HingeConstraint.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/HingeConstraint.h>
  6. #include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
  7. #include <Jolt/Physics/Body/Body.h>
  8. #include <Jolt/ObjectStream/TypeDeclarations.h>
  9. #include <Jolt/Core/StreamIn.h>
  10. #include <Jolt/Core/StreamOut.h>
  11. #ifdef JPH_DEBUG_RENDERER
  12. #include <Jolt/Renderer/DebugRenderer.h>
  13. #endif // JPH_DEBUG_RENDERER
  14. JPH_NAMESPACE_BEGIN
  15. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(HingeConstraintSettings)
  16. {
  17. JPH_ADD_BASE_CLASS(HingeConstraintSettings, TwoBodyConstraintSettings)
  18. JPH_ADD_ENUM_ATTRIBUTE(HingeConstraintSettings, mSpace)
  19. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint1)
  20. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis1)
  21. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis1)
  22. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint2)
  23. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis2)
  24. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis2)
  25. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMin)
  26. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMax)
  27. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsSpringSettings)
  28. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMaxFrictionTorque)
  29. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMotorSettings)
  30. }
  31. void HingeConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  32. {
  33. ConstraintSettings::SaveBinaryState(inStream);
  34. inStream.Write(mSpace);
  35. inStream.Write(mPoint1);
  36. inStream.Write(mHingeAxis1);
  37. inStream.Write(mNormalAxis1);
  38. inStream.Write(mPoint2);
  39. inStream.Write(mHingeAxis2);
  40. inStream.Write(mNormalAxis2);
  41. inStream.Write(mLimitsMin);
  42. inStream.Write(mLimitsMax);
  43. inStream.Write(mMaxFrictionTorque);
  44. mLimitsSpringSettings.SaveBinaryState(inStream);
  45. mMotorSettings.SaveBinaryState(inStream);
  46. }
  47. void HingeConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  48. {
  49. ConstraintSettings::RestoreBinaryState(inStream);
  50. inStream.Read(mSpace);
  51. inStream.Read(mPoint1);
  52. inStream.Read(mHingeAxis1);
  53. inStream.Read(mNormalAxis1);
  54. inStream.Read(mPoint2);
  55. inStream.Read(mHingeAxis2);
  56. inStream.Read(mNormalAxis2);
  57. inStream.Read(mLimitsMin);
  58. inStream.Read(mLimitsMax);
  59. inStream.Read(mMaxFrictionTorque);
  60. mLimitsSpringSettings.RestoreBinaryState(inStream);
  61. mMotorSettings.RestoreBinaryState(inStream);}
  62. TwoBodyConstraint *HingeConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  63. {
  64. return new HingeConstraint(inBody1, inBody2, *this);
  65. }
  66. HingeConstraint::HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings) :
  67. TwoBodyConstraint(inBody1, inBody2, inSettings),
  68. mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
  69. mMotorSettings(inSettings.mMotorSettings)
  70. {
  71. // Store limits
  72. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mLimitsSpringSettings.mFrequency > 0.0f, "Better use a fixed constraint in this case");
  73. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  74. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  75. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXZ(inSettings.mNormalAxis1, inSettings.mHingeAxis1, inSettings.mNormalAxis2, inSettings.mHingeAxis2);
  76. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  77. {
  78. // If all properties were specified in world space, take them to local space now
  79. RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  80. mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
  81. mLocalSpaceHingeAxis1 = inv_transform1.Multiply3x3(inSettings.mHingeAxis1).Normalized();
  82. mLocalSpaceNormalAxis1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
  83. RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  84. mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
  85. mLocalSpaceHingeAxis2 = inv_transform2.Multiply3x3(inSettings.mHingeAxis2).Normalized();
  86. mLocalSpaceNormalAxis2 = inv_transform2.Multiply3x3(inSettings.mNormalAxis2).Normalized();
  87. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  88. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  89. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  90. }
  91. else
  92. {
  93. mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
  94. mLocalSpaceHingeAxis1 = inSettings.mHingeAxis1;
  95. mLocalSpaceNormalAxis1 = inSettings.mNormalAxis1;
  96. mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
  97. mLocalSpaceHingeAxis2 = inSettings.mHingeAxis2;
  98. mLocalSpaceNormalAxis2 = inSettings.mNormalAxis2;
  99. }
  100. // Store spring settings
  101. SetLimitsSpringSettings(inSettings.mLimitsSpringSettings);
  102. }
  103. void HingeConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
  104. {
  105. if (mBody1->GetID() == inBodyID)
  106. mLocalSpacePosition1 -= inDeltaCOM;
  107. else if (mBody2->GetID() == inBodyID)
  108. mLocalSpacePosition2 -= inDeltaCOM;
  109. }
  110. float HingeConstraint::GetCurrentAngle() const
  111. {
  112. // See: CalculateA1AndTheta
  113. Quat rotation1 = mBody1->GetRotation();
  114. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  115. return diff.GetRotationAngle(rotation1 * mLocalSpaceHingeAxis1);
  116. }
  117. void HingeConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  118. {
  119. JPH_ASSERT(inLimitsMin <= 0.0f && inLimitsMin >= -JPH_PI);
  120. JPH_ASSERT(inLimitsMax >= 0.0f && inLimitsMax <= JPH_PI);
  121. mLimitsMin = inLimitsMin;
  122. mLimitsMax = inLimitsMax;
  123. mHasLimits = mLimitsMin > -JPH_PI && mLimitsMax < JPH_PI;
  124. }
  125. void HingeConstraint::CalculateA1AndTheta()
  126. {
  127. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
  128. {
  129. Quat rotation1 = mBody1->GetRotation();
  130. // Calculate relative rotation in world space
  131. //
  132. // The rest rotation is:
  133. //
  134. // q2 = q1 r0
  135. //
  136. // But the actual rotation is
  137. //
  138. // q2 = diff q1 r0
  139. // <=> diff = q2 r0^-1 q1^-1
  140. //
  141. // Where:
  142. // q1 = current rotation of body 1
  143. // q2 = current rotation of body 2
  144. // diff = relative rotation in world space
  145. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  146. // Calculate hinge axis in world space
  147. mA1 = rotation1 * mLocalSpaceHingeAxis1;
  148. // Get rotation angle around the hinge axis
  149. mTheta = diff.GetRotationAngle(mA1);
  150. }
  151. }
  152. void HingeConstraint::CalculateRotationLimitsConstraintProperties(float inDeltaTime)
  153. {
  154. // Apply constraint if outside of limits
  155. if (mHasLimits && (mTheta <= mLimitsMin || mTheta >= mLimitsMax))
  156. mRotationLimitsConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, GetSmallestAngleToLimit(), mLimitsSpringSettings);
  157. else
  158. mRotationLimitsConstraintPart.Deactivate();
  159. }
  160. void HingeConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  161. {
  162. switch (mMotorState)
  163. {
  164. case EMotorState::Off:
  165. if (mMaxFrictionTorque > 0.0f)
  166. mMotorConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, mA1);
  167. else
  168. mMotorConstraintPart.Deactivate();
  169. break;
  170. case EMotorState::Velocity:
  171. mMotorConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, mA1, -mTargetAngularVelocity);
  172. break;
  173. case EMotorState::Position:
  174. if (mMotorSettings.mSpringSettings.HasStiffness())
  175. mMotorConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, CenterAngleAroundZero(mTheta - mTargetAngle), mMotorSettings.mSpringSettings);
  176. else
  177. mMotorConstraintPart.Deactivate();
  178. break;
  179. }
  180. }
  181. void HingeConstraint::SetupVelocityConstraint(float inDeltaTime)
  182. {
  183. // Cache constraint values that are valid until the bodies move
  184. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  185. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  186. mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
  187. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  188. CalculateA1AndTheta();
  189. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  190. CalculateMotorConstraintProperties(inDeltaTime);
  191. }
  192. void HingeConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  193. {
  194. // Warm starting: Apply previous frame impulse
  195. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  196. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  197. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  198. mRotationLimitsConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  199. }
  200. float HingeConstraint::GetSmallestAngleToLimit() const
  201. {
  202. float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
  203. float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
  204. return abs(dist_to_min) < abs(dist_to_max)? dist_to_min : dist_to_max;
  205. }
  206. bool HingeConstraint::SolveVelocityConstraint(float inDeltaTime)
  207. {
  208. // Solve motor
  209. bool motor = false;
  210. if (mMotorConstraintPart.IsActive())
  211. {
  212. switch (mMotorState)
  213. {
  214. case EMotorState::Off:
  215. {
  216. float max_lambda = mMaxFrictionTorque * inDeltaTime;
  217. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -max_lambda, max_lambda);
  218. break;
  219. }
  220. case EMotorState::Velocity:
  221. case EMotorState::Position:
  222. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, inDeltaTime * mMotorSettings.mMinTorqueLimit, inDeltaTime * mMotorSettings.mMaxTorqueLimit);
  223. break;
  224. }
  225. }
  226. // Solve point constraint
  227. bool pos = mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  228. // Solve rotation constraint
  229. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  230. // Solve rotation limits
  231. bool limit = false;
  232. if (mRotationLimitsConstraintPart.IsActive())
  233. {
  234. float min_lambda, max_lambda;
  235. if (mLimitsMin == mLimitsMax)
  236. {
  237. min_lambda = -FLT_MAX;
  238. max_lambda = FLT_MAX;
  239. }
  240. else if (GetSmallestAngleToLimit() < 0.0f)
  241. {
  242. min_lambda = 0.0f;
  243. max_lambda = FLT_MAX;
  244. }
  245. else
  246. {
  247. min_lambda = -FLT_MAX;
  248. max_lambda = 0.0f;
  249. }
  250. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, min_lambda, max_lambda);
  251. }
  252. return motor || pos || rot || limit;
  253. }
  254. bool HingeConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  255. {
  256. // Motor operates on velocities only, don't call SolvePositionConstraint
  257. // Solve point constraint
  258. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  259. bool pos = mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  260. // Solve rotation constraint
  261. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation()); // Note that previous call to GetRotation() is out of date since the rotation has changed
  262. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  263. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  264. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  265. // Solve rotation limits
  266. bool limit = false;
  267. if (mHasLimits && mLimitsSpringSettings.mFrequency <= 0.0f)
  268. {
  269. CalculateA1AndTheta();
  270. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  271. if (mRotationLimitsConstraintPart.IsActive())
  272. limit = mRotationLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, GetSmallestAngleToLimit(), inBaumgarte);
  273. }
  274. return pos || rot || limit;
  275. }
  276. #ifdef JPH_DEBUG_RENDERER
  277. void HingeConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  278. {
  279. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  280. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  281. // Draw constraint
  282. RVec3 constraint_pos1 = transform1 * mLocalSpacePosition1;
  283. inRenderer->DrawMarker(constraint_pos1, Color::sRed, 0.1f);
  284. inRenderer->DrawLine(constraint_pos1, transform1 * (mLocalSpacePosition1 + mDrawConstraintSize * mLocalSpaceHingeAxis1), Color::sRed);
  285. RVec3 constraint_pos2 = transform2 * mLocalSpacePosition2;
  286. inRenderer->DrawMarker(constraint_pos2, Color::sGreen, 0.1f);
  287. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceHingeAxis2), Color::sGreen);
  288. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceNormalAxis2), Color::sWhite);
  289. }
  290. void HingeConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  291. {
  292. if (mHasLimits && mLimitsMax > mLimitsMin)
  293. {
  294. // Get constraint properties in world space
  295. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  296. RVec3 position1 = transform1 * mLocalSpacePosition1;
  297. Vec3 hinge_axis1 = transform1.Multiply3x3(mLocalSpaceHingeAxis1);
  298. Vec3 normal_axis1 = transform1.Multiply3x3(mLocalSpaceNormalAxis1);
  299. inRenderer->DrawPie(position1, mDrawConstraintSize, hinge_axis1, normal_axis1, mLimitsMin, mLimitsMax, Color::sPurple, DebugRenderer::ECastShadow::Off);
  300. }
  301. }
  302. #endif // JPH_DEBUG_RENDERER
  303. void HingeConstraint::SaveState(StateRecorder &inStream) const
  304. {
  305. TwoBodyConstraint::SaveState(inStream);
  306. mMotorConstraintPart.SaveState(inStream);
  307. mRotationConstraintPart.SaveState(inStream);
  308. mPointConstraintPart.SaveState(inStream);
  309. mRotationLimitsConstraintPart.SaveState(inStream);
  310. inStream.Write(mMotorState);
  311. inStream.Write(mTargetAngularVelocity);
  312. inStream.Write(mTargetAngle);
  313. }
  314. void HingeConstraint::RestoreState(StateRecorder &inStream)
  315. {
  316. TwoBodyConstraint::RestoreState(inStream);
  317. mMotorConstraintPart.RestoreState(inStream);
  318. mRotationConstraintPart.RestoreState(inStream);
  319. mPointConstraintPart.RestoreState(inStream);
  320. mRotationLimitsConstraintPart.RestoreState(inStream);
  321. inStream.Read(mMotorState);
  322. inStream.Read(mTargetAngularVelocity);
  323. inStream.Read(mTargetAngle);
  324. }
  325. Ref<ConstraintSettings> HingeConstraint::GetConstraintSettings() const
  326. {
  327. HingeConstraintSettings *settings = new HingeConstraintSettings;
  328. ToConstraintSettings(*settings);
  329. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  330. settings->mPoint1 = RVec3(mLocalSpacePosition1);
  331. settings->mHingeAxis1 = mLocalSpaceHingeAxis1;
  332. settings->mNormalAxis1 = mLocalSpaceNormalAxis1;
  333. settings->mPoint2 = RVec3(mLocalSpacePosition2);
  334. settings->mHingeAxis2 = mLocalSpaceHingeAxis2;
  335. settings->mNormalAxis2 = mLocalSpaceNormalAxis2;
  336. settings->mLimitsMin = mLimitsMin;
  337. settings->mLimitsMax = mLimitsMax;
  338. settings->mLimitsSpringSettings = mLimitsSpringSettings;
  339. settings->mMaxFrictionTorque = mMaxFrictionTorque;
  340. settings->mMotorSettings = mMotorSettings;
  341. return settings;
  342. }
  343. Mat44 HingeConstraint::GetConstraintToBody1Matrix() const
  344. {
  345. return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(mLocalSpaceNormalAxis1, 0), Vec4(mLocalSpaceHingeAxis1.Cross(mLocalSpaceNormalAxis1), 0), Vec4(mLocalSpacePosition1, 1));
  346. }
  347. Mat44 HingeConstraint::GetConstraintToBody2Matrix() const
  348. {
  349. return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(mLocalSpaceNormalAxis2, 0), Vec4(mLocalSpaceHingeAxis2.Cross(mLocalSpaceNormalAxis2), 0), Vec4(mLocalSpacePosition2, 1));
  350. }
  351. JPH_NAMESPACE_END