123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
- // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
- // SPDX-License-Identifier: MIT
- #pragma once
- #include <Jolt/Math/Vec3.h>
- #include <Jolt/Math/Vec4.h>
- JPH_NAMESPACE_BEGIN
- /// Quaternion class, quaternions are 4 dimensional vectors which can describe rotations in 3 dimensional
- /// space if their length is 1.
- ///
- /// They are written as:
- ///
- /// \f$q = w + x \: i + y \: j + z \: k\f$
- ///
- /// or in vector notation:
- ///
- /// \f$q = [w, v] = [w, x, y, z]\f$
- ///
- /// Where:
- ///
- /// w = the real part
- /// v = the imaginary part, (x, y, z)
- ///
- /// Note that we store the quaternion in a Vec4 as [x, y, z, w] because that makes
- /// it easy to extract the rotation axis of the quaternion:
- ///
- /// q = [cos(angle / 2), sin(angle / 2) * rotation_axis]
- class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Quat
- {
- public:
- JPH_OVERRIDE_NEW_DELETE
- ///@name Constructors
- ///@{
- inline Quat() = default; ///< Intentionally not initialized for performance reasons
- Quat(const Quat &inRHS) = default;
- Quat & operator = (const Quat &inRHS) = default;
- inline Quat(float inX, float inY, float inZ, float inW) : mValue(inX, inY, inZ, inW) { }
- inline explicit Quat(Vec4Arg inV) : mValue(inV) { }
- ///@}
- ///@name Tests
- ///@{
- /// Check if two quaternions are exactly equal
- inline bool operator == (QuatArg inRHS) const { return mValue == inRHS.mValue; }
- /// Check if two quaternions are different
- inline bool operator != (QuatArg inRHS) const { return mValue != inRHS.mValue; }
- /// If this quaternion is close to inRHS. Note that q and -q represent the same rotation, this is not checked here.
- inline bool IsClose(QuatArg inRHS, float inMaxDistSq = 1.0e-12f) const { return mValue.IsClose(inRHS.mValue, inMaxDistSq); }
- /// If the length of this quaternion is 1 +/- inTolerance
- inline bool IsNormalized(float inTolerance = 1.0e-5f) const { return mValue.IsNormalized(inTolerance); }
- /// If any component of this quaternion is a NaN (not a number)
- inline bool IsNaN() const { return mValue.IsNaN(); }
- ///@}
- ///@name Get components
- ///@{
- /// Get X component (imaginary part i)
- JPH_INLINE float GetX() const { return mValue.GetX(); }
- /// Get Y component (imaginary part j)
- JPH_INLINE float GetY() const { return mValue.GetY(); }
- /// Get Z component (imaginary part k)
- JPH_INLINE float GetZ() const { return mValue.GetZ(); }
- /// Get W component (real part)
- JPH_INLINE float GetW() const { return mValue.GetW(); }
- /// Get the imaginary part of the quaternion
- JPH_INLINE Vec3 GetXYZ() const { return Vec3(mValue); }
- /// Get the quaternion as a Vec4
- JPH_INLINE Vec4 GetXYZW() const { return mValue; }
- /// Set individual components
- JPH_INLINE void SetX(float inX) { mValue.SetX(inX); }
- JPH_INLINE void SetY(float inY) { mValue.SetY(inY); }
- JPH_INLINE void SetZ(float inZ) { mValue.SetZ(inZ); }
- JPH_INLINE void SetW(float inW) { mValue.SetW(inW); }
- /// Set all components
- JPH_INLINE void Set(float inX, float inY, float inZ, float inW) { mValue.Set(inX, inY, inZ, inW); }
- ///@}
- ///@name Default quaternions
- ///@{
- /// @return [0, 0, 0, 0]
- JPH_INLINE static Quat sZero() { return Quat(Vec4::sZero()); }
- /// @return [1, 0, 0, 0] (or in storage format Quat(0, 0, 0, 1))
- JPH_INLINE static Quat sIdentity() { return Quat(0, 0, 0, 1); }
- ///@}
- /// Rotation from axis and angle
- JPH_INLINE static Quat sRotation(Vec3Arg inAxis, float inAngle);
- /// Get axis and angle that represents this quaternion, outAngle will always be in the range \f$[0, \pi]\f$
- JPH_INLINE void GetAxisAngle(Vec3 &outAxis, float &outAngle) const;
- /// Create quaternion that rotates a vector from the direction of inFrom to the direction of inTo along the shortest path
- /// @see https://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm
- JPH_INLINE static Quat sFromTo(Vec3Arg inFrom, Vec3Arg inTo);
- /// Random unit quaternion
- template <class Random>
- inline static Quat sRandom(Random &inRandom);
- /// Conversion from Euler angles. Rotation order is X then Y then Z (RotZ * RotY * RotX). Angles in radians.
- inline static Quat sEulerAngles(Vec3Arg inAngles);
- /// Conversion to Euler angles. Rotation order is X then Y then Z (RotZ * RotY * RotX). Angles in radians.
- inline Vec3 GetEulerAngles() const;
- ///@name Length / normalization operations
- ///@{
- /// Squared length of quaternion.
- /// @return Squared length of quaternion (\f$|v|^2\f$)
- JPH_INLINE float LengthSq() const { return mValue.LengthSq(); }
- /// Length of quaternion.
- /// @return Length of quaternion (\f$|v|\f$)
- JPH_INLINE float Length() const { return mValue.Length(); }
- /// Normalize the quaternion (make it length 1)
- JPH_INLINE Quat Normalized() const { return Quat(mValue.Normalized()); }
- ///@}
- ///@name Additions / multiplications
- ///@{
- JPH_INLINE void operator += (QuatArg inRHS) { mValue += inRHS.mValue; }
- JPH_INLINE void operator -= (QuatArg inRHS) { mValue -= inRHS.mValue; }
- JPH_INLINE void operator *= (float inValue) { mValue *= inValue; }
- JPH_INLINE void operator /= (float inValue) { mValue /= inValue; }
- JPH_INLINE Quat operator - () const { return Quat(-mValue); }
- JPH_INLINE Quat operator + (QuatArg inRHS) const { return Quat(mValue + inRHS.mValue); }
- JPH_INLINE Quat operator - (QuatArg inRHS) const { return Quat(mValue - inRHS.mValue); }
- JPH_INLINE Quat operator * (QuatArg inRHS) const;
- JPH_INLINE Quat operator * (float inValue) const { return Quat(mValue * inValue); }
- inline friend Quat operator * (float inValue, QuatArg inRHS) { return Quat(inRHS.mValue * inValue); }
- JPH_INLINE Quat operator / (float inValue) const { return Quat(mValue / inValue); }
- ///@}
- /// Rotate a vector by this quaternion
- JPH_INLINE Vec3 operator * (Vec3Arg inValue) const;
- /// Rotate a vector by the inverse of this quaternion
- JPH_INLINE Vec3 InverseRotate(Vec3Arg inValue) const;
- /// Rotate a the vector (1, 0, 0) with this quaternion
- JPH_INLINE Vec3 RotateAxisX() const;
- /// Rotate a the vector (0, 1, 0) with this quaternion
- JPH_INLINE Vec3 RotateAxisY() const;
- /// Rotate a the vector (0, 0, 1) with this quaternion
- JPH_INLINE Vec3 RotateAxisZ() const;
- /// Dot product
- JPH_INLINE float Dot(QuatArg inRHS) const { return mValue.Dot(inRHS.mValue); }
- /// The conjugate [w, -x, -y, -z] is the same as the inverse for unit quaternions
- JPH_INLINE Quat Conjugated() const { return Quat(Vec4::sXor(mValue, UVec4(0x80000000, 0x80000000, 0x80000000, 0).ReinterpretAsFloat())); }
- /// Get inverse quaternion
- JPH_INLINE Quat Inversed() const { return Conjugated() / Length(); }
- /// Ensures that the W component is positive by negating the entire quaternion if it is not. This is useful when you want to store a quaternion as a 3 vector by discarding W and reconstructing it as sqrt(1 - x^2 - y^2 - z^2).
- JPH_INLINE Quat EnsureWPositive() const { return Quat(Vec4::sXor(mValue, Vec4::sAnd(mValue.SplatW(), UVec4::sReplicate(0x80000000).ReinterpretAsFloat()))); }
- /// Get a quaternion that is perpendicular to this quaternion
- JPH_INLINE Quat GetPerpendicular() const { return Quat(Vec4(1, -1, 1, -1) * mValue.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W, SWIZZLE_Z>()); }
- /// Get rotation angle around inAxis (uses Swing Twist Decomposition to get the twist quaternion and uses q(axis, angle) = [cos(angle / 2), axis * sin(angle / 2)])
- JPH_INLINE float GetRotationAngle(Vec3Arg inAxis) const { return GetW() == 0.0f? JPH_PI : 2.0f * ATan(GetXYZ().Dot(inAxis) / GetW()); }
- /// Swing Twist Decomposition: any quaternion can be split up as:
- ///
- /// \f[q = q_{swing} \: q_{twist}\f]
- ///
- /// where \f$q_{twist}\f$ rotates only around axis v.
- ///
- /// \f$q_{twist}\f$ is:
- ///
- /// \f[q_{twist} = \frac{[q_w, q_{ijk} \cdot v \: v]}{\left|[q_w, q_{ijk} \cdot v \: v]\right|}\f]
- ///
- /// where q_w is the real part of the quaternion and q_i the imaginary part (a 3 vector).
- ///
- /// The swing can then be calculated as:
- ///
- /// \f[q_{swing} = q \: q_{twist}^* \f]
- ///
- /// Where \f$q_{twist}^*\f$ = complex conjugate of \f$q_{twist}\f$
- JPH_INLINE Quat GetTwist(Vec3Arg inAxis) const;
- /// Decomposes quaternion into swing and twist component:
- ///
- /// \f$q = q_{swing} \: q_{twist}\f$
- ///
- /// where \f$q_{swing} \: \hat{x} = q_{twist} \: \hat{y} = q_{twist} \: \hat{z} = 0\f$
- ///
- /// In other words:
- ///
- /// - \f$q_{twist}\f$ only rotates around the X-axis.
- /// - \f$q_{swing}\f$ only rotates around the Y and Z-axis.
- ///
- /// @see Gino van den Bergen - Rotational Joint Limits in Quaternion Space - GDC 2016
- JPH_INLINE void GetSwingTwist(Quat &outSwing, Quat &outTwist) const;
- /// Linear interpolation between two quaternions (for small steps).
- /// @param inFraction is in the range [0, 1]
- /// @param inDestination The destination quaternion
- /// @return (1 - inFraction) * this + fraction * inDestination
- JPH_INLINE Quat LERP(QuatArg inDestination, float inFraction) const;
- /// Spherical linear interpolation between two quaternions.
- /// @param inFraction is in the range [0, 1]
- /// @param inDestination The destination quaternion
- /// @return When fraction is zero this quaternion is returned, when fraction is 1 inDestination is returned.
- /// When fraction is between 0 and 1 an interpolation along the shortest path is returned.
- JPH_INLINE Quat SLERP(QuatArg inDestination, float inFraction) const;
- /// Load 3 floats from memory (X, Y and Z component and then calculates W) reads 32 bits extra which it doesn't use
- static JPH_INLINE Quat sLoadFloat3Unsafe(const Float3 &inV);
- /// Store 3 as floats to memory (X, Y and Z component)
- JPH_INLINE void StoreFloat3(Float3 *outV) const;
- /// To String
- friend ostream & operator << (ostream &inStream, QuatArg inQ) { inStream << inQ.mValue; return inStream; }
- /// 4 vector that stores [x, y, z, w] parts of the quaternion
- Vec4 mValue;
- };
- static_assert(is_trivial<Quat>(), "Is supposed to be a trivial type!");
- JPH_NAMESPACE_END
- #include "Quat.inl"
|