Quat.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #pragma once
  5. #include <Jolt/Math/Vec3.h>
  6. #include <Jolt/Math/Vec4.h>
  7. JPH_NAMESPACE_BEGIN
  8. /// Quaternion class, quaternions are 4 dimensional vectors which can describe rotations in 3 dimensional
  9. /// space if their length is 1.
  10. ///
  11. /// They are written as:
  12. ///
  13. /// \f$q = w + x \: i + y \: j + z \: k\f$
  14. ///
  15. /// or in vector notation:
  16. ///
  17. /// \f$q = [w, v] = [w, x, y, z]\f$
  18. ///
  19. /// Where:
  20. ///
  21. /// w = the real part
  22. /// v = the imaginary part, (x, y, z)
  23. ///
  24. /// Note that we store the quaternion in a Vec4 as [x, y, z, w] because that makes
  25. /// it easy to extract the rotation axis of the quaternion:
  26. ///
  27. /// q = [cos(angle / 2), sin(angle / 2) * rotation_axis]
  28. class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Quat
  29. {
  30. public:
  31. JPH_OVERRIDE_NEW_DELETE
  32. ///@name Constructors
  33. ///@{
  34. inline Quat() = default; ///< Intentionally not initialized for performance reasons
  35. Quat(const Quat &inRHS) = default;
  36. Quat & operator = (const Quat &inRHS) = default;
  37. inline Quat(float inX, float inY, float inZ, float inW) : mValue(inX, inY, inZ, inW) { }
  38. inline explicit Quat(Vec4Arg inV) : mValue(inV) { }
  39. ///@}
  40. ///@name Tests
  41. ///@{
  42. /// Check if two quaternions are exactly equal
  43. inline bool operator == (QuatArg inRHS) const { return mValue == inRHS.mValue; }
  44. /// Check if two quaternions are different
  45. inline bool operator != (QuatArg inRHS) const { return mValue != inRHS.mValue; }
  46. /// If this quaternion is close to inRHS. Note that q and -q represent the same rotation, this is not checked here.
  47. inline bool IsClose(QuatArg inRHS, float inMaxDistSq = 1.0e-12f) const { return mValue.IsClose(inRHS.mValue, inMaxDistSq); }
  48. /// If the length of this quaternion is 1 +/- inTolerance
  49. inline bool IsNormalized(float inTolerance = 1.0e-5f) const { return mValue.IsNormalized(inTolerance); }
  50. /// If any component of this quaternion is a NaN (not a number)
  51. inline bool IsNaN() const { return mValue.IsNaN(); }
  52. ///@}
  53. ///@name Get components
  54. ///@{
  55. /// Get X component (imaginary part i)
  56. JPH_INLINE float GetX() const { return mValue.GetX(); }
  57. /// Get Y component (imaginary part j)
  58. JPH_INLINE float GetY() const { return mValue.GetY(); }
  59. /// Get Z component (imaginary part k)
  60. JPH_INLINE float GetZ() const { return mValue.GetZ(); }
  61. /// Get W component (real part)
  62. JPH_INLINE float GetW() const { return mValue.GetW(); }
  63. /// Get the imaginary part of the quaternion
  64. JPH_INLINE Vec3 GetXYZ() const { return Vec3(mValue); }
  65. /// Get the quaternion as a Vec4
  66. JPH_INLINE Vec4 GetXYZW() const { return mValue; }
  67. /// Set individual components
  68. JPH_INLINE void SetX(float inX) { mValue.SetX(inX); }
  69. JPH_INLINE void SetY(float inY) { mValue.SetY(inY); }
  70. JPH_INLINE void SetZ(float inZ) { mValue.SetZ(inZ); }
  71. JPH_INLINE void SetW(float inW) { mValue.SetW(inW); }
  72. /// Set all components
  73. JPH_INLINE void Set(float inX, float inY, float inZ, float inW) { mValue.Set(inX, inY, inZ, inW); }
  74. ///@}
  75. ///@name Default quaternions
  76. ///@{
  77. /// @return [0, 0, 0, 0]
  78. JPH_INLINE static Quat sZero() { return Quat(Vec4::sZero()); }
  79. /// @return [1, 0, 0, 0] (or in storage format Quat(0, 0, 0, 1))
  80. JPH_INLINE static Quat sIdentity() { return Quat(0, 0, 0, 1); }
  81. ///@}
  82. /// Rotation from axis and angle
  83. JPH_INLINE static Quat sRotation(Vec3Arg inAxis, float inAngle);
  84. /// Get axis and angle that represents this quaternion, outAngle will always be in the range \f$[0, \pi]\f$
  85. JPH_INLINE void GetAxisAngle(Vec3 &outAxis, float &outAngle) const;
  86. /// Create quaternion that rotates a vector from the direction of inFrom to the direction of inTo along the shortest path
  87. /// @see https://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm
  88. JPH_INLINE static Quat sFromTo(Vec3Arg inFrom, Vec3Arg inTo);
  89. /// Random unit quaternion
  90. template <class Random>
  91. inline static Quat sRandom(Random &inRandom);
  92. /// Conversion from Euler angles. Rotation order is X then Y then Z (RotZ * RotY * RotX). Angles in radians.
  93. inline static Quat sEulerAngles(Vec3Arg inAngles);
  94. /// Conversion to Euler angles. Rotation order is X then Y then Z (RotZ * RotY * RotX). Angles in radians.
  95. inline Vec3 GetEulerAngles() const;
  96. ///@name Length / normalization operations
  97. ///@{
  98. /// Squared length of quaternion.
  99. /// @return Squared length of quaternion (\f$|v|^2\f$)
  100. JPH_INLINE float LengthSq() const { return mValue.LengthSq(); }
  101. /// Length of quaternion.
  102. /// @return Length of quaternion (\f$|v|\f$)
  103. JPH_INLINE float Length() const { return mValue.Length(); }
  104. /// Normalize the quaternion (make it length 1)
  105. JPH_INLINE Quat Normalized() const { return Quat(mValue.Normalized()); }
  106. ///@}
  107. ///@name Additions / multiplications
  108. ///@{
  109. JPH_INLINE void operator += (QuatArg inRHS) { mValue += inRHS.mValue; }
  110. JPH_INLINE void operator -= (QuatArg inRHS) { mValue -= inRHS.mValue; }
  111. JPH_INLINE void operator *= (float inValue) { mValue *= inValue; }
  112. JPH_INLINE void operator /= (float inValue) { mValue /= inValue; }
  113. JPH_INLINE Quat operator - () const { return Quat(-mValue); }
  114. JPH_INLINE Quat operator + (QuatArg inRHS) const { return Quat(mValue + inRHS.mValue); }
  115. JPH_INLINE Quat operator - (QuatArg inRHS) const { return Quat(mValue - inRHS.mValue); }
  116. JPH_INLINE Quat operator * (QuatArg inRHS) const;
  117. JPH_INLINE Quat operator * (float inValue) const { return Quat(mValue * inValue); }
  118. inline friend Quat operator * (float inValue, QuatArg inRHS) { return Quat(inRHS.mValue * inValue); }
  119. JPH_INLINE Quat operator / (float inValue) const { return Quat(mValue / inValue); }
  120. ///@}
  121. /// Rotate a vector by this quaternion
  122. JPH_INLINE Vec3 operator * (Vec3Arg inValue) const;
  123. /// Rotate a vector by the inverse of this quaternion
  124. JPH_INLINE Vec3 InverseRotate(Vec3Arg inValue) const;
  125. /// Rotate a the vector (1, 0, 0) with this quaternion
  126. JPH_INLINE Vec3 RotateAxisX() const;
  127. /// Rotate a the vector (0, 1, 0) with this quaternion
  128. JPH_INLINE Vec3 RotateAxisY() const;
  129. /// Rotate a the vector (0, 0, 1) with this quaternion
  130. JPH_INLINE Vec3 RotateAxisZ() const;
  131. /// Dot product
  132. JPH_INLINE float Dot(QuatArg inRHS) const { return mValue.Dot(inRHS.mValue); }
  133. /// The conjugate [w, -x, -y, -z] is the same as the inverse for unit quaternions
  134. JPH_INLINE Quat Conjugated() const { return Quat(Vec4::sXor(mValue, UVec4(0x80000000, 0x80000000, 0x80000000, 0).ReinterpretAsFloat())); }
  135. /// Get inverse quaternion
  136. JPH_INLINE Quat Inversed() const { return Conjugated() / Length(); }
  137. /// Ensures that the W component is positive by negating the entire quaternion if it is not. This is useful when you want to store a quaternion as a 3 vector by discarding W and reconstructing it as sqrt(1 - x^2 - y^2 - z^2).
  138. JPH_INLINE Quat EnsureWPositive() const { return Quat(Vec4::sXor(mValue, Vec4::sAnd(mValue.SplatW(), UVec4::sReplicate(0x80000000).ReinterpretAsFloat()))); }
  139. /// Get a quaternion that is perpendicular to this quaternion
  140. JPH_INLINE Quat GetPerpendicular() const { return Quat(Vec4(1, -1, 1, -1) * mValue.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W, SWIZZLE_Z>()); }
  141. /// Get rotation angle around inAxis (uses Swing Twist Decomposition to get the twist quaternion and uses q(axis, angle) = [cos(angle / 2), axis * sin(angle / 2)])
  142. JPH_INLINE float GetRotationAngle(Vec3Arg inAxis) const { return GetW() == 0.0f? JPH_PI : 2.0f * ATan(GetXYZ().Dot(inAxis) / GetW()); }
  143. /// Swing Twist Decomposition: any quaternion can be split up as:
  144. ///
  145. /// \f[q = q_{swing} \: q_{twist}\f]
  146. ///
  147. /// where \f$q_{twist}\f$ rotates only around axis v.
  148. ///
  149. /// \f$q_{twist}\f$ is:
  150. ///
  151. /// \f[q_{twist} = \frac{[q_w, q_{ijk} \cdot v \: v]}{\left|[q_w, q_{ijk} \cdot v \: v]\right|}\f]
  152. ///
  153. /// where q_w is the real part of the quaternion and q_i the imaginary part (a 3 vector).
  154. ///
  155. /// The swing can then be calculated as:
  156. ///
  157. /// \f[q_{swing} = q \: q_{twist}^* \f]
  158. ///
  159. /// Where \f$q_{twist}^*\f$ = complex conjugate of \f$q_{twist}\f$
  160. JPH_INLINE Quat GetTwist(Vec3Arg inAxis) const;
  161. /// Decomposes quaternion into swing and twist component:
  162. ///
  163. /// \f$q = q_{swing} \: q_{twist}\f$
  164. ///
  165. /// where \f$q_{swing} \: \hat{x} = q_{twist} \: \hat{y} = q_{twist} \: \hat{z} = 0\f$
  166. ///
  167. /// In other words:
  168. ///
  169. /// - \f$q_{twist}\f$ only rotates around the X-axis.
  170. /// - \f$q_{swing}\f$ only rotates around the Y and Z-axis.
  171. ///
  172. /// @see Gino van den Bergen - Rotational Joint Limits in Quaternion Space - GDC 2016
  173. JPH_INLINE void GetSwingTwist(Quat &outSwing, Quat &outTwist) const;
  174. /// Linear interpolation between two quaternions (for small steps).
  175. /// @param inFraction is in the range [0, 1]
  176. /// @param inDestination The destination quaternion
  177. /// @return (1 - inFraction) * this + fraction * inDestination
  178. JPH_INLINE Quat LERP(QuatArg inDestination, float inFraction) const;
  179. /// Spherical linear interpolation between two quaternions.
  180. /// @param inFraction is in the range [0, 1]
  181. /// @param inDestination The destination quaternion
  182. /// @return When fraction is zero this quaternion is returned, when fraction is 1 inDestination is returned.
  183. /// When fraction is between 0 and 1 an interpolation along the shortest path is returned.
  184. JPH_INLINE Quat SLERP(QuatArg inDestination, float inFraction) const;
  185. /// Load 3 floats from memory (X, Y and Z component and then calculates W) reads 32 bits extra which it doesn't use
  186. static JPH_INLINE Quat sLoadFloat3Unsafe(const Float3 &inV);
  187. /// Store 3 as floats to memory (X, Y and Z component)
  188. JPH_INLINE void StoreFloat3(Float3 *outV) const;
  189. /// To String
  190. friend ostream & operator << (ostream &inStream, QuatArg inQ) { inStream << inQ.mValue; return inStream; }
  191. /// 4 vector that stores [x, y, z, w] parts of the quaternion
  192. Vec4 mValue;
  193. };
  194. static_assert(is_trivial<Quat>(), "Is supposed to be a trivial type!");
  195. JPH_NAMESPACE_END
  196. #include "Quat.inl"