2
0

AABBTreeBuilder.cpp 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/AABBTree/AABBTreeBuilder.h>
  6. JPH_NAMESPACE_BEGIN
  7. AABBTreeBuilder::Node::Node()
  8. {
  9. mChild[0] = nullptr;
  10. mChild[1] = nullptr;
  11. }
  12. AABBTreeBuilder::Node::~Node()
  13. {
  14. delete mChild[0];
  15. delete mChild[1];
  16. }
  17. uint AABBTreeBuilder::Node::GetMinDepth() const
  18. {
  19. if (HasChildren())
  20. {
  21. uint left = mChild[0]->GetMinDepth();
  22. uint right = mChild[1]->GetMinDepth();
  23. return min(left, right) + 1;
  24. }
  25. else
  26. return 1;
  27. }
  28. uint AABBTreeBuilder::Node::GetMaxDepth() const
  29. {
  30. if (HasChildren())
  31. {
  32. uint left = mChild[0]->GetMaxDepth();
  33. uint right = mChild[1]->GetMaxDepth();
  34. return max(left, right) + 1;
  35. }
  36. else
  37. return 1;
  38. }
  39. uint AABBTreeBuilder::Node::GetNodeCount() const
  40. {
  41. if (HasChildren())
  42. return mChild[0]->GetNodeCount() + mChild[1]->GetNodeCount() + 1;
  43. else
  44. return 1;
  45. }
  46. uint AABBTreeBuilder::Node::GetLeafNodeCount() const
  47. {
  48. if (HasChildren())
  49. return mChild[0]->GetLeafNodeCount() + mChild[1]->GetLeafNodeCount();
  50. else
  51. return 1;
  52. }
  53. uint AABBTreeBuilder::Node::GetTriangleCountInTree() const
  54. {
  55. if (HasChildren())
  56. return mChild[0]->GetTriangleCountInTree() + mChild[1]->GetTriangleCountInTree();
  57. else
  58. return GetTriangleCount();
  59. }
  60. void AABBTreeBuilder::Node::GetTriangleCountPerNode(float &outAverage, uint &outMin, uint &outMax) const
  61. {
  62. outMin = INT_MAX;
  63. outMax = 0;
  64. outAverage = 0;
  65. uint avg_divisor = 0;
  66. GetTriangleCountPerNodeInternal(outAverage, avg_divisor, outMin, outMax);
  67. if (avg_divisor > 0)
  68. outAverage /= avg_divisor;
  69. }
  70. float AABBTreeBuilder::Node::CalculateSAHCost(float inCostTraversal, float inCostLeaf) const
  71. {
  72. float surface_area = mBounds.GetSurfaceArea();
  73. return surface_area > 0.0f? CalculateSAHCostInternal(inCostTraversal / surface_area, inCostLeaf / surface_area) : 0.0f;
  74. }
  75. void AABBTreeBuilder::Node::GetNChildren(uint inN, Array<const Node *> &outChildren) const
  76. {
  77. JPH_ASSERT(outChildren.empty());
  78. // Check if there is anything to expand
  79. if (!HasChildren())
  80. return;
  81. // Start with the children of this node
  82. outChildren.push_back(mChild[0]);
  83. outChildren.push_back(mChild[1]);
  84. size_t next = 0;
  85. bool all_triangles = true;
  86. while (outChildren.size() < inN)
  87. {
  88. // If we have looped over all nodes, start over with the first node again
  89. if (next >= outChildren.size())
  90. {
  91. // If there only triangle nodes left, we have to terminate
  92. if (all_triangles)
  93. return;
  94. next = 0;
  95. all_triangles = true;
  96. }
  97. // Try to expand this node into its two children
  98. const Node *to_expand = outChildren[next];
  99. if (to_expand->HasChildren())
  100. {
  101. outChildren.erase(outChildren.begin() + next);
  102. outChildren.push_back(to_expand->mChild[0]);
  103. outChildren.push_back(to_expand->mChild[1]);
  104. all_triangles = false;
  105. }
  106. else
  107. {
  108. ++next;
  109. }
  110. }
  111. }
  112. float AABBTreeBuilder::Node::CalculateSAHCostInternal(float inCostTraversalDivSurfaceArea, float inCostLeafDivSurfaceArea) const
  113. {
  114. if (HasChildren())
  115. return inCostTraversalDivSurfaceArea * mBounds.GetSurfaceArea()
  116. + mChild[0]->CalculateSAHCostInternal(inCostTraversalDivSurfaceArea, inCostLeafDivSurfaceArea)
  117. + mChild[1]->CalculateSAHCostInternal(inCostTraversalDivSurfaceArea, inCostLeafDivSurfaceArea);
  118. else
  119. return inCostLeafDivSurfaceArea * mBounds.GetSurfaceArea() * GetTriangleCount();
  120. }
  121. void AABBTreeBuilder::Node::GetTriangleCountPerNodeInternal(float &outAverage, uint &outAverageDivisor, uint &outMin, uint &outMax) const
  122. {
  123. if (HasChildren())
  124. {
  125. mChild[0]->GetTriangleCountPerNodeInternal(outAverage, outAverageDivisor, outMin, outMax);
  126. mChild[1]->GetTriangleCountPerNodeInternal(outAverage, outAverageDivisor, outMin, outMax);
  127. }
  128. else
  129. {
  130. outAverage += GetTriangleCount();
  131. outAverageDivisor++;
  132. outMin = min(outMin, GetTriangleCount());
  133. outMax = max(outMax, GetTriangleCount());
  134. }
  135. }
  136. AABBTreeBuilder::AABBTreeBuilder(TriangleSplitter &inSplitter, uint inMaxTrianglesPerLeaf) :
  137. mTriangleSplitter(inSplitter),
  138. mMaxTrianglesPerLeaf(inMaxTrianglesPerLeaf)
  139. {
  140. }
  141. AABBTreeBuilder::Node *AABBTreeBuilder::Build(AABBTreeBuilderStats &outStats)
  142. {
  143. TriangleSplitter::Range initial = mTriangleSplitter.GetInitialRange();
  144. Node *root = BuildInternal(initial);
  145. float avg_triangles_per_leaf;
  146. uint min_triangles_per_leaf, max_triangles_per_leaf;
  147. root->GetTriangleCountPerNode(avg_triangles_per_leaf, min_triangles_per_leaf, max_triangles_per_leaf);
  148. mTriangleSplitter.GetStats(outStats.mSplitterStats);
  149. outStats.mSAHCost = root->CalculateSAHCost(1.0f, 1.0f);
  150. outStats.mMinDepth = root->GetMinDepth();
  151. outStats.mMaxDepth = root->GetMaxDepth();
  152. outStats.mNodeCount = root->GetNodeCount();
  153. outStats.mLeafNodeCount = root->GetLeafNodeCount();
  154. outStats.mMaxTrianglesPerLeaf = mMaxTrianglesPerLeaf;
  155. outStats.mTreeMinTrianglesPerLeaf = min_triangles_per_leaf;
  156. outStats.mTreeMaxTrianglesPerLeaf = max_triangles_per_leaf;
  157. outStats.mTreeAvgTrianglesPerLeaf = avg_triangles_per_leaf;
  158. return root;
  159. }
  160. AABBTreeBuilder::Node *AABBTreeBuilder::BuildInternal(const TriangleSplitter::Range &inTriangles)
  161. {
  162. // Check if there are too many triangles left
  163. if (inTriangles.Count() > mMaxTrianglesPerLeaf)
  164. {
  165. // Split triangles in two batches
  166. TriangleSplitter::Range left, right;
  167. if (!mTriangleSplitter.Split(inTriangles, left, right))
  168. {
  169. JPH_IF_DEBUG(Trace("AABBTreeBuilder: Doing random split for %d triangles (max per node: %u)!", (int)inTriangles.Count(), mMaxTrianglesPerLeaf);)
  170. int half = inTriangles.Count() / 2;
  171. JPH_ASSERT(half > 0);
  172. left = TriangleSplitter::Range(inTriangles.mBegin, inTriangles.mBegin + half);
  173. right = TriangleSplitter::Range(inTriangles.mBegin + half, inTriangles.mEnd);
  174. }
  175. // Recursively build
  176. Node *node = new Node();
  177. node->mChild[0] = BuildInternal(left);
  178. node->mChild[1] = BuildInternal(right);
  179. node->mBounds = node->mChild[0]->mBounds;
  180. node->mBounds.Encapsulate(node->mChild[1]->mBounds);
  181. return node;
  182. }
  183. // Create leaf node
  184. Node *node = new Node();
  185. node->mTriangles.reserve(inTriangles.Count());
  186. for (uint i = inTriangles.mBegin; i < inTriangles.mEnd; ++i)
  187. {
  188. const IndexedTriangle &t = mTriangleSplitter.GetTriangle(i);
  189. const VertexList &v = mTriangleSplitter.GetVertices();
  190. node->mTriangles.push_back(t);
  191. node->mBounds.Encapsulate(v, t);
  192. }
  193. return node;
  194. }
  195. JPH_NAMESPACE_END