ShapeTests.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include "UnitTestFramework.h"
  4. #include "PhysicsTestContext.h"
  5. #include <Jolt/Physics/Collision/Shape/ConvexHullShape.h>
  6. #include <Jolt/Physics/Collision/Shape/BoxShape.h>
  7. #include <Jolt/Physics/Collision/Shape/SphereShape.h>
  8. #include <Jolt/Physics/Collision/Shape/CapsuleShape.h>
  9. #include <Jolt/Physics/Collision/Shape/TaperedCapsuleShape.h>
  10. #include <Jolt/Physics/Collision/Shape/CylinderShape.h>
  11. #include <Jolt/Physics/Collision/Shape/ScaledShape.h>
  12. #include <Jolt/Physics/Collision/Shape/StaticCompoundShape.h>
  13. #include <Jolt/Physics/Collision/Shape/MutableCompoundShape.h>
  14. #include <Jolt/Physics/Collision/Shape/TriangleShape.h>
  15. #include <Jolt/Physics/Collision/Shape/RotatedTranslatedShape.h>
  16. #include <Jolt/Physics/Collision/Shape/HeightFieldShape.h>
  17. #include <Jolt/Physics/Collision/CollisionCollectorImpl.h>
  18. #include <Jolt/Physics/Collision/CollidePointResult.h>
  19. #include <Jolt/Core/StreamWrapper.h>
  20. TEST_SUITE("ShapeTests")
  21. {
  22. // Test convex hull shape
  23. TEST_CASE("TestConvexHullShape")
  24. {
  25. const float cDensity = 1.5f;
  26. // Create convex hull shape of a box
  27. Array<Vec3> box;
  28. box.push_back(Vec3(5, 6, 7));
  29. box.push_back(Vec3(5, 6, 14));
  30. box.push_back(Vec3(5, 12, 7));
  31. box.push_back(Vec3(5, 12, 14));
  32. box.push_back(Vec3(10, 6, 7));
  33. box.push_back(Vec3(10, 6, 14));
  34. box.push_back(Vec3(10, 12, 7));
  35. box.push_back(Vec3(10, 12, 14));
  36. ConvexHullShapeSettings settings(box);
  37. settings.SetDensity(cDensity);
  38. RefConst<Shape> shape = settings.Create().Get();
  39. // Validate calculated center of mass
  40. Vec3 com = shape->GetCenterOfMass();
  41. CHECK_APPROX_EQUAL(Vec3(7.5f, 9.0f, 10.5f), com, 1.0e-5f);
  42. // Calculate reference value of mass and inertia of a box
  43. MassProperties reference;
  44. reference.SetMassAndInertiaOfSolidBox(Vec3(5, 6, 7), cDensity);
  45. // Mass is easy to calculate, double check if SetMassAndInertiaOfSolidBox calculated it correctly
  46. CHECK_APPROX_EQUAL(5.0f * 6.0f * 7.0f * cDensity, reference.mMass, 1.0e-6f);
  47. // Get calculated inertia tensor
  48. MassProperties m = shape->GetMassProperties();
  49. CHECK_APPROX_EQUAL(reference.mMass, m.mMass, 1.0e-6f);
  50. CHECK_APPROX_EQUAL(reference.mInertia, m.mInertia, 1.0e-4f);
  51. // Check inner radius
  52. CHECK_APPROX_EQUAL(shape->GetInnerRadius(), 2.5f);
  53. }
  54. // Test IsValidScale function
  55. TEST_CASE("TestIsValidScale")
  56. {
  57. // Test simple shapes
  58. Ref<Shape> sphere = new SphereShape(2.0f);
  59. CHECK(!sphere->IsValidScale(Vec3::sZero()));
  60. CHECK(sphere->IsValidScale(Vec3(2, 2, 2)));
  61. CHECK(sphere->IsValidScale(Vec3(-1, 1, -1)));
  62. CHECK(!sphere->IsValidScale(Vec3(2, 1, 1)));
  63. CHECK(!sphere->IsValidScale(Vec3(1, 2, 1)));
  64. CHECK(!sphere->IsValidScale(Vec3(1, 1, 2)));
  65. Ref<Shape> capsule = new CapsuleShape(2.0f, 0.5f);
  66. CHECK(!capsule->IsValidScale(Vec3::sZero()));
  67. CHECK(capsule->IsValidScale(Vec3(2, 2, 2)));
  68. CHECK(capsule->IsValidScale(Vec3(-1, 1, -1)));
  69. CHECK(!capsule->IsValidScale(Vec3(2, 1, 1)));
  70. CHECK(!capsule->IsValidScale(Vec3(1, 2, 1)));
  71. CHECK(!capsule->IsValidScale(Vec3(1, 1, 2)));
  72. Ref<Shape> tapered_capsule = TaperedCapsuleShapeSettings(2.0f, 0.5f, 0.7f).Create().Get();
  73. CHECK(!tapered_capsule->IsValidScale(Vec3::sZero()));
  74. CHECK(tapered_capsule->IsValidScale(Vec3(2, 2, 2)));
  75. CHECK(tapered_capsule->IsValidScale(Vec3(-1, 1, -1)));
  76. CHECK(!tapered_capsule->IsValidScale(Vec3(2, 1, 1)));
  77. CHECK(!tapered_capsule->IsValidScale(Vec3(1, 2, 1)));
  78. CHECK(!tapered_capsule->IsValidScale(Vec3(1, 1, 2)));
  79. Ref<Shape> cylinder = new CylinderShape(0.5f, 2.0f);
  80. CHECK(!cylinder->IsValidScale(Vec3::sZero()));
  81. CHECK(cylinder->IsValidScale(Vec3(2, 2, 2)));
  82. CHECK(cylinder->IsValidScale(Vec3(-1, 1, -1)));
  83. CHECK(!cylinder->IsValidScale(Vec3(2, 1, 1)));
  84. CHECK(cylinder->IsValidScale(Vec3(1, 2, 1)));
  85. CHECK(!cylinder->IsValidScale(Vec3(1, 1, 2)));
  86. Ref<Shape> triangle = new TriangleShape(Vec3(1, 2, 3), Vec3(4, 5, 6), Vec3(7, 8, 9));
  87. CHECK(!triangle->IsValidScale(Vec3::sZero()));
  88. CHECK(triangle->IsValidScale(Vec3(2, 2, 2)));
  89. CHECK(triangle->IsValidScale(Vec3(-1, 1, -1)));
  90. CHECK(triangle->IsValidScale(Vec3(2, 1, 1)));
  91. CHECK(triangle->IsValidScale(Vec3(1, 2, 1)));
  92. CHECK(triangle->IsValidScale(Vec3(1, 1, 2)));
  93. Ref<Shape> triangle2 = new TriangleShape(Vec3(1, 2, 3), Vec3(4, 5, 6), Vec3(7, 8, 9), 0.01f); // With convex radius
  94. CHECK(!triangle2->IsValidScale(Vec3::sZero()));
  95. CHECK(triangle2->IsValidScale(Vec3(2, 2, 2)));
  96. CHECK(triangle2->IsValidScale(Vec3(-1, 1, -1)));
  97. CHECK(!triangle2->IsValidScale(Vec3(2, 1, 1)));
  98. CHECK(!triangle2->IsValidScale(Vec3(1, 2, 1)));
  99. CHECK(!triangle2->IsValidScale(Vec3(1, 1, 2)));
  100. Ref<Shape> scaled = new ScaledShape(sphere, Vec3(1, 2, 1));
  101. CHECK(!scaled->IsValidScale(Vec3::sZero()));
  102. CHECK(!scaled->IsValidScale(Vec3(1, 1, 1)));
  103. CHECK(scaled->IsValidScale(Vec3(1, 0.5f, 1)));
  104. CHECK(scaled->IsValidScale(Vec3(-1, 0.5f, 1)));
  105. CHECK(!scaled->IsValidScale(Vec3(2, 1, 1)));
  106. CHECK(!scaled->IsValidScale(Vec3(1, 2, 1)));
  107. CHECK(!scaled->IsValidScale(Vec3(1, 1, 2)));
  108. Ref<Shape> scaled2 = new ScaledShape(scaled, Vec3(1, 0.5f, 1));
  109. CHECK(!scaled2->IsValidScale(Vec3::sZero()));
  110. CHECK(scaled2->IsValidScale(Vec3(2, 2, 2)));
  111. CHECK(scaled2->IsValidScale(Vec3(-1, 1, -1)));
  112. CHECK(!scaled2->IsValidScale(Vec3(2, 1, 1)));
  113. CHECK(!scaled2->IsValidScale(Vec3(1, 2, 1)));
  114. CHECK(!scaled2->IsValidScale(Vec3(1, 1, 2)));
  115. // Test a compound with shapes that can only be scaled uniformly
  116. StaticCompoundShapeSettings compound_settings;
  117. compound_settings.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisX(), 0.1f * JPH_PI), sphere);
  118. compound_settings.AddShape(Vec3(4, 5, 6), Quat::sRotation(Vec3::sAxisY(), 0.1f * JPH_PI), capsule);
  119. Ref<Shape> compound = compound_settings.Create().Get();
  120. CHECK(!compound->IsValidScale(Vec3::sZero()));
  121. CHECK(compound->IsValidScale(Vec3(1, 1, 1)));
  122. CHECK(compound->IsValidScale(Vec3(2, 2, 2)));
  123. CHECK(!compound->IsValidScale(Vec3(2, 1, 1)));
  124. CHECK(!compound->IsValidScale(Vec3(1, 2, 1)));
  125. CHECK(!compound->IsValidScale(Vec3(1, 1, 2)));
  126. // Test compound containing a triangle shape that can be scaled in any way
  127. StaticCompoundShapeSettings compound_settings2;
  128. compound_settings2.AddShape(Vec3(1, 2, 3), Quat::sIdentity(), triangle);
  129. compound_settings2.AddShape(Vec3(4, 5, 6), Quat::sIdentity(), new ScaledShape(triangle, Vec3(10, 11, 12)));
  130. Ref<Shape> compound2 = compound_settings2.Create().Get();
  131. CHECK(!compound2->IsValidScale(Vec3::sZero()));
  132. CHECK(compound2->IsValidScale(Vec3(1, 1, 1)));
  133. CHECK(compound2->IsValidScale(Vec3(2, 2, 2)));
  134. CHECK(compound2->IsValidScale(Vec3(2, 1, 1)));
  135. CHECK(compound2->IsValidScale(Vec3(1, 2, 1)));
  136. CHECK(compound2->IsValidScale(Vec3(1, 1, 2)));
  137. // Test rotations inside the compound of 90 degrees
  138. StaticCompoundShapeSettings compound_settings3;
  139. compound_settings3.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.5f * JPH_PI), triangle);
  140. compound_settings3.AddShape(Vec3(4, 5, 6), Quat::sRotation(Vec3::sAxisZ(), 0.5f * JPH_PI), new ScaledShape(triangle, Vec3(10, 11, 12)));
  141. Ref<Shape> compound3 = compound_settings3.Create().Get();
  142. CHECK(!compound3->IsValidScale(Vec3::sZero()));
  143. CHECK(compound3->IsValidScale(Vec3(1, 1, 1)));
  144. CHECK(compound3->IsValidScale(Vec3(2, 2, 2)));
  145. CHECK(compound3->IsValidScale(Vec3(2, 1, 1)));
  146. CHECK(compound3->IsValidScale(Vec3(1, 2, 1)));
  147. CHECK(compound3->IsValidScale(Vec3(1, 1, 2)));
  148. // Test non-90 degree rotations, this would cause shearing so is not allowed (we can't express that by passing a diagonal scale vector)
  149. StaticCompoundShapeSettings compound_settings4;
  150. compound_settings4.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), 0.25f * JPH_PI), triangle);
  151. compound_settings4.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.25f * JPH_PI), triangle);
  152. Ref<Shape> compound4 = compound_settings4.Create().Get();
  153. CHECK(!compound4->IsValidScale(Vec3::sZero()));
  154. CHECK(compound4->IsValidScale(Vec3(1, 1, 1)));
  155. CHECK(compound4->IsValidScale(Vec3(2, 2, 2)));
  156. CHECK(!compound4->IsValidScale(Vec3(2, 1, 1)));
  157. CHECK(!compound4->IsValidScale(Vec3(1, 2, 1)));
  158. CHECK(compound4->IsValidScale(Vec3(1, 1, 2))); // We're rotation around Z, so non-uniform in the Z direction is ok
  159. // Test a mutable compound with shapes that can only be scaled uniformly
  160. MutableCompoundShapeSettings mutable_compound_settings;
  161. mutable_compound_settings.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisX(), 0.1f * JPH_PI), sphere);
  162. mutable_compound_settings.AddShape(Vec3(4, 5, 6), Quat::sRotation(Vec3::sAxisY(), 0.1f * JPH_PI), capsule);
  163. Ref<Shape> mutable_compound = mutable_compound_settings.Create().Get();
  164. CHECK(!mutable_compound->IsValidScale(Vec3::sZero()));
  165. CHECK(mutable_compound->IsValidScale(Vec3(1, 1, 1)));
  166. CHECK(mutable_compound->IsValidScale(Vec3(2, 2, 2)));
  167. CHECK(!mutable_compound->IsValidScale(Vec3(2, 1, 1)));
  168. CHECK(!mutable_compound->IsValidScale(Vec3(1, 2, 1)));
  169. CHECK(!mutable_compound->IsValidScale(Vec3(1, 1, 2)));
  170. // Test mutable compound containing a triangle shape that can be scaled in any way
  171. MutableCompoundShapeSettings mutable_compound_settings2;
  172. mutable_compound_settings2.AddShape(Vec3(1, 2, 3), Quat::sIdentity(), triangle);
  173. mutable_compound_settings2.AddShape(Vec3(4, 5, 6), Quat::sIdentity(), new ScaledShape(triangle, Vec3(10, 11, 12)));
  174. Ref<Shape> mutable_compound2 = mutable_compound_settings2.Create().Get();
  175. CHECK(!mutable_compound2->IsValidScale(Vec3::sZero()));
  176. CHECK(mutable_compound2->IsValidScale(Vec3(1, 1, 1)));
  177. CHECK(mutable_compound2->IsValidScale(Vec3(2, 2, 2)));
  178. CHECK(mutable_compound2->IsValidScale(Vec3(2, 1, 1)));
  179. CHECK(mutable_compound2->IsValidScale(Vec3(1, 2, 1)));
  180. CHECK(mutable_compound2->IsValidScale(Vec3(1, 1, 2)));
  181. // Test rotations inside the mutable compound of 90 degrees
  182. MutableCompoundShapeSettings mutable_compound_settings3;
  183. mutable_compound_settings3.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.5f * JPH_PI), triangle);
  184. mutable_compound_settings3.AddShape(Vec3(4, 5, 6), Quat::sRotation(Vec3::sAxisZ(), 0.5f * JPH_PI), new ScaledShape(triangle, Vec3(10, 11, 12)));
  185. Ref<Shape> mutable_compound3 = mutable_compound_settings3.Create().Get();
  186. CHECK(!mutable_compound3->IsValidScale(Vec3::sZero()));
  187. CHECK(mutable_compound3->IsValidScale(Vec3(1, 1, 1)));
  188. CHECK(mutable_compound3->IsValidScale(Vec3(2, 2, 2)));
  189. CHECK(mutable_compound3->IsValidScale(Vec3(2, 1, 1)));
  190. CHECK(mutable_compound3->IsValidScale(Vec3(1, 2, 1)));
  191. CHECK(mutable_compound3->IsValidScale(Vec3(1, 1, 2)));
  192. // Test non-90 degree rotations, this would cause shearing so is not allowed (we can't express that by passing a diagonal scale vector)
  193. MutableCompoundShapeSettings mutable_compound_settings4;
  194. mutable_compound_settings4.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), 0.25f * JPH_PI), triangle);
  195. mutable_compound_settings4.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.25f * JPH_PI), triangle);
  196. Ref<Shape> mutable_compound4 = mutable_compound_settings4.Create().Get();
  197. CHECK(!mutable_compound4->IsValidScale(Vec3::sZero()));
  198. CHECK(mutable_compound4->IsValidScale(Vec3(1, 1, 1)));
  199. CHECK(mutable_compound4->IsValidScale(Vec3(2, 2, 2)));
  200. CHECK(!mutable_compound4->IsValidScale(Vec3(2, 1, 1)));
  201. CHECK(!mutable_compound4->IsValidScale(Vec3(1, 2, 1)));
  202. CHECK(mutable_compound4->IsValidScale(Vec3(1, 1, 2))); // We're rotation around Z, so non-uniform in the Z direction is ok
  203. // Test a rotated translated shape that can only be scaled uniformly
  204. RotatedTranslatedShapeSettings rt_settings(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisX(), 0.1f * JPH_PI), sphere);
  205. Ref<Shape> rt_shape = rt_settings.Create().Get();
  206. CHECK(!rt_shape->IsValidScale(Vec3::sZero()));
  207. CHECK(rt_shape->IsValidScale(Vec3(1, 1, 1)));
  208. CHECK(rt_shape->IsValidScale(Vec3(2, 2, 2)));
  209. CHECK(!rt_shape->IsValidScale(Vec3(2, 1, 1)));
  210. CHECK(!rt_shape->IsValidScale(Vec3(1, 2, 1)));
  211. CHECK(!rt_shape->IsValidScale(Vec3(1, 1, 2)));
  212. // Test rotated translated shape containing a triangle shape that can be scaled in any way
  213. RotatedTranslatedShapeSettings rt_settings2(Vec3(4, 5, 6), Quat::sIdentity(), new ScaledShape(triangle, Vec3(10, 11, 12)));
  214. Ref<Shape> rt_shape2 = rt_settings2.Create().Get();
  215. CHECK(!rt_shape2->IsValidScale(Vec3::sZero()));
  216. CHECK(rt_shape2->IsValidScale(Vec3(1, 1, 1)));
  217. CHECK(rt_shape2->IsValidScale(Vec3(2, 2, 2)));
  218. CHECK(rt_shape2->IsValidScale(Vec3(2, 1, 1)));
  219. CHECK(rt_shape2->IsValidScale(Vec3(1, 2, 1)));
  220. CHECK(rt_shape2->IsValidScale(Vec3(1, 1, 2)));
  221. // Test rotations inside the rotated translated of 90 degrees
  222. RotatedTranslatedShapeSettings rt_settings3(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.5f * JPH_PI), triangle);
  223. Ref<Shape> rt_shape3 = rt_settings3.Create().Get();
  224. CHECK(!rt_shape3->IsValidScale(Vec3::sZero()));
  225. CHECK(rt_shape3->IsValidScale(Vec3(1, 1, 1)));
  226. CHECK(rt_shape3->IsValidScale(Vec3(2, 2, 2)));
  227. CHECK(rt_shape3->IsValidScale(Vec3(2, 1, 1)));
  228. CHECK(rt_shape3->IsValidScale(Vec3(1, 2, 1)));
  229. CHECK(rt_shape3->IsValidScale(Vec3(1, 1, 2)));
  230. // Test non-90 degree rotations, this would cause shearing so is not allowed (we can't express that by passing a diagonal scale vector)
  231. RotatedTranslatedShapeSettings rt_settings4(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), 0.25f * JPH_PI), triangle);
  232. Ref<Shape> rt_shape4 = rt_settings4.Create().Get();
  233. CHECK(!rt_shape4->IsValidScale(Vec3::sZero()));
  234. CHECK(rt_shape4->IsValidScale(Vec3(1, 1, 1)));
  235. CHECK(rt_shape4->IsValidScale(Vec3(2, 2, 2)));
  236. CHECK(!rt_shape4->IsValidScale(Vec3(2, 1, 1)));
  237. CHECK(!rt_shape4->IsValidScale(Vec3(1, 2, 1)));
  238. CHECK(rt_shape4->IsValidScale(Vec3(1, 1, 2))); // We're rotation around Z, so non-uniform in the Z direction is ok
  239. }
  240. // Test embedded shape
  241. TEST_CASE("TestEmbeddedShape")
  242. {
  243. {
  244. // Test shape constructed on stack, where shape construction succeeds
  245. ConvexHullShapeSettings settings;
  246. settings.mPoints.push_back(Vec3(0, 0, 0));
  247. settings.mPoints.push_back(Vec3(1, 0, 0));
  248. settings.mPoints.push_back(Vec3(0, 1, 0));
  249. settings.mPoints.push_back(Vec3(0, 0, 1));
  250. Shape::ShapeResult result;
  251. ConvexHullShape shape(settings, result);
  252. shape.SetEmbedded();
  253. CHECK(result.IsValid());
  254. result.Clear(); // Release the reference from the result
  255. // Test CollidePoint for this shape
  256. AllHitCollisionCollector<CollidePointCollector> collector;
  257. shape.CollidePoint(Vec3::sReplicate(-0.1f) - shape.GetCenterOfMass(), SubShapeIDCreator(), collector);
  258. CHECK(collector.mHits.empty());
  259. shape.CollidePoint(Vec3::sReplicate(0.1f) - shape.GetCenterOfMass(), SubShapeIDCreator(), collector);
  260. CHECK(collector.mHits.size() == 1);
  261. }
  262. {
  263. // Test shape constructed on stack, where shape construction fails
  264. ConvexHullShapeSettings settings;
  265. Shape::ShapeResult result;
  266. ConvexHullShape shape(settings, result);
  267. shape.SetEmbedded();
  268. CHECK(!result.IsValid());
  269. }
  270. }
  271. // Test submerged volume calculation
  272. TEST_CASE("TestGetSubmergedVolume")
  273. {
  274. Ref<BoxShape> box = new BoxShape(Vec3(1, 2, 3));
  275. Vec3 scale(2, -3, 4);
  276. Mat44 translation = Mat44::sTranslation(Vec3(0, 6, 0)); // Translate so we're on the y = 0 plane
  277. // Plane pointing positive Y
  278. // Entirely above the plane
  279. {
  280. float total_volume, submerged_volume;
  281. Vec3 center_of_buoyancy;
  282. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, -0.001f, 0), Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy);
  283. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  284. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  285. }
  286. // Entirely below the plane
  287. {
  288. float total_volume, submerged_volume;
  289. Vec3 center_of_buoyancy;
  290. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 12.001f, 0), Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy);
  291. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  292. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  293. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  294. }
  295. // Halfway through
  296. {
  297. float total_volume, submerged_volume;
  298. Vec3 center_of_buoyancy;
  299. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 6.0f, 0), Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy);
  300. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  301. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 6.0f * 24.0f);
  302. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 3, 0));
  303. }
  304. // Plane pointing negative Y
  305. // Entirely above the plane
  306. {
  307. float total_volume, submerged_volume;
  308. Vec3 center_of_buoyancy;
  309. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(-4, 12.001f, 0), -Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy);
  310. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  311. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  312. }
  313. // Entirely below the plane
  314. {
  315. float total_volume, submerged_volume;
  316. Vec3 center_of_buoyancy;
  317. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, -0.001f, 0), -Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy);
  318. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  319. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  320. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  321. }
  322. // Halfway through
  323. {
  324. float total_volume, submerged_volume;
  325. Vec3 center_of_buoyancy;
  326. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 6.0f, 0), -Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy);
  327. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  328. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 6.0f * 24.0f);
  329. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 9, 0));
  330. }
  331. // Plane pointing positive X
  332. // Entirely above the plane
  333. {
  334. float total_volume, submerged_volume;
  335. Vec3 center_of_buoyancy;
  336. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(-2.001f, 0, 0), Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy);
  337. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  338. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  339. }
  340. // Entirely below the plane
  341. {
  342. float total_volume, submerged_volume;
  343. Vec3 center_of_buoyancy;
  344. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(2.001f, 0, 0), Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy);
  345. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  346. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  347. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  348. }
  349. // Halfway through
  350. {
  351. float total_volume, submerged_volume;
  352. Vec3 center_of_buoyancy;
  353. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 0), Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy);
  354. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  355. CHECK_APPROX_EQUAL(submerged_volume, 2.0f * 12.0f * 24.0f);
  356. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(-1, 6, 0));
  357. }
  358. // Plane pointing negative X
  359. // Entirely above the plane
  360. {
  361. float total_volume, submerged_volume;
  362. Vec3 center_of_buoyancy;
  363. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(2.001f, 0, 0), -Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy);
  364. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  365. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  366. }
  367. // Entirely below the plane
  368. {
  369. float total_volume, submerged_volume;
  370. Vec3 center_of_buoyancy;
  371. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(-2.001f, 0, 0), -Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy);
  372. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  373. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  374. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  375. }
  376. // Halfway through
  377. {
  378. float total_volume, submerged_volume;
  379. Vec3 center_of_buoyancy;
  380. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 0), -Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy);
  381. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  382. CHECK_APPROX_EQUAL(submerged_volume, 2.0f * 12.0f * 24.0f);
  383. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(1, 6, 0));
  384. }
  385. // Plane pointing positive Z
  386. // Entirely above the plane
  387. {
  388. float total_volume, submerged_volume;
  389. Vec3 center_of_buoyancy;
  390. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, -12.001f), Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy);
  391. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  392. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  393. }
  394. // Entirely below the plane
  395. {
  396. float total_volume, submerged_volume;
  397. Vec3 center_of_buoyancy;
  398. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 12.001f), Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy);
  399. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  400. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  401. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  402. }
  403. // Halfway through
  404. {
  405. float total_volume, submerged_volume;
  406. Vec3 center_of_buoyancy;
  407. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 0), Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy);
  408. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  409. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 12.0f);
  410. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, -6));
  411. }
  412. // Plane pointing negative Z
  413. // Entirely above the plane
  414. {
  415. float total_volume, submerged_volume;
  416. Vec3 center_of_buoyancy;
  417. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 12.001f), -Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy);
  418. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  419. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  420. }
  421. // Entirely below the plane
  422. {
  423. float total_volume, submerged_volume;
  424. Vec3 center_of_buoyancy;
  425. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, -12.001f), -Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy);
  426. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  427. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  428. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  429. }
  430. // Halfway through
  431. {
  432. float total_volume, submerged_volume;
  433. Vec3 center_of_buoyancy;
  434. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 0), -Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy);
  435. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  436. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 12.0f);
  437. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 6));
  438. }
  439. }
  440. // Test setting user data on shapes
  441. TEST_CASE("TestShapeUserData")
  442. {
  443. const float cRadius = 2.0f;
  444. // Create a sphere with user data
  445. SphereShapeSettings sphere_settings(cRadius);
  446. sphere_settings.mUserData = 0x1234567887654321;
  447. Ref<Shape> sphere = sphere_settings.Create().Get();
  448. CHECK(sphere->GetUserData() == 0x1234567887654321);
  449. // Change the user data
  450. sphere->SetUserData(0x5678123443218765);
  451. CHECK(sphere->GetUserData() == 0x5678123443218765);
  452. stringstream data;
  453. // Write sphere to a binary stream
  454. {
  455. StreamOutWrapper stream_out(data);
  456. sphere->SaveBinaryState(stream_out);
  457. }
  458. // Destroy the sphere
  459. sphere = nullptr;
  460. // Read sphere from binary stream
  461. {
  462. StreamInWrapper stream_in(data);
  463. sphere = Shape::sRestoreFromBinaryState(stream_in).Get();
  464. }
  465. // Check that the sphere and its user data was preserved
  466. CHECK(sphere->GetType() == EShapeType::Convex);
  467. CHECK(sphere->GetSubType() == EShapeSubType::Sphere);
  468. CHECK(sphere->GetUserData() == 0x5678123443218765);
  469. CHECK(static_cast<SphereShape *>(sphere.GetPtr())->GetRadius() == cRadius);
  470. }
  471. // Test setting user data on shapes
  472. TEST_CASE("TestIsValidSubShapeID")
  473. {
  474. MutableCompoundShapeSettings shape1_settings;
  475. RefConst<CompoundShape> shape1 = static_cast<const CompoundShape *>(shape1_settings.Create().Get().GetPtr());
  476. MutableCompoundShapeSettings shape2_settings;
  477. shape2_settings.AddShape(Vec3::sZero(), Quat::sIdentity(), new SphereShape(1.0f));
  478. shape2_settings.AddShape(Vec3::sZero(), Quat::sIdentity(), new SphereShape(1.0f));
  479. shape2_settings.AddShape(Vec3::sZero(), Quat::sIdentity(), new SphereShape(1.0f));
  480. RefConst<CompoundShape> shape2 = static_cast<const CompoundShape *>(shape2_settings.Create().Get().GetPtr());
  481. // Get sub shape IDs of shape 2 and test if they're valid
  482. SubShapeID sub_shape1 = shape2->GetSubShapeIDFromIndex(0, SubShapeIDCreator()).GetID();
  483. CHECK(shape2->IsSubShapeIDValid(sub_shape1));
  484. SubShapeID sub_shape2 = shape2->GetSubShapeIDFromIndex(1, SubShapeIDCreator()).GetID();
  485. CHECK(shape2->IsSubShapeIDValid(sub_shape2));
  486. SubShapeID sub_shape3 = shape2->GetSubShapeIDFromIndex(2, SubShapeIDCreator()).GetID();
  487. CHECK(shape2->IsSubShapeIDValid(sub_shape3));
  488. SubShapeID sub_shape4 = shape2->GetSubShapeIDFromIndex(3, SubShapeIDCreator()).GetID(); // This one doesn't exist
  489. CHECK(!shape2->IsSubShapeIDValid(sub_shape4));
  490. // Shape 1 has no parts so these sub shape ID's should not be valid
  491. CHECK(!shape1->IsSubShapeIDValid(sub_shape1));
  492. CHECK(!shape1->IsSubShapeIDValid(sub_shape2));
  493. CHECK(!shape1->IsSubShapeIDValid(sub_shape3));
  494. CHECK(!shape1->IsSubShapeIDValid(sub_shape4));
  495. }
  496. // Test that an error is reported when we run out of sub shape bits
  497. TEST_CASE("TestOutOfSubShapeIDBits")
  498. {
  499. static constexpr uint32 cHeightFieldSamples = 1024;
  500. static constexpr int cNumBitsPerCompound = 4;
  501. // Create a heightfield
  502. float *samples = new float [cHeightFieldSamples * cHeightFieldSamples];
  503. memset(samples, 0, cHeightFieldSamples * cHeightFieldSamples * sizeof(float));
  504. RefConst<Shape> previous_shape = HeightFieldShapeSettings(samples, Vec3::sZero(), Vec3::sReplicate(1.0f), cHeightFieldSamples).Create().Get();
  505. delete [] samples;
  506. // Calculate the amount of bits needed to address all triangles in the heightfield
  507. uint num_bits = 32 - CountLeadingZeros((cHeightFieldSamples - 1) * (cHeightFieldSamples - 1) * 2);
  508. for (;;)
  509. {
  510. // Check that the total sub shape ID bits up to this point is correct
  511. CHECK(previous_shape->GetSubShapeIDBitsRecursive() == num_bits);
  512. // Create a compound with a number of sub shapes
  513. StaticCompoundShapeSettings compound_settings;
  514. compound_settings.SetEmbedded();
  515. for (int i = 0; i < (1 << cNumBitsPerCompound) ; ++i)
  516. compound_settings.AddShape(Vec3((float)i, 0, 0), Quat::sIdentity(), previous_shape);
  517. Shape::ShapeResult result = compound_settings.Create();
  518. num_bits += cNumBitsPerCompound;
  519. if (num_bits < SubShapeID::MaxBits)
  520. {
  521. // Creation should have succeeded
  522. CHECK(result.IsValid());
  523. previous_shape = result.Get();
  524. }
  525. else
  526. {
  527. // Creation should have failed because we ran out of bits
  528. CHECK(!result.IsValid());
  529. break;
  530. }
  531. }
  532. }
  533. }