Vec3Tests.cpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include "UnitTestFramework.h"
  4. TEST_SUITE("Vec3Tests")
  5. {
  6. TEST_CASE("TestVec3ConstructComponents")
  7. {
  8. Vec3 v(1, 2, 3);
  9. // Test component access
  10. CHECK(v.GetX() == 1);
  11. CHECK(v.GetY() == 2);
  12. CHECK(v.GetZ() == 3);
  13. // Test component access by [] operators
  14. CHECK(v[0] == 1);
  15. CHECK(v[1] == 2);
  16. CHECK(v[2] == 3);
  17. // Test == and != operators
  18. CHECK(v == Vec3(1, 2, 3));
  19. CHECK(v != Vec3(1, 2, 4));
  20. // Set the components
  21. v.SetComponent(0, 4);
  22. v.SetComponent(1, 5);
  23. v.SetComponent(2, 6);
  24. CHECK(v == Vec3(4, 5, 6));
  25. }
  26. TEST_CASE("TestVec3LoadStoreFloat3")
  27. {
  28. float f4[] = { 1, 2, 3, 4 }; // Extra element since we read one too many in sLoadFloat3Unsafe
  29. Float3 &f3 = *(Float3 *)f4;
  30. CHECK(Vec3(f3) == Vec3(1, 2, 3));
  31. CHECK(Vec3::sLoadFloat3Unsafe(f3) == Vec3(1, 2, 3));
  32. Float3 f3_out;
  33. Vec3(1, 2, 3).StoreFloat3(&f3_out);
  34. CHECK(f3 == f3_out);
  35. }
  36. TEST_CASE("TestVec3ConstructVec4")
  37. {
  38. Vec4 v4(1, 2, 3, 4);
  39. CHECK(Vec3(v4) == Vec3(1, 2, 3));
  40. }
  41. TEST_CASE("TestVec3Zero")
  42. {
  43. Vec3 v = Vec3::sZero();
  44. CHECK(v.GetX() == 0);
  45. CHECK(v.GetY() == 0);
  46. CHECK(v.GetZ() == 0);
  47. }
  48. TEST_CASE("TestVec3NaN")
  49. {
  50. Vec3 v = Vec3::sNaN();
  51. CHECK(isnan(v.GetX()));
  52. CHECK(isnan(v.GetY()));
  53. CHECK(isnan(v.GetZ()));
  54. CHECK(v.IsNaN());
  55. v.SetComponent(0, 0);
  56. CHECK(v.IsNaN());
  57. v.SetComponent(1, 0);
  58. CHECK(v.IsNaN());
  59. v.SetComponent(2, 0);
  60. CHECK(!v.IsNaN());
  61. }
  62. TEST_CASE("TestVec3Replicate")
  63. {
  64. CHECK(Vec3::sReplicate(2) == Vec3(2, 2, 2));
  65. }
  66. TEST_CASE("TestVec3MinMax")
  67. {
  68. Vec3 v1(1, 5, 3);
  69. Vec3 v2(4, 2, 6);
  70. CHECK(Vec3::sMin(v1, v2) == Vec3(1, 2, 3));
  71. CHECK(Vec3::sMax(v1, v2) == Vec3(4, 5, 6));
  72. CHECK(v1.ReduceMin() == 1);
  73. CHECK(v1.ReduceMax() == 5);
  74. CHECK(v2.ReduceMin() == 2);
  75. CHECK(v2.ReduceMax() == 6);
  76. CHECK(v1.GetLowestComponentIndex() == 0);
  77. CHECK(v1.GetHighestComponentIndex() == 1);
  78. CHECK(v2.GetLowestComponentIndex() == 1);
  79. CHECK(v2.GetHighestComponentIndex() == 2);
  80. }
  81. TEST_CASE("TestVec3Clamp")
  82. {
  83. Vec3 v1(1, 2, 3);
  84. Vec3 v2(4, 5, 6);
  85. Vec3 v(-1, 3, 7);
  86. CHECK(Vec3::sClamp(v, v1, v2) == Vec3(1, 3, 6));
  87. }
  88. TEST_CASE("TestVec3Comparisons")
  89. {
  90. CHECK(Vec3::sEquals(Vec3(1, 2, 3), Vec3(1, 4, 3)) == UVec4(0xffffffffU, 0, 0xffffffffU, 0xffffffffU)); // W is always Z for comparisons
  91. CHECK(Vec3::sLess(Vec3(1, 2, 4), Vec3(1, 4, 3)) == UVec4(0, 0xffffffffU, 0, 0));
  92. CHECK(Vec3::sLessOrEqual(Vec3(1, 2, 4), Vec3(1, 4, 3)) == UVec4(0xffffffffU, 0xffffffffU, 0, 0));
  93. CHECK(Vec3::sGreater(Vec3(1, 2, 4), Vec3(1, 4, 3)) == UVec4(0, 0, 0xffffffffU, 0xffffffffU));
  94. CHECK(Vec3::sGreaterOrEqual(Vec3(1, 2, 4), Vec3(1, 4, 3)) == UVec4(0xffffffffU, 0, 0xffffffffU, 0xffffffffU));
  95. }
  96. TEST_CASE("TestVec3FMA")
  97. {
  98. CHECK(Vec3::sFusedMultiplyAdd(Vec3(1, 2, 3), Vec3(4, 5, 6), Vec3(7, 8, 9)) == Vec3(1 * 4 + 7, 2 * 5 + 8, 3 * 6 + 9));
  99. }
  100. TEST_CASE("TestVec3Select")
  101. {
  102. CHECK(Vec3::sSelect(Vec3(1, 2, 3), Vec3(4, 5, 6), UVec4(0x80000000U, 0, 0x80000000U, 0)) == Vec3(4, 2, 6));
  103. CHECK(Vec3::sSelect(Vec3(1, 2, 3), Vec3(4, 5, 6), UVec4(0, 0x80000000U, 0, 0x80000000U)) == Vec3(1, 5, 3));
  104. }
  105. TEST_CASE("TestVec3BitOps")
  106. {
  107. // Test all bit permutations
  108. Vec3 v1(UVec4(0b0011, 0b00110, 0b001100, 0).ReinterpretAsFloat());
  109. Vec3 v2(UVec4(0b0101, 0b01010, 0b010100, 0).ReinterpretAsFloat());
  110. CHECK(Vec3::sOr(v1, v2) == Vec3(UVec4(0b0111, 0b01110, 0b011100, 0).ReinterpretAsFloat()));
  111. CHECK(Vec3::sXor(v1, v2) == Vec3(UVec4(0b0110, 0b01100, 0b011000, 0).ReinterpretAsFloat()));
  112. CHECK(Vec3::sAnd(v1, v2) == Vec3(UVec4(0b0001, 0b00010, 0b000100, 0).ReinterpretAsFloat()));
  113. }
  114. TEST_CASE("TestVec3Close")
  115. {
  116. CHECK(Vec3(1, 2, 3).IsClose(Vec3(1.001f, 2.001f, 3.001f), 1.0e-4f));
  117. CHECK(!Vec3(1, 2, 3).IsClose(Vec3(1.001f, 2.001f, 3.001f), 1.0e-6f));
  118. CHECK(Vec3(1.001f, 0, 0).IsNormalized(1.0e-2f));
  119. CHECK(!Vec3(0, 1.001f, 0).IsNormalized(1.0e-4f));
  120. CHECK(Vec3(-1.0e-7f, 1.0e-7f, 1.0e-8f).IsNearZero());
  121. CHECK(!Vec3(-1.0e-7f, 1.0e-7f, -1.0e-5f).IsNearZero());
  122. }
  123. TEST_CASE("TestVec3Operators")
  124. {
  125. CHECK(-Vec3(1, 2, 3) == Vec3(-1, -2, -3));
  126. CHECK(Vec3(1, 2, 3) + Vec3(4, 5, 6) == Vec3(5, 7, 9));
  127. CHECK(Vec3(1, 2, 3) - Vec3(6, 5, 4) == Vec3(-5, -3, -1));
  128. CHECK(Vec3(1, 2, 3) * Vec3(4, 5, 6) == Vec3(4, 10, 18));
  129. CHECK(Vec3(1, 2, 3) * 2 == Vec3(2, 4, 6));
  130. CHECK(4 * Vec3(1, 2, 3) == Vec3(4, 8, 12));
  131. CHECK(Vec3(1, 2, 3) / 2 == Vec3(0.5f, 1.0f, 1.5f));
  132. CHECK(Vec3(1, 2, 3) / Vec3(2, 8, 24) == Vec3(0.5f, 0.25f, 0.125f));
  133. Vec3 v = Vec3(1, 2, 3);
  134. v *= Vec3(4, 5, 6);
  135. CHECK(v == Vec3(4, 10, 18));
  136. v *= 2;
  137. CHECK(v == Vec3(8, 20, 36));
  138. v /= 2;
  139. CHECK(v == Vec3(4, 10, 18));
  140. v += Vec3(1, 2, 3);
  141. CHECK(v == Vec3(5, 12, 21));
  142. CHECK(Vec3(2, 4, 8).Reciprocal() == Vec3(0.5f, 0.25f, 0.125f));
  143. }
  144. TEST_CASE("TestVec3Swizzle")
  145. {
  146. Vec3 v(1, 2, 3);
  147. CHECK(v.SplatX() == Vec4::sReplicate(1));
  148. CHECK(v.SplatY() == Vec4::sReplicate(2));
  149. CHECK(v.SplatZ() == Vec4::sReplicate(3));
  150. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_X, SWIZZLE_X>() == Vec3(1, 1, 1));
  151. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_X, SWIZZLE_Y>() == Vec3(1, 1, 2));
  152. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_X, SWIZZLE_Z>() == Vec3(1, 1, 3));
  153. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X>() == Vec3(1, 2, 1));
  154. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y>() == Vec3(1, 2, 2));
  155. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z>() == Vec3(1, 2, 3));
  156. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_Z, SWIZZLE_X>() == Vec3(1, 3, 1));
  157. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_Z, SWIZZLE_Y>() == Vec3(1, 3, 2));
  158. CHECK(v.Swizzle<SWIZZLE_X, SWIZZLE_Z, SWIZZLE_Z>() == Vec3(1, 3, 3));
  159. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_X>() == Vec3(2, 1, 1));
  160. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y>() == Vec3(2, 1, 2));
  161. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Z>() == Vec3(2, 1, 3));
  162. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_X>() == Vec3(2, 2, 1));
  163. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y>() == Vec3(2, 2, 2));
  164. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Z>() == Vec3(2, 2, 3));
  165. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>() == Vec3(2, 3, 1));
  166. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Y>() == Vec3(2, 3, 2));
  167. CHECK(v.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z>() == Vec3(2, 3, 3));
  168. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_X>() == Vec3(3, 1, 1));
  169. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y>() == Vec3(3, 1, 2));
  170. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Z>() == Vec3(3, 1, 3));
  171. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X>() == Vec3(3, 2, 1));
  172. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_Y>() == Vec3(3, 2, 2));
  173. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_Z>() == Vec3(3, 2, 3));
  174. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_X>() == Vec3(3, 3, 1));
  175. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Y>() == Vec3(3, 3, 2));
  176. CHECK(v.Swizzle<SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z>() == Vec3(3, 3, 3));
  177. }
  178. TEST_CASE("TestVec3Abs")
  179. {
  180. CHECK(Vec3(1, -2, 3).Abs() == Vec3(1, 2, 3));
  181. CHECK(Vec3(-1, 2, -3).Abs() == Vec3(1, 2, 3));
  182. }
  183. TEST_CASE("TestVec3Dot")
  184. {
  185. CHECK(Vec3(1, 2, 3).Dot(Vec3(4, 5, 6)) == float(1 * 4 + 2 * 5 + 3 * 6));
  186. CHECK(Vec3(1, 2, 3).DotV(Vec3(4, 5, 6)) == Vec3::sReplicate(1 * 4 + 2 * 5 + 3 * 6));
  187. CHECK(Vec3(1, 2, 3).DotV4(Vec3(4, 5, 6)) == Vec4::sReplicate(1 * 4 + 2 * 5 + 3 * 6));
  188. }
  189. TEST_CASE("TestVec3Length")
  190. {
  191. CHECK(Vec3(1, 2, 3).LengthSq() == float(1 + 4 + 9));
  192. CHECK(Vec3(1, 2, 3).Length() == sqrt(float(1 + 4 + 9)));
  193. }
  194. TEST_CASE("TestVec3Sqrt")
  195. {
  196. CHECK_APPROX_EQUAL(Vec3(13, 15, 17).Sqrt(), Vec3(sqrt(13.0f), sqrt(15.0f), sqrt(17.0f)));
  197. }
  198. TEST_CASE("TestVec3Cross")
  199. {
  200. CHECK(Vec3(1, 0, 0).Cross(Vec3(0, 1, 0)) == Vec3(0, 0, 1));
  201. CHECK(Vec3(0, 1, 0).Cross(Vec3(1, 0, 0)) == Vec3(0, 0, -1));
  202. CHECK(Vec3(0, 1, 0).Cross(Vec3(0, 0, 1)) == Vec3(1, 0, 0));
  203. CHECK(Vec3(0, 0, 1).Cross(Vec3(0, 1, 0)) == Vec3(-1, 0, 0));
  204. CHECK(Vec3(0, 0, 1).Cross(Vec3(1, 0, 0)) == Vec3(0, 1, 0));
  205. CHECK(Vec3(1, 0, 0).Cross(Vec3(0, 0, 1)) == Vec3(0, -1, 0));
  206. }
  207. TEST_CASE("TestVec3Normalize")
  208. {
  209. CHECK(Vec3(3, 2, 1).Normalized() == Vec3(3, 2, 1) / sqrt(9.0f + 4.0f + 1.0f));
  210. CHECK(Vec3(3, 2, 1).NormalizedOr(Vec3(1, 2, 3)) == Vec3(3, 2, 1) / sqrt(9.0f + 4.0f + 1.0f));
  211. CHECK(Vec3::sZero().NormalizedOr(Vec3(1, 2, 3)) == Vec3(1, 2, 3));
  212. }
  213. TEST_CASE("TestVec3Cast")
  214. {
  215. CHECK(Vec3(1, 2, 3).ToInt() == UVec4(1, 2, 3, 3));
  216. CHECK(Vec3(1, 2, 3).ReinterpretAsInt() == UVec4(0x3f800000U, 0x40000000U, 0x40400000U, 0x40400000U));
  217. }
  218. TEST_CASE("TestVec3NormalizedPerpendicular")
  219. {
  220. UnitTestRandom random;
  221. uniform_real_distribution<float> one_to_ten(1.0f, 10.0f);
  222. for (int i = 0; i < 100; ++i)
  223. {
  224. Vec3 v = Vec3::sRandom(random);
  225. CHECK(v.IsNormalized());
  226. v *= one_to_ten(random);
  227. Vec3 p = v.GetNormalizedPerpendicular();
  228. CHECK(p.IsNormalized());
  229. CHECK(abs(v.Dot(p)) < 1.0e-6f);
  230. }
  231. }
  232. TEST_CASE("TestVec3Sign")
  233. {
  234. CHECK(Vec3(1.2345f, -6.7891f, 0).GetSign() == Vec3(1, -1, 1));
  235. CHECK(Vec3(0, 2.3456f, -7.8912f).GetSign() == Vec3(1, 1, -1));
  236. }
  237. #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  238. TEST_CASE("TestVec3SyncW")
  239. {
  240. {
  241. // Check that W equals Z
  242. Vec3 v(1, 2, 3);
  243. CHECK(Vec4(v) == Vec4(1, 2, 3, 3));
  244. }
  245. {
  246. // Check that setting individual components syncs W and Z
  247. Vec3 v;
  248. v.SetComponent(2, 3);
  249. v.SetComponent(1, 2);
  250. v.SetComponent(0, 1);
  251. CHECK(v == Vec3(1, 2, 3));
  252. CHECK(Vec4(v) == Vec4(1, 2, 3, 3));
  253. }
  254. {
  255. // Check that W and Z are still synced after a simple addition
  256. CHECK(Vec4(Vec3(1, 2, 3) + Vec3(4, 5, 6)) == Vec4(5, 7, 9, 9));
  257. }
  258. {
  259. // Test that casting a Vec4 to Vec3 syncs W and Z
  260. CHECK(Vec4(Vec3(Vec4(1, 2, 3, 4))) == Vec4(1, 2, 3, 3));
  261. }
  262. {
  263. // Test that loading from Float3 syncs W and Z
  264. CHECK(Vec4(Vec3(Float3(1, 2, 3))) == Vec4(1, 2, 3, 3));
  265. }
  266. {
  267. // Test that loading unsafe from Float3 syncs W and Z
  268. Float4 v(1, 2, 3, 4);
  269. CHECK(Vec4(Vec3::sLoadFloat3Unsafe(*(Float3 *)&v)) == Vec4(1, 2, 3, 3));
  270. }
  271. {
  272. // Test swizzle syncs W and Z
  273. CHECK(Vec4(Vec3(1, 2, 3).Swizzle<SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X>()) == Vec4(3, 2, 1, 1));
  274. }
  275. {
  276. // Test cross product syncs W and Z
  277. CHECK(Vec4(Vec3(1, 0, 0).Cross(Vec3(0, 1, 0))) == Vec4(0, 0, 1, 1));
  278. CHECK(Vec4(Vec3(0, 1, 0).Cross(Vec3(0, 0, 1))) == Vec4(1, 0, 0, 0));
  279. }
  280. }
  281. #endif // JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
  282. }