3 position1 = transform1 * mLocalSpacePosition1;
  294. Vec3 position2 = transform2 * mLocalSpacePosition2;
  295. // Draw constraint
  296. inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
  297. inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
  298. inRenderer->DrawLine(position1, position2, Color::sGreen);
  299. // Draw motor
  300. switch (mMotorState)
  301. {
  302. case EMotorState::Position:
  303. inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
  304. break;
  305. case EMotorState::Velocity:
  306. {
  307. Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
  308. inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
  309. inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
  310. break;
  311. }
  312. case EMotorState::Off:
  313. break;
  314. }
  315. }
  316. void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  317. {
  318. if (mHasLimits)
  319. {
  320. Mat44 transform1 = mBody1->GetCenterOfMassTransform();
  321. Mat44 transform2 = mBody2->GetCenterOfMassTransform();
  322. // Transform the local positions into world space
  323. Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
  324. Vec3 position1 = transform1 * mLocalSpacePosition1;
  325. Vec3 position2 = transform2 * mLocalSpacePosition2;
  326. // Calculate the limits in world space
  327. Vec3 limits_min = position1 + mLimitsMin * slider_axis;
  328. Vec3 limits_max = position1 + mLimitsMax * slider_axis;
  329. inRenderer->DrawLine(limits_min, position1, Color::sWhite);
  330. inRenderer->DrawLine(position2, limits_max, Color::sWhite);
  331. inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
  332. inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
  333. }
  334. }
  335. #endif // JPH_DEBUG_RENDERER
  336. void SliderConstraint::SaveState(StateRecorder &inStream) const
  337. {
  338. TwoBodyConstraint::SaveState(inStream);
  339. mMotorConstraintPart.SaveState(inStream);
  340. mPositionConstraintPart.SaveState(inStream);
  341. mRotationConstraintPart.SaveState(inStream);
  342. mPositionLimitsConstraintPart.SaveState(inStream);
  343. inStream.Write(mMotorState);
  344. inStream.Write(mTargetVelocity);
  345. inStream.Write(mTargetPosition);
  346. }
  347. void SliderConstraint::RestoreState(StateRecorder &inStream)
  348. {
  349. TwoBodyConstraint::RestoreState(inStream);
  350. mMotorConstraintPart.RestoreState(inStream);
  351. mPositionConstraintPart.RestoreState(inStream);
  352. mRotationConstraintPart.RestoreState(inStream);
  353. mPositionLimitsConstraintPart.RestoreState(inStream);
  354. inStream.Read(mMotorState);
  355. inStream.Read(mTargetVelocity);
  356. inStream.Read(mTargetPosition);
  357. }
  358. Ref<ConstraintSettings> SliderConstraint::GetConstraintSettings() const
  359. {
  360. SliderConstraintSettings *settings = new SliderConstraintSettings;
  361. ToConstraintSettings(*settings);
  362. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  363. settings->mPoint1 = mLocalSpacePosition1;
  364. settings->mSliderAxis1 = mLocalSpaceSliderAxis1;
  365. settings->mNormalAxis1 = mLocalSpaceNormal1;
  366. settings->mPoint2 = mLocalSpacePosition2;
  367. Mat44 inv_initial_rotation = Mat44::sRotation(mInvInitialOrientation);
  368. settings->mSliderAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceSliderAxis1);
  369. settings->mNormalAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceNormal1);
  370. settings->mLimitsMin = mLimitsMin;
  371. settings->mLimitsMax = mLimitsMax;
  372. settings->mFrequency = mFrequency;
  373. settings->mDamping = mDamping;
  374. settings->mMaxFrictionForce = mMaxFrictionForce;
  375. settings->mMotorSettings = mMotorSettings;
  376. return settings;
  377. }
  378. Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
  379. {
  380. return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
  381. }
  382. Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
  383. {
  384. Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
  385. mat.SetTranslation(mLocalSpacePosition2);
  386. return mat;
  387. }
  388. JPH_NAMESPACE_END