123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Math/Double3.h>
- JPH_NAMESPACE_BEGIN
- /// 3 component vector of doubles (stored as 4 vectors).
- /// Note that we keep the 4th component the same as the 3rd component to avoid divisions by zero when JPH_FLOATING_POINT_EXCEPTIONS_ENABLED defined
- class [[nodiscard]] alignas(JPH_DVECTOR_ALIGNMENT) DVec3
- {
- public:
- JPH_OVERRIDE_NEW_DELETE
- // Underlying vector type
- #if defined(JPH_USE_AVX)
- using Type = __m256d;
- using TypeArg = __m256d;
- #elif defined(JPH_USE_SSE)
- using Type = struct { __m128d mLow, mHigh; };
- using TypeArg = const Type &;
- #elif defined(JPH_USE_NEON)
- using Type = float64x2x2_t;
- using TypeArg = const Type &;
- #else
- using Type = struct { double mData[4]; };
- using TypeArg = const Type &;
- #endif
- // Argument type
- using ArgType = DVec3Arg;
- /// Constructor
- DVec3() = default; ///< Intentionally not initialized for performance reasons
- DVec3(const DVec3 &inRHS) = default;
- DVec3 & operator = (const DVec3 &inRHS) = default;
- JPH_INLINE explicit DVec3(Vec3Arg inRHS);
- JPH_INLINE explicit DVec3(Vec4Arg inRHS);
- JPH_INLINE DVec3(TypeArg inRHS) : mValue(inRHS) { CheckW(); }
- /// Create a vector from 3 components
- JPH_INLINE DVec3(double inX, double inY, double inZ);
- /// Load 3 doubles from memory
- explicit JPH_INLINE DVec3(const Double3 &inV);
- /// Vector with all zeros
- static JPH_INLINE DVec3 sZero();
- /// Vectors with the principal axis
- static JPH_INLINE DVec3 sAxisX() { return DVec3(1, 0, 0); }
- static JPH_INLINE DVec3 sAxisY() { return DVec3(0, 1, 0); }
- static JPH_INLINE DVec3 sAxisZ() { return DVec3(0, 0, 1); }
- /// Replicate inV across all components
- static JPH_INLINE DVec3 sReplicate(double inV);
- /// Vector with all NaN's
- static JPH_INLINE DVec3 sNaN();
- /// Load 3 doubles from memory (reads 64 bits extra which it doesn't use)
- static JPH_INLINE DVec3 sLoadDouble3Unsafe(const Double3 &inV);
- /// Store 3 doubles to memory
- JPH_INLINE void StoreDouble3(Double3 *outV) const;
- /// Convert to float vector 3 rounding to nearest
- JPH_INLINE explicit operator Vec3() const;
- /// Prepare to convert to float vector 3 rounding towards zero (returns DVec3 that can be converted to a Vec3 to get the rounding)
- JPH_INLINE DVec3 PrepareRoundToZero() const;
- /// Prepare to convert to float vector 3 rounding towards positive/negative inf (returns DVec3 that can be converted to a Vec3 to get the rounding)
- JPH_INLINE DVec3 PrepareRoundToInf() const;
- /// Convert to float vector 3 rounding down
- JPH_INLINE Vec3 ToVec3RoundDown() const;
- /// Convert to float vector 3 rounding up
- JPH_INLINE Vec3 ToVec3RoundUp() const;
- /// Return the minimum value of each of the components
- static JPH_INLINE DVec3 sMin(DVec3Arg inV1, DVec3Arg inV2);
- /// Return the maximum of each of the components
- static JPH_INLINE DVec3 sMax(DVec3Arg inV1, DVec3Arg inV2);
- /// Clamp a vector between min and max (component wise)
- static JPH_INLINE DVec3 sClamp(DVec3Arg inV, DVec3Arg inMin, DVec3Arg inMax);
- /// Equals (component wise)
- static JPH_INLINE DVec3 sEquals(DVec3Arg inV1, DVec3Arg inV2);
- /// Less than (component wise)
- static JPH_INLINE DVec3 sLess(DVec3Arg inV1, DVec3Arg inV2);
- /// Less than or equal (component wise)
- static JPH_INLINE DVec3 sLessOrEqual(DVec3Arg inV1, DVec3Arg inV2);
- /// Greater than (component wise)
- static JPH_INLINE DVec3 sGreater(DVec3Arg inV1, DVec3Arg inV2);
- /// Greater than or equal (component wise)
- static JPH_INLINE DVec3 sGreaterOrEqual(DVec3Arg inV1, DVec3Arg inV2);
- /// Calculates inMul1 * inMul2 + inAdd
- static JPH_INLINE DVec3 sFusedMultiplyAdd(DVec3Arg inMul1, DVec3Arg inMul2, DVec3Arg inAdd);
- /// Component wise select, returns inV1 when highest bit of inControl = 0 and inV2 when highest bit of inControl = 1
- static JPH_INLINE DVec3 sSelect(DVec3Arg inV1, DVec3Arg inV2, DVec3Arg inControl);
- /// Logical or (component wise)
- static JPH_INLINE DVec3 sOr(DVec3Arg inV1, DVec3Arg inV2);
- /// Logical xor (component wise)
- static JPH_INLINE DVec3 sXor(DVec3Arg inV1, DVec3Arg inV2);
- /// Logical and (component wise)
- static JPH_INLINE DVec3 sAnd(DVec3Arg inV1, DVec3Arg inV2);
- /// Store if X is true in bit 0, Y in bit 1, Z in bit 2 and W in bit 3 (true is when highest bit of component is set)
- JPH_INLINE int GetTrues() const;
- /// Test if any of the components are true (true is when highest bit of component is set)
- JPH_INLINE bool TestAnyTrue() const;
- /// Test if all components are true (true is when highest bit of component is set)
- JPH_INLINE bool TestAllTrue() const;
- /// Get individual components
- #if defined(JPH_USE_AVX)
- JPH_INLINE double GetX() const { return _mm_cvtsd_f64(_mm256_castpd256_pd128(mValue)); }
- JPH_INLINE double GetY() const { return mF64[1]; }
- JPH_INLINE double GetZ() const { return mF64[2]; }
- #elif defined(JPH_USE_SSE)
- JPH_INLINE double GetX() const { return _mm_cvtsd_f64(mValue.mLow); }
- JPH_INLINE double GetY() const { return mF64[1]; }
- JPH_INLINE double GetZ() const { return _mm_cvtsd_f64(mValue.mHigh); }
- #elif defined(JPH_USE_NEON)
- JPH_INLINE double GetX() const { return vgetq_lane_f64(mValue.val[0], 0); }
- JPH_INLINE double GetY() const { return vgetq_lane_f64(mValue.val[0], 1); }
- JPH_INLINE double GetZ() const { return vgetq_lane_f64(mValue.val[1], 0); }
- #else
- JPH_INLINE double GetX() const { return mF64[0]; }
- JPH_INLINE double GetY() const { return mF64[1]; }
- JPH_INLINE double GetZ() const { return mF64[2]; }
- #endif
- /// Set individual components
- JPH_INLINE void SetX(double inX) { mF64[0] = inX; }
- JPH_INLINE void SetY(double inY) { mF64[1] = inY; }
- JPH_INLINE void SetZ(double inZ) { mF64[2] = mF64[3] = inZ; } // Assure Z and W are the same
- /// Get double component by index
- JPH_INLINE double operator [] (uint inCoordinate) const { JPH_ASSERT(inCoordinate < 3); return mF64[inCoordinate]; }
- /// Set double component by index
- JPH_INLINE void SetComponent(uint inCoordinate, double inValue) { JPH_ASSERT(inCoordinate < 3); mF64[inCoordinate] = inValue; mValue = sFixW(mValue); } // Assure Z and W are the same
- /// Comparison
- JPH_INLINE bool operator == (DVec3Arg inV2) const;
- JPH_INLINE bool operator != (DVec3Arg inV2) const { return !(*this == inV2); }
- /// Test if two vectors are close
- JPH_INLINE bool IsClose(DVec3Arg inV2, double inMaxDistSq = 1.0e-24) const;
- /// Test if vector is near zero
- JPH_INLINE bool IsNearZero(double inMaxDistSq = 1.0e-24) const;
- /// Test if vector is normalized
- JPH_INLINE bool IsNormalized(double inTolerance = 1.0e-12) const;
- /// Test if vector contains NaN elements
- JPH_INLINE bool IsNaN() const;
- /// Multiply two double vectors (component wise)
- JPH_INLINE DVec3 operator * (DVec3Arg inV2) const;
- /// Multiply vector with double
- JPH_INLINE DVec3 operator * (double inV2) const;
- /// Multiply vector with double
- friend JPH_INLINE DVec3 operator * (double inV1, DVec3Arg inV2);
- /// Divide vector by double
- JPH_INLINE DVec3 operator / (double inV2) const;
- /// Multiply vector with double
- JPH_INLINE DVec3 & operator *= (double inV2);
- /// Multiply vector with vector
- JPH_INLINE DVec3 & operator *= (DVec3Arg inV2);
- /// Divide vector by double
- JPH_INLINE DVec3 & operator /= (double inV2);
- /// Add two vectors (component wise)
- JPH_INLINE DVec3 operator + (Vec3Arg inV2) const;
- /// Add two double vectors (component wise)
- JPH_INLINE DVec3 operator + (DVec3Arg inV2) const;
- /// Add two vectors (component wise)
- JPH_INLINE DVec3 & operator += (Vec3Arg inV2);
- /// Add two double vectors (component wise)
- JPH_INLINE DVec3 & operator += (DVec3Arg inV2);
- /// Negate
- JPH_INLINE DVec3 operator - () const;
- /// Subtract two vectors (component wise)
- JPH_INLINE DVec3 operator - (Vec3Arg inV2) const;
- /// Subtract two double vectors (component wise)
- JPH_INLINE DVec3 operator - (DVec3Arg inV2) const;
- /// Add two vectors (component wise)
- JPH_INLINE DVec3 & operator -= (Vec3Arg inV2);
- /// Add two double vectors (component wise)
- JPH_INLINE DVec3 & operator -= (DVec3Arg inV2);
- /// Divide (component wise)
- JPH_INLINE DVec3 operator / (DVec3Arg inV2) const;
- /// Return the absolute value of each of the components
- JPH_INLINE DVec3 Abs() const;
- /// Reciprocal vector (1 / value) for each of the components
- JPH_INLINE DVec3 Reciprocal() const;
- /// Cross product
- JPH_INLINE DVec3 Cross(DVec3Arg inV2) const;
- /// Dot product
- JPH_INLINE double Dot(DVec3Arg inV2) const;
- /// Squared length of vector
- JPH_INLINE double LengthSq() const;
- /// Length of vector
- JPH_INLINE double Length() const;
- /// Normalize vector
- JPH_INLINE DVec3 Normalized() const;
- /// Component wise square root
- JPH_INLINE DVec3 Sqrt() const;
- /// Get vector that contains the sign of each element (returns 1 if positive, -1 if negative)
- JPH_INLINE DVec3 GetSign() const;
- /// To String
- friend ostream & operator << (ostream &inStream, DVec3Arg inV)
- {
- inStream << inV.mF64[0] << ", " << inV.mF64[1] << ", " << inV.mF64[2];
- return inStream;
- }
- /// Internal helper function that checks that W is equal to Z, so e.g. dividing by it should not generate div by 0
- JPH_INLINE void CheckW() const;
- /// Internal helper function that ensures that the Z component is replicated to the W component to prevent divisions by zero
- static JPH_INLINE Type sFixW(TypeArg inValue);
- /// Representations of true and false for boolean operations
- inline static const double cTrue = BitCast<double>(~uint64(0));
- inline static const double cFalse = 0.0;
- union
- {
- Type mValue;
- double mF64[4];
- };
- };
- static_assert(is_trivial<DVec3>(), "Is supposed to be a trivial type!");
- JPH_NAMESPACE_END
- #include "DVec3.inl"
|