EstimateCollisionResponse.cpp 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Collision/EstimateCollisionResponse.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. JPH_NAMESPACE_BEGIN
  8. void EstimateCollisionResponse(const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, CollisionEstimationResult &outResult, float inCombinedFriction, float inCombinedRestitution, float inMinVelocityForRestitution, uint inNumIterations)
  9. {
  10. // Note this code is based on AxisConstraintPart, see that class for more comments on the math
  11. ContactPoints::size_type num_points = inManifold.mRelativeContactPointsOn1.size();
  12. JPH_ASSERT(num_points == inManifold.mRelativeContactPointsOn2.size());
  13. // Start with zero impulses
  14. outResult.mImpulses.resize(num_points);
  15. memset(outResult.mImpulses.data(), 0, num_points * sizeof(CollisionEstimationResult::Impulse));
  16. // Calculate friction directions
  17. outResult.mTangent1 = inManifold.mWorldSpaceNormal.GetNormalizedPerpendicular();
  18. outResult.mTangent2 = inManifold.mWorldSpaceNormal.Cross(outResult.mTangent1);
  19. // Get body velocities
  20. EMotionType motion_type1 = inBody1.GetMotionType();
  21. const MotionProperties *motion_properties1 = inBody1.GetMotionPropertiesUnchecked();
  22. if (motion_type1 != EMotionType::Static)
  23. {
  24. outResult.mLinearVelocity1 = motion_properties1->GetLinearVelocity();
  25. outResult.mAngularVelocity1 = motion_properties1->GetAngularVelocity();
  26. }
  27. else
  28. outResult.mLinearVelocity1 = outResult.mAngularVelocity1 = Vec3::sZero();
  29. EMotionType motion_type2 = inBody2.GetMotionType();
  30. const MotionProperties *motion_properties2 = inBody2.GetMotionPropertiesUnchecked();
  31. if (motion_type2 != EMotionType::Static)
  32. {
  33. outResult.mLinearVelocity2 = motion_properties2->GetLinearVelocity();
  34. outResult.mAngularVelocity2 = motion_properties2->GetAngularVelocity();
  35. }
  36. else
  37. outResult.mLinearVelocity2 = outResult.mAngularVelocity2 = Vec3::sZero();
  38. // Get inverse mass and inertia
  39. float inv_m1, inv_m2;
  40. Mat44 inv_i1, inv_i2;
  41. if (motion_type1 == EMotionType::Dynamic)
  42. {
  43. inv_m1 = motion_properties1->GetInverseMass();
  44. inv_i1 = inBody1.GetInverseInertia();
  45. }
  46. else
  47. {
  48. inv_m1 = 0.0f;
  49. inv_i1 = Mat44::sZero();
  50. }
  51. if (motion_type2 == EMotionType::Dynamic)
  52. {
  53. inv_m2 = motion_properties2->GetInverseMass();
  54. inv_i2 = inBody2.GetInverseInertia();
  55. }
  56. else
  57. {
  58. inv_m2 = 0.0f;
  59. inv_i2 = Mat44::sZero();
  60. }
  61. // Get center of masses relative to the base offset
  62. Vec3 com1 = Vec3(inBody1.GetCenterOfMassPosition() - inManifold.mBaseOffset);
  63. Vec3 com2 = Vec3(inBody2.GetCenterOfMassPosition() - inManifold.mBaseOffset);
  64. struct AxisConstraint
  65. {
  66. inline void Initialize(Vec3Arg inR1, Vec3Arg inR2, Vec3Arg inWorldSpaceNormal, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2)
  67. {
  68. // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
  69. mR1PlusUxAxis = inR1.Cross(inWorldSpaceNormal);
  70. mR2xAxis = inR2.Cross(inWorldSpaceNormal);
  71. mInvI1_R1PlusUxAxis = inInvI1.Multiply3x3(mR1PlusUxAxis);
  72. mInvI2_R2xAxis = inInvI2.Multiply3x3(mR2xAxis);
  73. mEffectiveMass = 1.0f / (inInvM1 + mInvI1_R1PlusUxAxis.Dot(mR1PlusUxAxis) + inInvM2 + mInvI2_R2xAxis.Dot(mR2xAxis));
  74. mBias = 0.0f;
  75. }
  76. inline void Solve(Vec3Arg inWorldSpaceNormal, float inInvM1, float inInvM2, float inMinLambda, float inMaxLambda, float &ioTotalLambda, CollisionEstimationResult &ioResult) const
  77. {
  78. // Calculate jacobian multiplied by linear/angular velocity
  79. float jv = inWorldSpaceNormal.Dot(ioResult.mLinearVelocity1 - ioResult.mLinearVelocity2) + mR1PlusUxAxis.Dot(ioResult.mAngularVelocity1) - mR2xAxis.Dot(ioResult.mAngularVelocity2);
  80. // Lagrange multiplier is:
  81. //
  82. // lambda = -K^-1 (J v + b)
  83. float lambda = mEffectiveMass * (jv - mBias);
  84. float new_lambda = Clamp(ioTotalLambda + lambda, inMinLambda, inMaxLambda); // Clamp impulse
  85. lambda = new_lambda - ioTotalLambda; // Lambda potentially got clamped, calculate the new impulse to apply
  86. ioTotalLambda = new_lambda; // Store accumulated impulse
  87. // Apply impulse to body velocities
  88. ioResult.mLinearVelocity1 -= (lambda * inInvM1) * inWorldSpaceNormal;
  89. ioResult.mAngularVelocity1 -= lambda * mInvI1_R1PlusUxAxis;
  90. ioResult.mLinearVelocity2 += (lambda * inInvM2) * inWorldSpaceNormal;
  91. ioResult.mAngularVelocity2 += lambda * mInvI2_R2xAxis;
  92. }
  93. Vec3 mR1PlusUxAxis;
  94. Vec3 mR2xAxis;
  95. Vec3 mInvI1_R1PlusUxAxis;
  96. Vec3 mInvI2_R2xAxis;
  97. float mEffectiveMass;
  98. float mBias;
  99. };
  100. struct Constraint
  101. {
  102. AxisConstraint mContact;
  103. AxisConstraint mFriction1;
  104. AxisConstraint mFriction2;
  105. };
  106. // Initialize the constraint properties
  107. Constraint constraints[ContactPoints::Capacity];
  108. for (uint c = 0; c < num_points; ++c)
  109. {
  110. Constraint &constraint = constraints[c];
  111. // Calculate contact points relative to body 1 and 2
  112. Vec3 p = 0.5f * (inManifold.mRelativeContactPointsOn1[c] + inManifold.mRelativeContactPointsOn2[c]);
  113. Vec3 r1 = p - com1;
  114. Vec3 r2 = p - com2;
  115. // Initialize contact constraint
  116. constraint.mContact.Initialize(r1, r2, inManifold.mWorldSpaceNormal, inv_m1, inv_m2, inv_i1, inv_i2);
  117. // Handle elastic collisions
  118. if (inCombinedRestitution > 0.0f)
  119. {
  120. // Calculate velocity of contact point
  121. Vec3 relative_velocity = outResult.mLinearVelocity2 + outResult.mAngularVelocity2.Cross(r2) - outResult.mLinearVelocity1 - outResult.mAngularVelocity1.Cross(r1);
  122. float normal_velocity = relative_velocity.Dot(inManifold.mWorldSpaceNormal);
  123. // If it is big enough, apply restitution
  124. if (normal_velocity < -inMinVelocityForRestitution)
  125. constraint.mContact.mBias = inCombinedRestitution * normal_velocity;
  126. }
  127. if (inCombinedFriction > 0.0f)
  128. {
  129. // Initialize friction constraints
  130. constraint.mFriction1.Initialize(r1, r2, outResult.mTangent1, inv_m1, inv_m2, inv_i1, inv_i2);
  131. constraint.mFriction2.Initialize(r1, r2, outResult.mTangent2, inv_m1, inv_m2, inv_i1, inv_i2);
  132. }
  133. }
  134. // If there's only 1 contact point, we only need 1 iteration
  135. int num_iterations = inCombinedFriction == 0.0f && num_points == 1? 1 : inNumIterations;
  136. // Solve iteratively
  137. for (int iteration = 0; iteration < num_iterations; ++iteration)
  138. {
  139. // Solve friction constraints first
  140. if (inCombinedFriction > 0.0f && iteration > 0) // For first iteration the contact impulse is zero so there's no point in applying friction
  141. for (uint c = 0; c < num_points; ++c)
  142. {
  143. const Constraint &constraint = constraints[c];
  144. CollisionEstimationResult::Impulse &impulse = outResult.mImpulses[c];
  145. float max_impulse = inCombinedFriction * impulse.mContactImpulse;
  146. constraint.mFriction1.Solve(outResult.mTangent1, inv_m1, inv_m2, -max_impulse, max_impulse, impulse.mFrictionImpulse1, outResult);
  147. constraint.mFriction2.Solve(outResult.mTangent2, inv_m1, inv_m2, -max_impulse, max_impulse, impulse.mFrictionImpulse2, outResult);
  148. }
  149. // Solve contact constraints last
  150. for (uint c = 0; c < num_points; ++c)
  151. constraints[c].mContact.Solve(inManifold.mWorldSpaceNormal, inv_m1, inv_m2, 0.0f, FLT_MAX, outResult.mImpulses[c].mContactImpulse, outResult);
  152. }
  153. }
  154. JPH_NAMESPACE_END