LargeIslandSplitter.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. // SPDX-FileCopyrightText: 2023 Jorrit Rouwe
  2. // SPDX-License-Identifier: MIT
  3. #include <Jolt/Jolt.h>
  4. #include <Jolt/Physics/LargeIslandSplitter.h>
  5. #include <Jolt/Physics/IslandBuilder.h>
  6. #include <Jolt/Physics/Constraints/Constraint.h>
  7. #include <Jolt/Physics/Constraints/ContactConstraintManager.h>
  8. #include <Jolt/Physics/Body/BodyManager.h>
  9. #include <Jolt/Core/Profiler.h>
  10. #include <Jolt/Core/TempAllocator.h>
  11. //#define JPH_LARGE_ISLAND_SPLITTER_DEBUG
  12. JPH_NAMESPACE_BEGIN
  13. LargeIslandSplitter::EStatus LargeIslandSplitter::Splits::FetchNextBatch(uint32 &outConstraintsBegin, uint32 &outConstraintsEnd, uint32 &outContactsBegin, uint32 &outContactsEnd, bool &outFirstIteration)
  14. {
  15. {
  16. // First check if we can get a new batch (doing a relaxed read to avoid hammering an atomic with an atomic subtract)
  17. // Note this also avoids overflowing the status counter if we're done but there's still one thread processing items
  18. uint64 status = mStatus.load(memory_order_relaxed);
  19. if (sGetIteration(status) >= mNumIterations)
  20. return EStatus::AllBatchesDone;
  21. // Check for special value that indicates that the splits are still being built
  22. // (note we do not check for this condition again below as we reset all splits before kicking off jobs that fetch batches of work)
  23. if (status == StatusItemMask)
  24. return EStatus::WaitingForBatch;
  25. uint item = sGetItem(status);
  26. uint split_index = sGetSplit(status);
  27. if (split_index == cNonParallelSplitIdx)
  28. {
  29. // Non parallel split needs to be taken as a single batch, only the thread that takes element 0 will do it
  30. if (item != 0)
  31. return EStatus::WaitingForBatch;
  32. }
  33. else
  34. {
  35. // Parallel split is split into batches
  36. JPH_ASSERT(split_index < mNumSplits);
  37. const Split &split = mSplits[split_index];
  38. if (item >= split.GetNumItems())
  39. return EStatus::WaitingForBatch;
  40. }
  41. }
  42. // Then try to actually get the batch
  43. uint64 status = mStatus.fetch_add(cBatchSize, memory_order_acquire);
  44. int iteration = sGetIteration(status);
  45. if (iteration >= mNumIterations)
  46. return EStatus::AllBatchesDone;
  47. uint split_index = sGetSplit(status);
  48. JPH_ASSERT(split_index < mNumSplits || split_index == cNonParallelSplitIdx);
  49. const Split &split = mSplits[split_index];
  50. uint item_begin = sGetItem(status);
  51. if (split_index == cNonParallelSplitIdx)
  52. {
  53. if (item_begin == 0)
  54. {
  55. // Non-parallel split always goes as a single batch
  56. outConstraintsBegin = split.mConstraintBufferBegin;
  57. outConstraintsEnd = split.mConstraintBufferEnd;
  58. outContactsBegin = split.mContactBufferBegin;
  59. outContactsEnd = split.mContactBufferEnd;
  60. outFirstIteration = iteration == 0;
  61. return EStatus::BatchRetrieved;
  62. }
  63. else
  64. {
  65. // Otherwise we're done with this split
  66. return EStatus::WaitingForBatch;
  67. }
  68. }
  69. // Parallel split is split into batches
  70. uint num_constraints = split.GetNumConstraints();
  71. uint num_contacts = split.GetNumContacts();
  72. uint num_items = num_constraints + num_contacts;
  73. if (item_begin >= num_items)
  74. return EStatus::WaitingForBatch;
  75. uint item_end = min(item_begin + cBatchSize, num_items);
  76. if (item_end >= num_constraints)
  77. {
  78. if (item_begin < num_constraints)
  79. {
  80. // Partially from constraints and partially from contacts
  81. outConstraintsBegin = split.mConstraintBufferBegin + item_begin;
  82. outConstraintsEnd = split.mConstraintBufferEnd;
  83. }
  84. else
  85. {
  86. // Only contacts
  87. outConstraintsBegin = 0;
  88. outConstraintsEnd = 0;
  89. }
  90. outContactsBegin = split.mContactBufferBegin + (max(item_begin, num_constraints) - num_constraints);
  91. outContactsEnd = split.mContactBufferBegin + (item_end - num_constraints);
  92. }
  93. else
  94. {
  95. // Only constraints
  96. outConstraintsBegin = split.mConstraintBufferBegin + item_begin;
  97. outConstraintsEnd = split.mConstraintBufferBegin + item_end;
  98. outContactsBegin = 0;
  99. outContactsEnd = 0;
  100. }
  101. outFirstIteration = iteration == 0;
  102. return EStatus::BatchRetrieved;
  103. }
  104. void LargeIslandSplitter::Splits::MarkBatchProcessed(uint inNumProcessed, bool &outLastIteration, bool &outFinalBatch)
  105. {
  106. // We fetched this batch, nobody should change the split and or iteration until we mark the last batch as processed so we can safely get the current status
  107. uint64 status = mStatus.load(memory_order_relaxed);
  108. uint split_index = sGetSplit(status);
  109. JPH_ASSERT(split_index < mNumSplits || split_index == cNonParallelSplitIdx);
  110. const Split &split = mSplits[split_index];
  111. uint num_items_in_split = split.GetNumItems();
  112. // Determine if this is the last iteration before possibly incrementing it
  113. int iteration = sGetIteration(status);
  114. outLastIteration = iteration == mNumIterations - 1;
  115. // Add the number of items we processed to the total number of items processed
  116. // Note: This needs to happen after we read the status as other threads may update the status after we mark items as processed
  117. JPH_ASSERT(inNumProcessed > 0); // Logic will break if we mark a block of 0 items as processed
  118. uint total_items_processed = mItemsProcessed.fetch_add(inNumProcessed, memory_order_acq_rel) + inNumProcessed;
  119. // Check if we're at the end of the split
  120. if (total_items_processed >= num_items_in_split)
  121. {
  122. JPH_ASSERT(total_items_processed == num_items_in_split); // Should not overflow, that means we're retiring more items than we should process
  123. // Set items processed back to 0 for the next split/iteration
  124. mItemsProcessed.store(0, memory_order_release);
  125. // Determine next split
  126. do
  127. {
  128. if (split_index == cNonParallelSplitIdx)
  129. {
  130. // At start of next iteration
  131. split_index = 0;
  132. ++iteration;
  133. }
  134. else
  135. {
  136. // At start of next split
  137. ++split_index;
  138. }
  139. // If we're beyond the end of splits, go to the non-parallel split
  140. if (split_index >= mNumSplits)
  141. split_index = cNonParallelSplitIdx;
  142. }
  143. while (iteration < mNumIterations
  144. && mSplits[split_index].GetNumItems() == 0); // We don't support processing empty splits, skip to the next split in this case
  145. mStatus.store((uint64(iteration) << StatusIterationShift) | (uint64(split_index) << StatusSplitShift), memory_order_release);
  146. }
  147. // Track if this is the final batch
  148. outFinalBatch = iteration >= mNumIterations;
  149. }
  150. LargeIslandSplitter::~LargeIslandSplitter()
  151. {
  152. JPH_ASSERT(mSplitMasks == nullptr);
  153. JPH_ASSERT(mContactAndConstaintsSplitIdx == nullptr);
  154. JPH_ASSERT(mContactAndConstraintIndices == nullptr);
  155. JPH_ASSERT(mSplitIslands == nullptr);
  156. }
  157. void LargeIslandSplitter::Prepare(const IslandBuilder &inIslandBuilder, uint32 inNumActiveBodies, TempAllocator *inTempAllocator)
  158. {
  159. JPH_PROFILE_FUNCTION();
  160. // Count the total number of constraints and contacts that we will be putting in splits
  161. mContactAndConstraintsSize = 0;
  162. for (uint32 island = 0; island < inIslandBuilder.GetNumIslands(); ++island)
  163. {
  164. // Get the contacts in this island
  165. uint32 *contacts_start, *contacts_end;
  166. inIslandBuilder.GetContactsInIsland(island, contacts_start, contacts_end);
  167. uint num_contacts_in_island = uint(contacts_end - contacts_start);
  168. // Get the constraints in this island
  169. uint32 *constraints_start, *constraints_end;
  170. inIslandBuilder.GetConstraintsInIsland(island, constraints_start, constraints_end);
  171. uint num_constraints_in_island = uint(constraints_end - constraints_start);
  172. uint island_size = num_contacts_in_island + num_constraints_in_island;
  173. if (island_size >= cLargeIslandTreshold)
  174. {
  175. mNumSplitIslands++;
  176. mContactAndConstraintsSize += island_size;
  177. }
  178. else
  179. break; // If this island doesn't have enough constraints, the next islands won't either since they're sorted from big to small
  180. }
  181. if (mContactAndConstraintsSize > 0)
  182. {
  183. mNumActiveBodies = inNumActiveBodies;
  184. // Allocate split mask buffer
  185. mSplitMasks = (SplitMask *)inTempAllocator->Allocate(mNumActiveBodies * sizeof(SplitMask));
  186. // Allocate contact and constraint buffer
  187. uint contact_and_constraint_indices_size = mContactAndConstraintsSize * sizeof(uint32);
  188. mContactAndConstaintsSplitIdx = (uint32 *)inTempAllocator->Allocate(contact_and_constraint_indices_size);
  189. mContactAndConstraintIndices = (uint32 *)inTempAllocator->Allocate(contact_and_constraint_indices_size);
  190. // Allocate island split buffer
  191. mSplitIslands = (Splits *)inTempAllocator->Allocate(mNumSplitIslands * sizeof(Splits));
  192. // Prevent any of the splits from being picked up as work
  193. for (uint i = 0; i < mNumSplitIslands; ++i)
  194. mSplitIslands[i].ResetStatus();
  195. }
  196. }
  197. uint LargeIslandSplitter::AssignSplit(const Body *inBody1, const Body *inBody2)
  198. {
  199. uint32 idx1 = inBody1->GetIndexInActiveBodiesInternal();
  200. uint32 idx2 = inBody2->GetIndexInActiveBodiesInternal();
  201. // Test if either index is negative
  202. if (idx1 == Body::cInactiveIndex || !inBody1->IsDynamic())
  203. {
  204. // Body 1 is not active or a kinematic body, so we only need to set 1 body
  205. JPH_ASSERT(idx2 < mNumActiveBodies);
  206. SplitMask &mask = mSplitMasks[idx2];
  207. uint split = min(CountTrailingZeros(~uint32(mask)), cNonParallelSplitIdx);
  208. mask |= SplitMask(1U << split);
  209. return split;
  210. }
  211. else if (idx2 == Body::cInactiveIndex || !inBody2->IsDynamic())
  212. {
  213. // Body 2 is not active or a kinematic body, so we only need to set 1 body
  214. JPH_ASSERT(idx1 < mNumActiveBodies);
  215. SplitMask &mask = mSplitMasks[idx1];
  216. uint split = min(CountTrailingZeros(~uint32(mask)), cNonParallelSplitIdx);
  217. mask |= SplitMask(1U << split);
  218. return split;
  219. }
  220. else
  221. {
  222. // If both bodies are active, we need to set 2 bodies
  223. JPH_ASSERT(idx1 < mNumActiveBodies);
  224. JPH_ASSERT(idx2 < mNumActiveBodies);
  225. SplitMask &mask1 = mSplitMasks[idx1];
  226. SplitMask &mask2 = mSplitMasks[idx2];
  227. uint split = min(CountTrailingZeros((~uint32(mask1)) & (~uint32(mask2))), cNonParallelSplitIdx);
  228. SplitMask mask = SplitMask(1U << split);
  229. mask1 |= mask;
  230. mask2 |= mask;
  231. return split;
  232. }
  233. }
  234. uint LargeIslandSplitter::AssignToNonParallelSplit(const Body *inBody)
  235. {
  236. uint32 idx = inBody->GetIndexInActiveBodiesInternal();
  237. if (idx != Body::cInactiveIndex)
  238. {
  239. JPH_ASSERT(idx < mNumActiveBodies);
  240. mSplitMasks[idx] |= 1U << cNonParallelSplitIdx;
  241. }
  242. return cNonParallelSplitIdx;
  243. }
  244. bool LargeIslandSplitter::SplitIsland(uint32 inIslandIndex, const IslandBuilder &inIslandBuilder, const BodyManager &inBodyManager, const ContactConstraintManager &inContactManager, Constraint **inActiveConstraints, int inNumVelocitySteps, int inNumPositionSteps)
  245. {
  246. JPH_PROFILE_FUNCTION();
  247. // Get the contacts in this island
  248. uint32 *contacts_start, *contacts_end;
  249. inIslandBuilder.GetContactsInIsland(inIslandIndex, contacts_start, contacts_end);
  250. uint num_contacts_in_island = uint(contacts_end - contacts_start);
  251. // Get the constraints in this island
  252. uint32 *constraints_start, *constraints_end;
  253. inIslandBuilder.GetConstraintsInIsland(inIslandIndex, constraints_start, constraints_end);
  254. uint num_constraints_in_island = uint(constraints_end - constraints_start);
  255. // Check if it exceeds the treshold
  256. uint island_size = num_contacts_in_island + num_constraints_in_island;
  257. if (island_size < cLargeIslandTreshold)
  258. return false;
  259. // Get bodies in this island
  260. BodyID *bodies_start, *bodies_end;
  261. inIslandBuilder.GetBodiesInIsland(inIslandIndex, bodies_start, bodies_end);
  262. // Reset the split mask for all bodies in this island
  263. Body const * const *bodies = inBodyManager.GetBodies().data();
  264. for (const BodyID *b = bodies_start; b < bodies_end; ++b)
  265. mSplitMasks[bodies[b->GetIndex()]->GetIndexInActiveBodiesInternal()] = 0;
  266. // Count the number of contacts and constraints per split
  267. uint num_contacts_in_split[cNumSplits] = { };
  268. uint num_constraints_in_split[cNumSplits] = { };
  269. // Get space to store split indices
  270. uint offset = mContactAndConstraintsNextFree.fetch_add(island_size, memory_order_relaxed);
  271. uint32 *contact_split_idx = mContactAndConstaintsSplitIdx + offset;
  272. uint32 *constraint_split_idx = contact_split_idx + num_contacts_in_island;
  273. // Assign the contacts to a split
  274. uint32 *cur_contact_split_idx = contact_split_idx;
  275. for (const uint32 *c = contacts_start; c < contacts_end; ++c)
  276. {
  277. const Body *body1, *body2;
  278. inContactManager.GetAffectedBodies(*c, body1, body2);
  279. uint split = AssignSplit(body1, body2);
  280. num_contacts_in_split[split]++;
  281. *cur_contact_split_idx++ = split;
  282. }
  283. // Assign the constraints to a split
  284. uint32 *cur_constraint_split_idx = constraint_split_idx;
  285. for (const uint32 *c = constraints_start; c < constraints_end; ++c)
  286. {
  287. const Constraint *constraint = inActiveConstraints[*c];
  288. uint split = constraint->BuildIslandSplits(*this);
  289. inNumVelocitySteps = max(inNumVelocitySteps, constraint->GetNumVelocityStepsOverride());
  290. inNumPositionSteps = max(inNumPositionSteps, constraint->GetNumPositionStepsOverride());
  291. num_constraints_in_split[split]++;
  292. *cur_constraint_split_idx++ = split;
  293. }
  294. // Start with 0 splits
  295. uint split_remap_table[cNumSplits];
  296. uint new_split_idx = mNextSplitIsland.fetch_add(1, memory_order_relaxed);
  297. JPH_ASSERT(new_split_idx < mNumSplitIslands);
  298. Splits &splits = mSplitIslands[new_split_idx];
  299. splits.mIslandIndex = inIslandIndex;
  300. splits.mNumSplits = 0;
  301. splits.mNumIterations = inNumVelocitySteps + 1; // Iteration 0 is used for warm starting
  302. splits.mNumVelocitySteps = inNumVelocitySteps;
  303. splits.mNumPositionSteps = inNumPositionSteps;
  304. splits.mItemsProcessed.store(0, memory_order_release);
  305. // Allocate space to store the sorted constraint and contact indices per split
  306. uint32 *constraint_buffer_cur[cNumSplits], *contact_buffer_cur[cNumSplits];
  307. for (uint s = 0; s < cNumSplits; ++s)
  308. {
  309. // If this split doesn't contain enough constraints and contacts, we will combine it with the non parallel split
  310. if (num_constraints_in_split[s] + num_contacts_in_split[s] < cSplitCombineTreshold
  311. && s < cNonParallelSplitIdx) // The non-parallel split cannot merge into itself
  312. {
  313. // Remap it
  314. split_remap_table[s] = cNonParallelSplitIdx;
  315. // Add the counts to the non parallel split
  316. num_contacts_in_split[cNonParallelSplitIdx] += num_contacts_in_split[s];
  317. num_constraints_in_split[cNonParallelSplitIdx] += num_constraints_in_split[s];
  318. }
  319. else
  320. {
  321. // This split is valid, map it to the next empty slot
  322. uint target_split;
  323. if (s < cNonParallelSplitIdx)
  324. target_split = splits.mNumSplits++;
  325. else
  326. target_split = cNonParallelSplitIdx;
  327. Split &split = splits.mSplits[target_split];
  328. split_remap_table[s] = target_split;
  329. // Allocate space for contacts
  330. split.mContactBufferBegin = offset;
  331. split.mContactBufferEnd = split.mContactBufferBegin + num_contacts_in_split[s];
  332. // Allocate space for constraints
  333. split.mConstraintBufferBegin = split.mContactBufferEnd;
  334. split.mConstraintBufferEnd = split.mConstraintBufferBegin + num_constraints_in_split[s];
  335. // Store start for each split
  336. contact_buffer_cur[target_split] = mContactAndConstraintIndices + split.mContactBufferBegin;
  337. constraint_buffer_cur[target_split] = mContactAndConstraintIndices + split.mConstraintBufferBegin;
  338. // Update offset
  339. offset = split.mConstraintBufferEnd;
  340. }
  341. }
  342. // Split the contacts
  343. for (uint c = 0; c < num_contacts_in_island; ++c)
  344. {
  345. uint split = split_remap_table[contact_split_idx[c]];
  346. *contact_buffer_cur[split]++ = contacts_start[c];
  347. }
  348. // Split the constraints
  349. for (uint c = 0; c < num_constraints_in_island; ++c)
  350. {
  351. uint split = split_remap_table[constraint_split_idx[c]];
  352. *constraint_buffer_cur[split]++ = constraints_start[c];
  353. }
  354. #ifdef JPH_LARGE_ISLAND_SPLITTER_DEBUG
  355. // Trace the size of all splits
  356. uint sum = 0;
  357. String stats;
  358. for (uint s = 0; s < cNumSplits; ++s)
  359. {
  360. // If we've processed all splits, jump to the non-parallel split
  361. if (s >= splits.GetNumSplits())
  362. s = cNonParallelSplitIdx;
  363. const Split &split = splits.mSplits[s];
  364. stats += StringFormat("g:%d:%d:%d, ", s, split.GetNumContacts(), split.GetNumConstraints());
  365. sum += split.GetNumItems();
  366. }
  367. stats += StringFormat("sum: %d", sum);
  368. Trace(stats.c_str());
  369. #endif // JPH_LARGE_ISLAND_SPLITTER_DEBUG
  370. #ifdef JPH_ENABLE_ASSERTS
  371. for (uint s = 0; s < cNumSplits; ++s)
  372. {
  373. // If there are no more splits, process the non-parallel split
  374. if (s >= splits.mNumSplits)
  375. s = cNonParallelSplitIdx;
  376. // Check that we wrote all elements
  377. Split &split = splits.mSplits[s];
  378. JPH_ASSERT(contact_buffer_cur[s] == mContactAndConstraintIndices + split.mContactBufferEnd);
  379. JPH_ASSERT(constraint_buffer_cur[s] == mContactAndConstraintIndices + split.mConstraintBufferEnd);
  380. }
  381. #ifdef _DEBUG
  382. // Validate that the splits are indeed not touching the same body
  383. for (uint s = 0; s < splits.mNumSplits; ++s)
  384. {
  385. Array<bool> body_used(mNumActiveBodies, false);
  386. // Validate contacts
  387. uint32 split_contacts_begin, split_contacts_end;
  388. splits.GetContactsInSplit(s, split_contacts_begin, split_contacts_end);
  389. for (uint32 *c = mContactAndConstraintIndices + split_contacts_begin; c < mContactAndConstraintIndices + split_contacts_end; ++c)
  390. {
  391. const Body *body1, *body2;
  392. inContactManager.GetAffectedBodies(*c, body1, body2);
  393. uint32 idx1 = body1->GetIndexInActiveBodiesInternal();
  394. if (idx1 != Body::cInactiveIndex && body1->IsDynamic())
  395. {
  396. JPH_ASSERT(!body_used[idx1]);
  397. body_used[idx1] = true;
  398. }
  399. uint32 idx2 = body2->GetIndexInActiveBodiesInternal();
  400. if (idx2 != Body::cInactiveIndex && body2->IsDynamic())
  401. {
  402. JPH_ASSERT(!body_used[idx2]);
  403. body_used[idx2] = true;
  404. }
  405. }
  406. }
  407. #endif // _DEBUG
  408. #endif // JPH_ENABLE_ASSERTS
  409. // Allow other threads to pick up this split island now
  410. splits.StartFirstBatch();
  411. return true;
  412. }
  413. LargeIslandSplitter::EStatus LargeIslandSplitter::FetchNextBatch(uint &outSplitIslandIndex, uint32 *&outConstraintsBegin, uint32 *&outConstraintsEnd, uint32 *&outContactsBegin, uint32 *&outContactsEnd, bool &outFirstIteration)
  414. {
  415. // We can't be done when all islands haven't been submitted yet
  416. uint num_splits_created = mNextSplitIsland.load(memory_order_acquire);
  417. bool all_done = num_splits_created == mNumSplitIslands;
  418. // Loop over all split islands to find work
  419. uint32 constraints_begin, constraints_end, contacts_begin, contacts_end;
  420. for (Splits *s = mSplitIslands; s < mSplitIslands + num_splits_created; ++s)
  421. switch (s->FetchNextBatch(constraints_begin, constraints_end, contacts_begin, contacts_end, outFirstIteration))
  422. {
  423. case EStatus::AllBatchesDone:
  424. break;
  425. case EStatus::WaitingForBatch:
  426. all_done = false;
  427. break;
  428. case EStatus::BatchRetrieved:
  429. outSplitIslandIndex = uint(s - mSplitIslands);
  430. outConstraintsBegin = mContactAndConstraintIndices + constraints_begin;
  431. outConstraintsEnd = mContactAndConstraintIndices + constraints_end;
  432. outContactsBegin = mContactAndConstraintIndices + contacts_begin;
  433. outContactsEnd = mContactAndConstraintIndices + contacts_end;
  434. return EStatus::BatchRetrieved;
  435. }
  436. return all_done? EStatus::AllBatchesDone : EStatus::WaitingForBatch;
  437. }
  438. void LargeIslandSplitter::MarkBatchProcessed(uint inSplitIslandIndex, const uint32 *inConstraintsBegin, const uint32 *inConstraintsEnd, const uint32 *inContactsBegin, const uint32 *inContactsEnd, bool &outLastIteration, bool &outFinalBatch)
  439. {
  440. uint num_items_processed = uint(inConstraintsEnd - inConstraintsBegin) + uint(inContactsEnd - inContactsBegin);
  441. JPH_ASSERT(inSplitIslandIndex < mNextSplitIsland.load(memory_order_relaxed));
  442. Splits &splits = mSplitIslands[inSplitIslandIndex];
  443. splits.MarkBatchProcessed(num_items_processed, outLastIteration, outFinalBatch);
  444. }
  445. void LargeIslandSplitter::PrepareForSolvePositions()
  446. {
  447. for (Splits *s = mSplitIslands, *s_end = mSplitIslands + mNumSplitIslands; s < s_end; ++s)
  448. {
  449. // Set the number of iterations to the number of position steps
  450. s->mNumIterations = s->mNumPositionSteps;
  451. // We can start again from the first batch
  452. s->StartFirstBatch();
  453. }
  454. }
  455. void LargeIslandSplitter::Reset(TempAllocator *inTempAllocator)
  456. {
  457. JPH_PROFILE_FUNCTION();
  458. // Everything should have been used
  459. JPH_ASSERT(mContactAndConstraintsNextFree.load(memory_order_relaxed) == mContactAndConstraintsSize);
  460. JPH_ASSERT(mNextSplitIsland.load(memory_order_relaxed) == mNumSplitIslands);
  461. // Free split islands
  462. if (mNumSplitIslands > 0)
  463. {
  464. inTempAllocator->Free(mSplitIslands, mNumSplitIslands * sizeof(Splits));
  465. mSplitIslands = nullptr;
  466. mNumSplitIslands = 0;
  467. mNextSplitIsland.store(0, memory_order_relaxed);
  468. }
  469. // Free contact and constraint buffers
  470. if (mContactAndConstraintsSize > 0)
  471. {
  472. inTempAllocator->Free(mContactAndConstraintIndices, mContactAndConstraintsSize * sizeof(uint32));
  473. mContactAndConstraintIndices = nullptr;
  474. inTempAllocator->Free(mContactAndConstaintsSplitIdx, mContactAndConstraintsSize * sizeof(uint32));
  475. mContactAndConstaintsSplitIdx = nullptr;
  476. mContactAndConstraintsSize = 0;
  477. mContactAndConstraintsNextFree.store(0, memory_order_relaxed);
  478. }
  479. // Free split masks
  480. if (mSplitMasks != nullptr)
  481. {
  482. inTempAllocator->Free(mSplitMasks, mNumActiveBodies * sizeof(SplitMask));
  483. mSplitMasks = nullptr;
  484. mNumActiveBodies = 0;
  485. }
  486. }
  487. JPH_NAMESPACE_END