12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #include "UnitTestFramework.h"
- #include "PhysicsTestContext.h"
- #include <Jolt/Physics/Constraints/PathConstraintPathHermite.h>
- #include <Jolt/Physics/Constraints/PathConstraintPath.h>
- #include "Layers.h"
- TEST_SUITE("PathConstraintTests")
- {
- // Test a straight line using a hermite spline.
- TEST_CASE("TestPathConstraintPathHermite")
- {
- // A straight spline
- // This has e.g. for t = 0.1 a local minimum at 0.7 which breaks the Newton Raphson root finding if not doing the bisection algorithm first.
- Vec3 p1 = Vec3(1424.96313f, 468.565399f, 483.655975f);
- Vec3 t1 = Vec3(61.4222832f, 42.8926392f, -1.70530257e-13f);
- Vec3 n1 = Vec3(0, 0, 1);
- Vec3 p2 = Vec3(1445.20105f, 482.364319f, 483.655975f);
- Vec3 t2 = Vec3(20.2380009f, 13.7989082f, -5.68434189e-14f);
- Vec3 n2 = Vec3(0, 0, 1);
- // Construct path
- Ref<PathConstraintPathHermite> path = new PathConstraintPathHermite;
- path->AddPoint(p1, t1, n1);
- path->AddPoint(p2, t2, n2);
- // Test that positions before and after the line return 0 and 1
- float before_start = path->GetClosestPoint(p1 - 0.01f * t1);
- CHECK(before_start == 0.0f);
- float after_end = path->GetClosestPoint(p2 + 0.01f * t2);
- CHECK(after_end == 1.0f);
- for (int i = 0; i <= 10; ++i)
- {
- // Get point on the curve
- float fraction = 0.1f * i;
- Vec3 pos, tgt, nrm, bin;
- path->GetPointOnPath(fraction, pos, tgt, nrm, bin);
- // Let the path determine the fraction of the closest point
- float closest_fraction = path->GetClosestPoint(pos);
- // Validate that it is equal to what we put in
- CHECK_APPROX_EQUAL(fraction, closest_fraction, 1.0e-4f);
- }
- }
- }
|