HingeConstraint.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/HingeConstraint.h>
  6. #include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
  7. #include <Jolt/Physics/Body/Body.h>
  8. #include <Jolt/ObjectStream/TypeDeclarations.h>
  9. #include <Jolt/Core/StreamIn.h>
  10. #include <Jolt/Core/StreamOut.h>
  11. #ifdef JPH_DEBUG_RENDERER
  12. #include <Jolt/Renderer/DebugRenderer.h>
  13. #endif // JPH_DEBUG_RENDERER
  14. JPH_NAMESPACE_BEGIN
  15. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(HingeConstraintSettings)
  16. {
  17. JPH_ADD_BASE_CLASS(HingeConstraintSettings, TwoBodyConstraintSettings)
  18. JPH_ADD_ENUM_ATTRIBUTE(HingeConstraintSettings, mSpace)
  19. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint1)
  20. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis1)
  21. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis1)
  22. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint2)
  23. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis2)
  24. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis2)
  25. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMin)
  26. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMax)
  27. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMaxFrictionTorque)
  28. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMotorSettings)
  29. }
  30. void HingeConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  31. {
  32. ConstraintSettings::SaveBinaryState(inStream);
  33. inStream.Write(mSpace);
  34. inStream.Write(mPoint1);
  35. inStream.Write(mHingeAxis1);
  36. inStream.Write(mNormalAxis1);
  37. inStream.Write(mPoint2);
  38. inStream.Write(mHingeAxis2);
  39. inStream.Write(mNormalAxis2);
  40. inStream.Write(mLimitsMin);
  41. inStream.Write(mLimitsMax);
  42. inStream.Write(mMaxFrictionTorque);
  43. mMotorSettings.SaveBinaryState(inStream);
  44. }
  45. void HingeConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  46. {
  47. ConstraintSettings::RestoreBinaryState(inStream);
  48. inStream.Read(mSpace);
  49. inStream.Read(mPoint1);
  50. inStream.Read(mHingeAxis1);
  51. inStream.Read(mNormalAxis1);
  52. inStream.Read(mPoint2);
  53. inStream.Read(mHingeAxis2);
  54. inStream.Read(mNormalAxis2);
  55. inStream.Read(mLimitsMin);
  56. inStream.Read(mLimitsMax);
  57. inStream.Read(mMaxFrictionTorque);
  58. mMotorSettings.RestoreBinaryState(inStream);}
  59. TwoBodyConstraint *HingeConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  60. {
  61. return new HingeConstraint(inBody1, inBody2, *this);
  62. }
  63. HingeConstraint::HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings) :
  64. TwoBodyConstraint(inBody1, inBody2, inSettings),
  65. mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
  66. mMotorSettings(inSettings.mMotorSettings)
  67. {
  68. // Store limits
  69. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax, "Better use a fixed constraint in this case");
  70. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  71. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  72. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXZ(inSettings.mNormalAxis1, inSettings.mHingeAxis1, inSettings.mNormalAxis2, inSettings.mHingeAxis2);
  73. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  74. {
  75. // If all properties were specified in world space, take them to local space now
  76. RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  77. mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
  78. mLocalSpaceHingeAxis1 = inv_transform1.Multiply3x3(inSettings.mHingeAxis1).Normalized();
  79. mLocalSpaceNormalAxis1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
  80. RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  81. mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
  82. mLocalSpaceHingeAxis2 = inv_transform2.Multiply3x3(inSettings.mHingeAxis2).Normalized();
  83. mLocalSpaceNormalAxis2 = inv_transform2.Multiply3x3(inSettings.mNormalAxis2).Normalized();
  84. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  85. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  86. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  87. }
  88. else
  89. {
  90. mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
  91. mLocalSpaceHingeAxis1 = inSettings.mHingeAxis1;
  92. mLocalSpaceNormalAxis1 = inSettings.mNormalAxis1;
  93. mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
  94. mLocalSpaceHingeAxis2 = inSettings.mHingeAxis2;
  95. mLocalSpaceNormalAxis2 = inSettings.mNormalAxis2;
  96. }
  97. }
  98. void HingeConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
  99. {
  100. if (mBody1->GetID() == inBodyID)
  101. mLocalSpacePosition1 -= inDeltaCOM;
  102. else if (mBody2->GetID() == inBodyID)
  103. mLocalSpacePosition2 -= inDeltaCOM;
  104. }
  105. float HingeConstraint::GetCurrentAngle() const
  106. {
  107. // See: CalculateA1AndTheta
  108. Quat rotation1 = mBody1->GetRotation();
  109. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  110. return diff.GetRotationAngle(rotation1 * mLocalSpaceHingeAxis1);
  111. }
  112. void HingeConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  113. {
  114. JPH_ASSERT(inLimitsMin <= 0.0f && inLimitsMin >= -JPH_PI);
  115. JPH_ASSERT(inLimitsMax >= 0.0f && inLimitsMax <= JPH_PI);
  116. mLimitsMin = inLimitsMin;
  117. mLimitsMax = inLimitsMax;
  118. mHasLimits = mLimitsMin > -JPH_PI && mLimitsMax < JPH_PI;
  119. }
  120. void HingeConstraint::CalculateA1AndTheta()
  121. {
  122. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
  123. {
  124. Quat rotation1 = mBody1->GetRotation();
  125. // Calculate relative rotation in world space
  126. //
  127. // The rest rotation is:
  128. //
  129. // q2 = q1 r0
  130. //
  131. // But the actual rotation is
  132. //
  133. // q2 = diff q1 r0
  134. // <=> diff = q2 r0^-1 q1^-1
  135. //
  136. // Where:
  137. // q1 = current rotation of body 1
  138. // q2 = current rotation of body 2
  139. // diff = relative rotation in world space
  140. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  141. // Calculate hinge axis in world space
  142. mA1 = rotation1 * mLocalSpaceHingeAxis1;
  143. // Get rotation angle around the hinge axis
  144. mTheta = diff.GetRotationAngle(mA1);
  145. }
  146. }
  147. void HingeConstraint::CalculateRotationLimitsConstraintProperties(float inDeltaTime)
  148. {
  149. // Apply constraint if outside of limits
  150. if (mHasLimits && (mTheta <= mLimitsMin || mTheta >= mLimitsMax))
  151. mRotationLimitsConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1);
  152. else
  153. mRotationLimitsConstraintPart.Deactivate();
  154. }
  155. void HingeConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  156. {
  157. switch (mMotorState)
  158. {
  159. case EMotorState::Off:
  160. if (mMaxFrictionTorque > 0.0f)
  161. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1);
  162. else
  163. mMotorConstraintPart.Deactivate();
  164. break;
  165. case EMotorState::Velocity:
  166. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1, -mTargetAngularVelocity);
  167. break;
  168. case EMotorState::Position:
  169. mMotorConstraintPart.CalculateConstraintProperties(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, CenterAngleAroundZero(mTheta - mTargetAngle), mMotorSettings.mFrequency, mMotorSettings.mDamping);
  170. break;
  171. }
  172. }
  173. void HingeConstraint::SetupVelocityConstraint(float inDeltaTime)
  174. {
  175. // Cache constraint values that are valid until the bodies move
  176. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  177. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  178. mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
  179. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  180. CalculateA1AndTheta();
  181. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  182. CalculateMotorConstraintProperties(inDeltaTime);
  183. }
  184. void HingeConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  185. {
  186. // Warm starting: Apply previous frame impulse
  187. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  188. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  189. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  190. mRotationLimitsConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  191. }
  192. float HingeConstraint::GetSmallestAngleToLimit() const
  193. {
  194. float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
  195. float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
  196. return abs(dist_to_min) < abs(dist_to_max)? dist_to_min : dist_to_max;
  197. }
  198. bool HingeConstraint::SolveVelocityConstraint(float inDeltaTime)
  199. {
  200. // Solve motor
  201. bool motor = false;
  202. if (mMotorConstraintPart.IsActive())
  203. {
  204. switch (mMotorState)
  205. {
  206. case EMotorState::Off:
  207. {
  208. float max_lambda = mMaxFrictionTorque * inDeltaTime;
  209. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -max_lambda, max_lambda);
  210. break;
  211. }
  212. case EMotorState::Velocity:
  213. case EMotorState::Position:
  214. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, inDeltaTime * mMotorSettings.mMinTorqueLimit, inDeltaTime * mMotorSettings.mMaxTorqueLimit);
  215. break;
  216. }
  217. }
  218. // Solve point constraint
  219. bool pos = mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  220. // Solve rotation constraint
  221. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  222. // Solve rotation limits
  223. bool limit = false;
  224. if (mRotationLimitsConstraintPart.IsActive())
  225. {
  226. if (GetSmallestAngleToLimit() < 0.0f)
  227. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, 0, FLT_MAX);
  228. else
  229. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -FLT_MAX, 0);
  230. }
  231. return motor || pos || rot || limit;
  232. }
  233. bool HingeConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  234. {
  235. // Motor operates on velocities only, don't call SolvePositionConstraint
  236. // Solve point constraint
  237. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  238. bool pos = mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  239. // Solve rotation constraint
  240. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation()); // Note that previous call to GetRotation() is out of date since the rotation has changed
  241. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  242. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  243. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  244. // Solve rotation limits
  245. bool limit = false;
  246. CalculateA1AndTheta();
  247. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  248. if (mRotationLimitsConstraintPart.IsActive())
  249. limit = mRotationLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, GetSmallestAngleToLimit(), inBaumgarte);
  250. return pos || rot || limit;
  251. }
  252. #ifdef JPH_DEBUG_RENDERER
  253. void HingeConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  254. {
  255. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  256. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  257. // Draw constraint
  258. RVec3 constraint_pos1 = transform1 * mLocalSpacePosition1;
  259. inRenderer->DrawMarker(constraint_pos1, Color::sRed, 0.1f);
  260. inRenderer->DrawLine(constraint_pos1, transform1 * (mLocalSpacePosition1 + mDrawConstraintSize * mLocalSpaceHingeAxis1), Color::sRed);
  261. RVec3 constraint_pos2 = transform2 * mLocalSpacePosition2;
  262. inRenderer->DrawMarker(constraint_pos2, Color::sGreen, 0.1f);
  263. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceHingeAxis2), Color::sGreen);
  264. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceNormalAxis2), Color::sWhite);
  265. }
  266. void HingeConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  267. {
  268. if (mHasLimits && mLimitsMax > mLimitsMin)
  269. {
  270. // Get constraint properties in world space
  271. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  272. RVec3 position1 = transform1 * mLocalSpacePosition1;
  273. Vec3 hinge_axis1 = transform1.Multiply3x3(mLocalSpaceHingeAxis1);
  274. Vec3 normal_axis1 = transform1.Multiply3x3(mLocalSpaceNormalAxis1);
  275. inRenderer->DrawPie(position1, mDrawConstraintSize, hinge_axis1, normal_axis1, mLimitsMin, mLimitsMax, Color::sPurple, DebugRenderer::ECastShadow::Off);
  276. }
  277. }
  278. #endif // JPH_DEBUG_RENDERER
  279. void HingeConstraint::SaveState(StateRecorder &inStream) const
  280. {
  281. TwoBodyConstraint::SaveState(inStream);
  282. mMotorConstraintPart.SaveState(inStream);
  283. mRotationConstraintPart.SaveState(inStream);
  284. mPointConstraintPart.SaveState(inStream);
  285. mRotationLimitsConstraintPart.SaveState(inStream);
  286. inStream.Write(mMotorState);
  287. inStream.Write(mTargetAngularVelocity);
  288. inStream.Write(mTargetAngle);
  289. }
  290. void HingeConstraint::RestoreState(StateRecorder &inStream)
  291. {
  292. TwoBodyConstraint::RestoreState(inStream);
  293. mMotorConstraintPart.RestoreState(inStream);
  294. mRotationConstraintPart.RestoreState(inStream);
  295. mPointConstraintPart.RestoreState(inStream);
  296. mRotationLimitsConstraintPart.RestoreState(inStream);
  297. inStream.Read(mMotorState);
  298. inStream.Read(mTargetAngularVelocity);
  299. inStream.Read(mTargetAngle);
  300. }
  301. Ref<ConstraintSettings> HingeConstraint::GetConstraintSettings() const
  302. {
  303. HingeConstraintSettings *settings = new HingeConstraintSettings;
  304. ToConstraintSettings(*settings);
  305. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  306. settings->mPoint1 = RVec3(mLocalSpacePosition1);
  307. settings->mHingeAxis1 = mLocalSpaceHingeAxis1;
  308. settings->mNormalAxis1 = mLocalSpaceNormalAxis1;
  309. settings->mPoint2 = RVec3(mLocalSpacePosition2);
  310. settings->mHingeAxis2 = mLocalSpaceHingeAxis2;
  311. settings->mNormalAxis2 = mLocalSpaceNormalAxis2;
  312. settings->mLimitsMin = mLimitsMin;
  313. settings->mLimitsMax = mLimitsMax;
  314. settings->mMaxFrictionTorque = mMaxFrictionTorque;
  315. settings->mMotorSettings = mMotorSettings;
  316. return settings;
  317. }
  318. Mat44 HingeConstraint::GetConstraintToBody1Matrix() const
  319. {
  320. return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(mLocalSpaceNormalAxis1, 0), Vec4(mLocalSpaceHingeAxis1.Cross(mLocalSpaceNormalAxis1), 0), Vec4(mLocalSpacePosition1, 1));
  321. }
  322. Mat44 HingeConstraint::GetConstraintToBody2Matrix() const
  323. {
  324. return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(mLocalSpaceNormalAxis2, 0), Vec4(mLocalSpaceHingeAxis2.Cross(mLocalSpaceNormalAxis2), 0), Vec4(mLocalSpacePosition2, 1));
  325. }
  326. JPH_NAMESPACE_END