ContactConstraintManager.cpp 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/ContactConstraintManager.h>
  6. #include <Jolt/Physics/Body/Body.h>
  7. #include <Jolt/Physics/PhysicsUpdateContext.h>
  8. #include <Jolt/Physics/PhysicsSettings.h>
  9. #include <Jolt/Physics/IslandBuilder.h>
  10. #include <Jolt/Physics/DeterminismLog.h>
  11. #include <Jolt/Core/TempAllocator.h>
  12. #include <Jolt/Core/QuickSort.h>
  13. #ifdef JPH_DEBUG_RENDERER
  14. #include <Jolt/Renderer/DebugRenderer.h>
  15. #endif // JPH_DEBUG_RENDERER
  16. JPH_NAMESPACE_BEGIN
  17. using namespace literals;
  18. #ifdef JPH_DEBUG_RENDERER
  19. bool ContactConstraintManager::sDrawContactPoint = false;
  20. bool ContactConstraintManager::sDrawSupportingFaces = false;
  21. bool ContactConstraintManager::sDrawContactPointReduction = false;
  22. bool ContactConstraintManager::sDrawContactManifolds = false;
  23. #endif // JPH_DEBUG_RENDERER
  24. //#define JPH_MANIFOLD_CACHE_DEBUG
  25. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  26. // ContactConstraintManager::WorldContactPoint
  27. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  28. void ContactConstraintManager::WorldContactPoint::CalculateNonPenetrationConstraintProperties(const Body &inBody1, float inInvMass1, float inInvInertiaScale1, const Body &inBody2, float inInvMass2, float inInvInertiaScale2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal)
  29. {
  30. // Calculate collision points relative to body
  31. RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
  32. Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
  33. Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
  34. mNonPenetrationConstraint.CalculateConstraintPropertiesWithMassOverride(inBody1, inInvMass1, inInvInertiaScale1, r1, inBody2, inInvMass2, inInvInertiaScale2, r2, inWorldSpaceNormal);
  35. }
  36. template <EMotionType Type1, EMotionType Type2>
  37. JPH_INLINE void ContactConstraintManager::WorldContactPoint::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(float inDeltaTime, const Body &inBody1, const Body &inBody2, float inInvM1, float inInvM2, Mat44Arg inInvI1, Mat44Arg inInvI2, RVec3Arg inWorldSpacePosition1, RVec3Arg inWorldSpacePosition2, Vec3Arg inWorldSpaceNormal, Vec3Arg inWorldSpaceTangent1, Vec3Arg inWorldSpaceTangent2, const ContactSettings &inSettings, float inMinVelocityForRestitution)
  38. {
  39. JPH_DET_LOG("TemplatedCalculateFrictionAndNonPenetrationConstraintProperties: p1: " << inWorldSpacePosition1 << " p2: " << inWorldSpacePosition2
  40. << " normal: " << inWorldSpaceNormal << " tangent1: " << inWorldSpaceTangent1 << " tangent2: " << inWorldSpaceTangent2
  41. << " restitution: " << inSettings.mCombinedRestitution << " friction: " << inSettings.mCombinedFriction << " minv: " << inMinVelocityForRestitution
  42. << " surface_vel: " << inSettings.mRelativeLinearSurfaceVelocity << " surface_ang: " << inSettings.mRelativeAngularSurfaceVelocity);
  43. // Calculate collision points relative to body
  44. RVec3 p = 0.5_r * (inWorldSpacePosition1 + inWorldSpacePosition2);
  45. Vec3 r1 = Vec3(p - inBody1.GetCenterOfMassPosition());
  46. Vec3 r2 = Vec3(p - inBody2.GetCenterOfMassPosition());
  47. // Calculate velocity of collision points
  48. Vec3 relative_velocity;
  49. if constexpr (Type1 != EMotionType::Static && Type2 != EMotionType::Static)
  50. relative_velocity = inBody2.GetMotionPropertiesUnchecked()->GetPointVelocityCOM(r2) - inBody1.GetMotionPropertiesUnchecked()->GetPointVelocityCOM(r1);
  51. else if constexpr (Type1 != EMotionType::Static)
  52. relative_velocity = -inBody1.GetMotionPropertiesUnchecked()->GetPointVelocityCOM(r1);
  53. else if constexpr (Type2 != EMotionType::Static)
  54. relative_velocity = inBody2.GetMotionPropertiesUnchecked()->GetPointVelocityCOM(r2);
  55. else
  56. {
  57. JPH_ASSERT(false); // Static vs static makes no sense
  58. relative_velocity = Vec3::sZero();
  59. }
  60. float normal_velocity = relative_velocity.Dot(inWorldSpaceNormal);
  61. // How much the shapes are penetrating (> 0 if penetrating, < 0 if separated)
  62. float penetration = Vec3(inWorldSpacePosition1 - inWorldSpacePosition2).Dot(inWorldSpaceNormal);
  63. // If there is no penetration, this is a speculative contact and we will apply a bias to the contact constraint
  64. // so that the constraint becomes relative_velocity . contact normal > -penetration / delta_time
  65. // instead of relative_velocity . contact normal > 0
  66. // See: GDC 2013: "Physics for Game Programmers; Continuous Collision" - Erin Catto
  67. float speculative_contact_velocity_bias = max(0.0f, -penetration / inDeltaTime);
  68. // Determine if the velocity is big enough for restitution
  69. float normal_velocity_bias;
  70. if (inSettings.mCombinedRestitution > 0.0f && normal_velocity < -inMinVelocityForRestitution)
  71. {
  72. // We have a velocity that is big enough for restitution. This is where speculative contacts don't work
  73. // great as we have to decide now if we're going to apply the restitution or not. If the relative
  74. // velocity is big enough for a hit, we apply the restitution (in the end, due to other constraints,
  75. // the objects may actually not collide and we will have applied restitution incorrectly). Another
  76. // artifact that occurs because of this approximation is that the object will bounce from its current
  77. // position rather than from a position where it is touching the other object. This causes the object
  78. // to appear to move faster for 1 frame (the opposite of time stealing).
  79. if (normal_velocity < -speculative_contact_velocity_bias)
  80. normal_velocity_bias = inSettings.mCombinedRestitution * normal_velocity;
  81. else
  82. // In this case we have predicted that we don't hit the other object, but if we do (due to other constraints changing velocities)
  83. // the speculative contact will prevent penetration but will not apply restitution leading to another artifact.
  84. normal_velocity_bias = speculative_contact_velocity_bias;
  85. }
  86. else
  87. {
  88. // No restitution. We can safely apply our contact velocity bias.
  89. normal_velocity_bias = speculative_contact_velocity_bias;
  90. }
  91. mNonPenetrationConstraint.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceNormal, normal_velocity_bias);
  92. // Calculate friction part
  93. if (inSettings.mCombinedFriction > 0.0f)
  94. {
  95. // Get surface velocity relative to tangents
  96. Vec3 ws_surface_velocity = inSettings.mRelativeLinearSurfaceVelocity + inSettings.mRelativeAngularSurfaceVelocity.Cross(r1);
  97. float surface_velocity1 = inWorldSpaceTangent1.Dot(ws_surface_velocity);
  98. float surface_velocity2 = inWorldSpaceTangent2.Dot(ws_surface_velocity);
  99. // Implement friction as 2 AxisContraintParts
  100. mFrictionConstraint1.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent1, surface_velocity1);
  101. mFrictionConstraint2.TemplatedCalculateConstraintProperties<Type1, Type2>(inInvM1, inInvI1, r1, inInvM2, inInvI2, r2, inWorldSpaceTangent2, surface_velocity2);
  102. }
  103. else
  104. {
  105. // Turn off friction constraint
  106. mFrictionConstraint1.Deactivate();
  107. mFrictionConstraint2.Deactivate();
  108. }
  109. }
  110. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  111. // ContactConstraintManager::ContactConstraint
  112. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  113. #ifdef JPH_DEBUG_RENDERER
  114. void ContactConstraintManager::ContactConstraint::Draw(DebugRenderer *inRenderer, ColorArg inManifoldColor) const
  115. {
  116. if (mContactPoints.empty())
  117. return;
  118. // Get body transforms
  119. RMat44 transform_body1 = mBody1->GetCenterOfMassTransform();
  120. RMat44 transform_body2 = mBody2->GetCenterOfMassTransform();
  121. RVec3 prev_point = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints.back().mContactPoint->mPosition1);
  122. for (const WorldContactPoint &wcp : mContactPoints)
  123. {
  124. // Test if any lambda from the previous frame was transferred
  125. float radius = wcp.mNonPenetrationConstraint.GetTotalLambda() == 0.0f
  126. && wcp.mFrictionConstraint1.GetTotalLambda() == 0.0f
  127. && wcp.mFrictionConstraint2.GetTotalLambda() == 0.0f? 0.1f : 0.2f;
  128. RVec3 next_point = transform_body1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  129. inRenderer->DrawMarker(next_point, Color::sCyan, radius);
  130. inRenderer->DrawMarker(transform_body2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2), Color::sPurple, radius);
  131. // Draw edge
  132. inRenderer->DrawArrow(prev_point, next_point, inManifoldColor, 0.05f);
  133. prev_point = next_point;
  134. }
  135. // Draw normal
  136. RVec3 wp = transform_body1 * Vec3::sLoadFloat3Unsafe(mContactPoints[0].mContactPoint->mPosition1);
  137. inRenderer->DrawArrow(wp, wp + GetWorldSpaceNormal(), Color::sRed, 0.05f);
  138. // Get tangents
  139. Vec3 t1, t2;
  140. GetTangents(t1, t2);
  141. // Draw tangents
  142. inRenderer->DrawLine(wp, wp + t1, Color::sGreen);
  143. inRenderer->DrawLine(wp, wp + t2, Color::sBlue);
  144. }
  145. #endif // JPH_DEBUG_RENDERER
  146. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  147. // ContactConstraintManager::CachedContactPoint
  148. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  149. void ContactConstraintManager::CachedContactPoint::SaveState(StateRecorder &inStream) const
  150. {
  151. inStream.Write(mPosition1);
  152. inStream.Write(mPosition2);
  153. inStream.Write(mNonPenetrationLambda);
  154. inStream.Write(mFrictionLambda);
  155. }
  156. void ContactConstraintManager::CachedContactPoint::RestoreState(StateRecorder &inStream)
  157. {
  158. inStream.Read(mPosition1);
  159. inStream.Read(mPosition2);
  160. inStream.Read(mNonPenetrationLambda);
  161. inStream.Read(mFrictionLambda);
  162. }
  163. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  164. // ContactConstraintManager::CachedManifold
  165. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  166. void ContactConstraintManager::CachedManifold::SaveState(StateRecorder &inStream) const
  167. {
  168. inStream.Write(mContactNormal);
  169. }
  170. void ContactConstraintManager::CachedManifold::RestoreState(StateRecorder &inStream)
  171. {
  172. inStream.Read(mContactNormal);
  173. }
  174. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  175. // ContactConstraintManager::CachedBodyPair
  176. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  177. void ContactConstraintManager::CachedBodyPair::SaveState(StateRecorder &inStream) const
  178. {
  179. inStream.Write(mDeltaPosition);
  180. inStream.Write(mDeltaRotation);
  181. }
  182. void ContactConstraintManager::CachedBodyPair::RestoreState(StateRecorder &inStream)
  183. {
  184. inStream.Read(mDeltaPosition);
  185. inStream.Read(mDeltaRotation);
  186. }
  187. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  188. // ContactConstraintManager::ManifoldCache
  189. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  190. void ContactConstraintManager::ManifoldCache::Init(uint inMaxBodyPairs, uint inMaxContactConstraints, uint inCachedManifoldsSize)
  191. {
  192. mAllocator.Init(inMaxBodyPairs * sizeof(BodyPairMap::KeyValue) + inCachedManifoldsSize);
  193. mCachedManifolds.Init(GetNextPowerOf2(inMaxContactConstraints));
  194. mCachedBodyPairs.Init(GetNextPowerOf2(inMaxBodyPairs));
  195. }
  196. void ContactConstraintManager::ManifoldCache::Clear()
  197. {
  198. JPH_PROFILE_FUNCTION();
  199. mCachedManifolds.Clear();
  200. mCachedBodyPairs.Clear();
  201. mAllocator.Clear();
  202. #ifdef JPH_ENABLE_ASSERTS
  203. // Mark as incomplete
  204. mIsFinalized = false;
  205. #endif
  206. }
  207. void ContactConstraintManager::ManifoldCache::Prepare(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
  208. {
  209. // Minimum amount of buckets to use in the hash map
  210. constexpr uint32 cMinBuckets = 1024;
  211. // Use the next higher power of 2 of amount of objects in the cache from last frame to determine the amount of buckets in this frame
  212. mCachedManifolds.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumManifolds)), mCachedManifolds.GetMaxBuckets()));
  213. mCachedBodyPairs.SetNumBuckets(min(max(cMinBuckets, GetNextPowerOf2(inExpectedNumBodyPairs)), mCachedBodyPairs.GetMaxBuckets()));
  214. }
  215. const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Find(const SubShapeIDPair &inKey, uint64 inKeyHash) const
  216. {
  217. JPH_ASSERT(mIsFinalized);
  218. return mCachedManifolds.Find(inKey, inKeyHash);
  219. }
  220. ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
  221. {
  222. JPH_ASSERT(!mIsFinalized);
  223. MKeyValue *kv = mCachedManifolds.Create(ioContactAllocator, inKey, inKeyHash, CachedManifold::sGetRequiredExtraSize(inNumContactPoints));
  224. if (kv == nullptr)
  225. {
  226. ioContactAllocator.mErrors |= EPhysicsUpdateError::ManifoldCacheFull;
  227. return nullptr;
  228. }
  229. kv->GetValue().mNumContactPoints = uint16(inNumContactPoints);
  230. ++ioContactAllocator.mNumManifolds;
  231. return kv;
  232. }
  233. ContactConstraintManager::MKVAndCreated ContactConstraintManager::ManifoldCache::FindOrCreate(ContactAllocator &ioContactAllocator, const SubShapeIDPair &inKey, uint64 inKeyHash, int inNumContactPoints)
  234. {
  235. MKeyValue *kv = const_cast<MKeyValue *>(mCachedManifolds.Find(inKey, inKeyHash));
  236. if (kv != nullptr)
  237. return { kv, false };
  238. return { Create(ioContactAllocator, inKey, inKeyHash, inNumContactPoints), true };
  239. }
  240. uint32 ContactConstraintManager::ManifoldCache::ToHandle(const MKeyValue *inKeyValue) const
  241. {
  242. JPH_ASSERT(!mIsFinalized);
  243. return mCachedManifolds.ToHandle(inKeyValue);
  244. }
  245. const ContactConstraintManager::MKeyValue *ContactConstraintManager::ManifoldCache::FromHandle(uint32 inHandle) const
  246. {
  247. JPH_ASSERT(mIsFinalized);
  248. return mCachedManifolds.FromHandle(inHandle);
  249. }
  250. const ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Find(const BodyPair &inKey, uint64 inKeyHash) const
  251. {
  252. JPH_ASSERT(mIsFinalized);
  253. return mCachedBodyPairs.Find(inKey, inKeyHash);
  254. }
  255. ContactConstraintManager::BPKeyValue *ContactConstraintManager::ManifoldCache::Create(ContactAllocator &ioContactAllocator, const BodyPair &inKey, uint64 inKeyHash)
  256. {
  257. JPH_ASSERT(!mIsFinalized);
  258. BPKeyValue *kv = mCachedBodyPairs.Create(ioContactAllocator, inKey, inKeyHash, 0);
  259. if (kv == nullptr)
  260. {
  261. ioContactAllocator.mErrors |= EPhysicsUpdateError::BodyPairCacheFull;
  262. return nullptr;
  263. }
  264. ++ioContactAllocator.mNumBodyPairs;
  265. return kv;
  266. }
  267. void ContactConstraintManager::ManifoldCache::GetAllBodyPairsSorted(Array<const BPKeyValue *> &outAll) const
  268. {
  269. JPH_ASSERT(mIsFinalized);
  270. mCachedBodyPairs.GetAllKeyValues(outAll);
  271. // Sort by key
  272. QuickSort(outAll.begin(), outAll.end(), [](const BPKeyValue *inLHS, const BPKeyValue *inRHS) {
  273. return inLHS->GetKey() < inRHS->GetKey();
  274. });
  275. }
  276. void ContactConstraintManager::ManifoldCache::GetAllManifoldsSorted(const CachedBodyPair &inBodyPair, Array<const MKeyValue *> &outAll) const
  277. {
  278. JPH_ASSERT(mIsFinalized);
  279. // Iterate through the attached manifolds
  280. for (uint32 handle = inBodyPair.mFirstCachedManifold; handle != ManifoldMap::cInvalidHandle; handle = FromHandle(handle)->GetValue().mNextWithSameBodyPair)
  281. {
  282. const MKeyValue *kv = mCachedManifolds.FromHandle(handle);
  283. outAll.push_back(kv);
  284. }
  285. // Sort by key
  286. QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
  287. return inLHS->GetKey() < inRHS->GetKey();
  288. });
  289. }
  290. void ContactConstraintManager::ManifoldCache::GetAllCCDManifoldsSorted(Array<const MKeyValue *> &outAll) const
  291. {
  292. mCachedManifolds.GetAllKeyValues(outAll);
  293. for (int i = (int)outAll.size() - 1; i >= 0; --i)
  294. if ((outAll[i]->GetValue().mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0)
  295. {
  296. outAll[i] = outAll.back();
  297. outAll.pop_back();
  298. }
  299. // Sort by key
  300. QuickSort(outAll.begin(), outAll.end(), [](const MKeyValue *inLHS, const MKeyValue *inRHS) {
  301. return inLHS->GetKey() < inRHS->GetKey();
  302. });
  303. }
  304. void ContactConstraintManager::ManifoldCache::ContactPointRemovedCallbacks(ContactListener *inListener)
  305. {
  306. JPH_PROFILE_FUNCTION();
  307. for (MKeyValue &kv : mCachedManifolds)
  308. if ((kv.GetValue().mFlags & uint16(CachedManifold::EFlags::ContactPersisted)) == 0)
  309. inListener->OnContactRemoved(kv.GetKey());
  310. }
  311. #ifdef JPH_ENABLE_ASSERTS
  312. void ContactConstraintManager::ManifoldCache::Finalize()
  313. {
  314. mIsFinalized = true;
  315. #ifdef JPH_MANIFOLD_CACHE_DEBUG
  316. Trace("ManifoldMap:");
  317. mCachedManifolds.TraceStats();
  318. Trace("BodyPairMap:");
  319. mCachedBodyPairs.TraceStats();
  320. #endif // JPH_MANIFOLD_CACHE_DEBUG
  321. }
  322. #endif
  323. void ContactConstraintManager::ManifoldCache::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
  324. {
  325. JPH_ASSERT(mIsFinalized);
  326. // Get contents of cache
  327. Array<const BPKeyValue *> all_bp;
  328. GetAllBodyPairsSorted(all_bp);
  329. // Determine which ones to save
  330. Array<const BPKeyValue *> selected_bp;
  331. if (inFilter == nullptr)
  332. selected_bp = std::move(all_bp);
  333. else
  334. {
  335. selected_bp.reserve(all_bp.size());
  336. for (const BPKeyValue *bp_kv : all_bp)
  337. if (inFilter->ShouldSaveContact(bp_kv->GetKey().mBodyA, bp_kv->GetKey().mBodyB))
  338. selected_bp.push_back(bp_kv);
  339. }
  340. // Write body pairs
  341. size_t num_body_pairs = selected_bp.size();
  342. inStream.Write(num_body_pairs);
  343. for (const BPKeyValue *bp_kv : selected_bp)
  344. {
  345. // Write body pair key
  346. inStream.Write(bp_kv->GetKey());
  347. // Write body pair
  348. const CachedBodyPair &bp = bp_kv->GetValue();
  349. bp.SaveState(inStream);
  350. // Get attached manifolds
  351. Array<const MKeyValue *> all_m;
  352. GetAllManifoldsSorted(bp, all_m);
  353. // Write num manifolds
  354. size_t num_manifolds = all_m.size();
  355. inStream.Write(num_manifolds);
  356. // Write all manifolds
  357. for (const MKeyValue *m_kv : all_m)
  358. {
  359. // Write key
  360. inStream.Write(m_kv->GetKey());
  361. const CachedManifold &cm = m_kv->GetValue();
  362. JPH_ASSERT((cm.mFlags & (uint16)CachedManifold::EFlags::CCDContact) == 0);
  363. // Write amount of contacts
  364. inStream.Write(cm.mNumContactPoints);
  365. // Write manifold
  366. cm.SaveState(inStream);
  367. // Write contact points
  368. for (uint32 i = 0; i < cm.mNumContactPoints; ++i)
  369. cm.mContactPoints[i].SaveState(inStream);
  370. }
  371. }
  372. // Get CCD manifolds
  373. Array<const MKeyValue *> all_m;
  374. GetAllCCDManifoldsSorted(all_m);
  375. // Determine which ones to save
  376. Array<const MKeyValue *> selected_m;
  377. if (inFilter == nullptr)
  378. selected_m = std::move(all_m);
  379. else
  380. {
  381. selected_m.reserve(all_m.size());
  382. for (const MKeyValue *m_kv : all_m)
  383. if (inFilter->ShouldSaveContact(m_kv->GetKey().GetBody1ID(), m_kv->GetKey().GetBody2ID()))
  384. selected_m.push_back(m_kv);
  385. }
  386. // Write all CCD manifold keys
  387. size_t num_manifolds = selected_m.size();
  388. inStream.Write(num_manifolds);
  389. for (const MKeyValue *m_kv : selected_m)
  390. inStream.Write(m_kv->GetKey());
  391. }
  392. bool ContactConstraintManager::ManifoldCache::RestoreState(const ManifoldCache &inReadCache, StateRecorder &inStream)
  393. {
  394. JPH_ASSERT(!mIsFinalized);
  395. bool success = true;
  396. // Create a contact allocator for restoring the contact cache
  397. ContactAllocator contact_allocator(GetContactAllocator());
  398. // When validating, get all existing body pairs
  399. Array<const BPKeyValue *> all_bp;
  400. if (inStream.IsValidating())
  401. inReadCache.GetAllBodyPairsSorted(all_bp);
  402. // Read amount of body pairs
  403. size_t num_body_pairs;
  404. if (inStream.IsValidating())
  405. num_body_pairs = all_bp.size();
  406. inStream.Read(num_body_pairs);
  407. // Read entire cache
  408. for (size_t i = 0; i < num_body_pairs; ++i)
  409. {
  410. // Read key
  411. BodyPair body_pair_key;
  412. if (inStream.IsValidating() && i < all_bp.size())
  413. body_pair_key = all_bp[i]->GetKey();
  414. inStream.Read(body_pair_key);
  415. // Create new entry for this body pair
  416. uint64 body_pair_hash = body_pair_key.GetHash();
  417. BPKeyValue *bp_kv = Create(contact_allocator, body_pair_key, body_pair_hash);
  418. if (bp_kv == nullptr)
  419. {
  420. // Out of cache space
  421. success = false;
  422. break;
  423. }
  424. CachedBodyPair &bp = bp_kv->GetValue();
  425. // Read body pair
  426. if (inStream.IsValidating() && i < all_bp.size())
  427. memcpy(&bp, &all_bp[i]->GetValue(), sizeof(CachedBodyPair));
  428. bp.RestoreState(inStream);
  429. // When validating, get all existing manifolds
  430. Array<const MKeyValue *> all_m;
  431. if (inStream.IsValidating())
  432. inReadCache.GetAllManifoldsSorted(all_bp[i]->GetValue(), all_m);
  433. // Read amount of manifolds
  434. size_t num_manifolds;
  435. if (inStream.IsValidating())
  436. num_manifolds = all_m.size();
  437. inStream.Read(num_manifolds);
  438. uint32 handle = ManifoldMap::cInvalidHandle;
  439. for (size_t j = 0; j < num_manifolds; ++j)
  440. {
  441. // Read key
  442. SubShapeIDPair sub_shape_key;
  443. if (inStream.IsValidating() && j < all_m.size())
  444. sub_shape_key = all_m[j]->GetKey();
  445. inStream.Read(sub_shape_key);
  446. uint64 sub_shape_key_hash = sub_shape_key.GetHash();
  447. // Read amount of contact points
  448. uint16 num_contact_points;
  449. if (inStream.IsValidating() && j < all_m.size())
  450. num_contact_points = all_m[j]->GetValue().mNumContactPoints;
  451. inStream.Read(num_contact_points);
  452. // Read manifold
  453. MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, num_contact_points);
  454. if (m_kv == nullptr)
  455. {
  456. // Out of cache space
  457. success = false;
  458. break;
  459. }
  460. CachedManifold &cm = m_kv->GetValue();
  461. if (inStream.IsValidating() && j < all_m.size())
  462. {
  463. memcpy(&cm, &all_m[j]->GetValue(), CachedManifold::sGetRequiredTotalSize(num_contact_points));
  464. cm.mNumContactPoints = uint16(num_contact_points); // Restore num contact points
  465. }
  466. cm.RestoreState(inStream);
  467. cm.mNextWithSameBodyPair = handle;
  468. handle = ToHandle(m_kv);
  469. // Read contact points
  470. for (uint32 k = 0; k < num_contact_points; ++k)
  471. cm.mContactPoints[k].RestoreState(inStream);
  472. }
  473. bp.mFirstCachedManifold = handle;
  474. }
  475. // When validating, get all existing CCD manifolds
  476. Array<const MKeyValue *> all_m;
  477. if (inStream.IsValidating())
  478. inReadCache.GetAllCCDManifoldsSorted(all_m);
  479. // Read amount of CCD manifolds
  480. size_t num_manifolds;
  481. if (inStream.IsValidating())
  482. num_manifolds = all_m.size();
  483. inStream.Read(num_manifolds);
  484. for (size_t j = 0; j < num_manifolds; ++j)
  485. {
  486. // Read key
  487. SubShapeIDPair sub_shape_key;
  488. if (inStream.IsValidating() && j < all_m.size())
  489. sub_shape_key = all_m[j]->GetKey();
  490. inStream.Read(sub_shape_key);
  491. uint64 sub_shape_key_hash = sub_shape_key.GetHash();
  492. // Create CCD manifold
  493. MKeyValue *m_kv = Create(contact_allocator, sub_shape_key, sub_shape_key_hash, 0);
  494. if (m_kv == nullptr)
  495. {
  496. // Out of cache space
  497. success = false;
  498. break;
  499. }
  500. CachedManifold &cm = m_kv->GetValue();
  501. cm.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
  502. }
  503. #ifdef JPH_ENABLE_ASSERTS
  504. mIsFinalized = true;
  505. #endif
  506. return success;
  507. }
  508. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  509. // ContactConstraintManager
  510. ////////////////////////////////////////////////////////////////////////////////////////////////////////
  511. ContactConstraintManager::ContactConstraintManager(const PhysicsSettings &inPhysicsSettings) :
  512. mPhysicsSettings(inPhysicsSettings)
  513. {
  514. #ifdef JPH_ENABLE_ASSERTS
  515. // For the first frame mark this empty buffer as finalized
  516. mCache[mCacheWriteIdx ^ 1].Finalize();
  517. #endif
  518. }
  519. ContactConstraintManager::~ContactConstraintManager()
  520. {
  521. JPH_ASSERT(mConstraints == nullptr);
  522. }
  523. void ContactConstraintManager::Init(uint inMaxBodyPairs, uint inMaxContactConstraints)
  524. {
  525. mMaxConstraints = inMaxContactConstraints;
  526. // Calculate worst case cache usage
  527. uint cached_manifolds_size = inMaxContactConstraints * (sizeof(CachedManifold) + (MaxContactPoints - 1) * sizeof(CachedContactPoint));
  528. // Init the caches
  529. mCache[0].Init(inMaxBodyPairs, inMaxContactConstraints, cached_manifolds_size);
  530. mCache[1].Init(inMaxBodyPairs, inMaxContactConstraints, cached_manifolds_size);
  531. }
  532. void ContactConstraintManager::PrepareConstraintBuffer(PhysicsUpdateContext *inContext)
  533. {
  534. // Store context
  535. mUpdateContext = inContext;
  536. // Allocate temporary constraint buffer
  537. JPH_ASSERT(mConstraints == nullptr);
  538. mConstraints = (ContactConstraint *)inContext->mTempAllocator->Allocate(mMaxConstraints * sizeof(ContactConstraint));
  539. }
  540. template <EMotionType Type1, EMotionType Type2>
  541. JPH_INLINE void ContactConstraintManager::TemplatedCalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
  542. {
  543. // Calculate scaled mass and inertia
  544. Mat44 inv_i1;
  545. if constexpr (Type1 == EMotionType::Dynamic)
  546. {
  547. const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
  548. inv_i1 = inSettings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inTransformBody1.GetRotation());
  549. }
  550. else
  551. {
  552. inv_i1 = Mat44::sZero();
  553. }
  554. Mat44 inv_i2;
  555. if constexpr (Type2 == EMotionType::Dynamic)
  556. {
  557. const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
  558. inv_i2 = inSettings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inTransformBody2.GetRotation());
  559. }
  560. else
  561. {
  562. inv_i2 = Mat44::sZero();
  563. }
  564. // Calculate tangents
  565. Vec3 t1, t2;
  566. ioConstraint.GetTangents(t1, t2);
  567. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  568. // Setup velocity constraint properties
  569. float min_velocity_for_restitution = mPhysicsSettings.mMinVelocityForRestitution;
  570. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  571. {
  572. RVec3 p1 = inTransformBody1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  573. RVec3 p2 = inTransformBody2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
  574. wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(inDeltaTime, inBody1, inBody2, ioConstraint.mInvMass1, ioConstraint.mInvMass2, inv_i1, inv_i2, p1, p2, ws_normal, t1, t2, inSettings, min_velocity_for_restitution);
  575. }
  576. }
  577. inline void ContactConstraintManager::CalculateFrictionAndNonPenetrationConstraintProperties(ContactConstraint &ioConstraint, const ContactSettings &inSettings, float inDeltaTime, RMat44Arg inTransformBody1, RMat44Arg inTransformBody2, const Body &inBody1, const Body &inBody2)
  578. {
  579. // Dispatch to the correct templated form
  580. switch (inBody1.GetMotionType())
  581. {
  582. case EMotionType::Dynamic:
  583. switch (inBody2.GetMotionType())
  584. {
  585. case EMotionType::Dynamic:
  586. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  587. break;
  588. case EMotionType::Kinematic:
  589. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Kinematic>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  590. break;
  591. case EMotionType::Static:
  592. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Dynamic, EMotionType::Static>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  593. break;
  594. default:
  595. JPH_ASSERT(false);
  596. break;
  597. }
  598. break;
  599. case EMotionType::Kinematic:
  600. JPH_ASSERT(inBody2.IsDynamic());
  601. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Kinematic, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  602. break;
  603. case EMotionType::Static:
  604. JPH_ASSERT(inBody2.IsDynamic());
  605. TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<EMotionType::Static, EMotionType::Dynamic>(ioConstraint, inSettings, inDeltaTime, inTransformBody1, inTransformBody2, inBody1, inBody2);
  606. break;
  607. default:
  608. JPH_ASSERT(false);
  609. break;
  610. }
  611. }
  612. void ContactConstraintManager::GetContactsFromCache(ContactAllocator &ioContactAllocator, Body &inBody1, Body &inBody2, bool &outPairHandled, bool &outConstraintCreated)
  613. {
  614. JPH_PROFILE_FUNCTION();
  615. // Start with nothing found and not handled
  616. outConstraintCreated = false;
  617. outPairHandled = false;
  618. // Swap bodies so that body 1 id < body 2 id
  619. Body *body1, *body2;
  620. if (inBody1.GetID() < inBody2.GetID())
  621. {
  622. body1 = &inBody1;
  623. body2 = &inBody2;
  624. }
  625. else
  626. {
  627. body1 = &inBody2;
  628. body2 = &inBody1;
  629. }
  630. // Find the cached body pair
  631. BodyPair body_pair_key(body1->GetID(), body2->GetID());
  632. uint64 body_pair_hash = body_pair_key.GetHash();
  633. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  634. const BPKeyValue *kv = read_cache.Find(body_pair_key, body_pair_hash);
  635. if (kv == nullptr)
  636. return;
  637. const CachedBodyPair &input_cbp = kv->GetValue();
  638. // Get relative translation
  639. Quat inv_r1 = body1->GetRotation().Conjugated();
  640. Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
  641. // Get old position delta
  642. Vec3 old_delta_position = Vec3::sLoadFloat3Unsafe(input_cbp.mDeltaPosition);
  643. // Check if bodies are still roughly in the same relative position
  644. if ((delta_position - old_delta_position).LengthSq() > mPhysicsSettings.mBodyPairCacheMaxDeltaPositionSq)
  645. return;
  646. // Determine relative orientation
  647. Quat delta_rotation = inv_r1 * body2->GetRotation();
  648. // Reconstruct old quaternion delta
  649. Quat old_delta_rotation = Quat::sLoadFloat3Unsafe(input_cbp.mDeltaRotation);
  650. // Check if bodies are still roughly in the same relative orientation
  651. // The delta between 2 quaternions p and q is: p q^* = [rotation_axis * sin(angle / 2), cos(angle / 2)]
  652. // From the W component we can extract the angle: cos(angle / 2) = px * qx + py * qy + pz * qz + pw * qw = p . q
  653. // Since we want to abort if the rotation is smaller than -angle or bigger than angle, we can write the comparison as |p . q| < cos(angle / 2)
  654. if (abs(delta_rotation.Dot(old_delta_rotation)) < mPhysicsSettings.mBodyPairCacheCosMaxDeltaRotationDiv2)
  655. return;
  656. // The cache is valid, return that we've handled this body pair
  657. outPairHandled = true;
  658. // Copy the cached body pair to this frame
  659. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  660. BPKeyValue *output_bp_kv = write_cache.Create(ioContactAllocator, body_pair_key, body_pair_hash);
  661. if (output_bp_kv == nullptr)
  662. return; // Out of cache space
  663. CachedBodyPair *output_cbp = &output_bp_kv->GetValue();
  664. memcpy(output_cbp, &input_cbp, sizeof(CachedBodyPair));
  665. // If there were no contacts, we have handled the contact
  666. if (input_cbp.mFirstCachedManifold == ManifoldMap::cInvalidHandle)
  667. return;
  668. // Get body transforms
  669. RMat44 transform_body1 = body1->GetCenterOfMassTransform();
  670. RMat44 transform_body2 = body2->GetCenterOfMassTransform();
  671. // Get time step
  672. float delta_time = mUpdateContext->mStepDeltaTime;
  673. // Copy manifolds
  674. uint32 output_handle = ManifoldMap::cInvalidHandle;
  675. uint32 input_handle = input_cbp.mFirstCachedManifold;
  676. do
  677. {
  678. JPH_PROFILE("Add Constraint From Cached Manifold");
  679. // Find the existing manifold
  680. const MKeyValue *input_kv = read_cache.FromHandle(input_handle);
  681. const SubShapeIDPair &input_key = input_kv->GetKey();
  682. const CachedManifold &input_cm = input_kv->GetValue();
  683. JPH_ASSERT(input_cm.mNumContactPoints > 0); // There should be contact points in this manifold!
  684. // Create room for manifold in write buffer and copy data
  685. uint64 input_hash = input_key.GetHash();
  686. MKeyValue *output_kv = write_cache.Create(ioContactAllocator, input_key, input_hash, input_cm.mNumContactPoints);
  687. if (output_kv == nullptr)
  688. break; // Out of cache space
  689. CachedManifold *output_cm = &output_kv->GetValue();
  690. memcpy(output_cm, &input_cm, CachedManifold::sGetRequiredTotalSize(input_cm.mNumContactPoints));
  691. // Link the object under the body pairs
  692. output_cm->mNextWithSameBodyPair = output_handle;
  693. output_handle = write_cache.ToHandle(output_kv);
  694. // Calculate default contact settings
  695. ContactSettings settings;
  696. settings.mCombinedFriction = mCombineFriction(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
  697. settings.mCombinedRestitution = mCombineRestitution(*body1, input_key.GetSubShapeID1(), *body2, input_key.GetSubShapeID2());
  698. settings.mIsSensor = body1->IsSensor() || body2->IsSensor();
  699. // Calculate world space contact normal
  700. Vec3 world_space_normal = transform_body2.Multiply3x3(Vec3::sLoadFloat3Unsafe(output_cm->mContactNormal)).Normalized();
  701. // Call contact listener to update settings
  702. if (mContactListener != nullptr)
  703. {
  704. // Convert constraint to manifold structure for callback
  705. ContactManifold manifold;
  706. manifold.mWorldSpaceNormal = world_space_normal;
  707. manifold.mSubShapeID1 = input_key.GetSubShapeID1();
  708. manifold.mSubShapeID2 = input_key.GetSubShapeID2();
  709. manifold.mBaseOffset = transform_body1.GetTranslation();
  710. manifold.mRelativeContactPointsOn1.resize(output_cm->mNumContactPoints);
  711. manifold.mRelativeContactPointsOn2.resize(output_cm->mNumContactPoints);
  712. Mat44 local_transform_body2 = transform_body2.PostTranslated(-manifold.mBaseOffset).ToMat44();
  713. float penetration_depth = -FLT_MAX;
  714. for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
  715. {
  716. const CachedContactPoint &ccp = output_cm->mContactPoints[i];
  717. manifold.mRelativeContactPointsOn1[i] = transform_body1.Multiply3x3(Vec3::sLoadFloat3Unsafe(ccp.mPosition1));
  718. manifold.mRelativeContactPointsOn2[i] = local_transform_body2 * Vec3::sLoadFloat3Unsafe(ccp.mPosition2);
  719. penetration_depth = max(penetration_depth, (manifold.mRelativeContactPointsOn1[0] - manifold.mRelativeContactPointsOn2[0]).Dot(world_space_normal));
  720. }
  721. manifold.mPenetrationDepth = penetration_depth; // We don't have the penetration depth anymore, estimate it
  722. // Notify callback
  723. mContactListener->OnContactPersisted(*body1, *body2, manifold, settings);
  724. }
  725. JPH_ASSERT(settings.mIsSensor || !(body1->IsSensor() || body2->IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  726. if (!settings.mIsSensor // If one of the bodies is a sensor, don't actually create the constraint
  727. && ((body1->IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
  728. || (body2->IsDynamic() && settings.mInvMassScale2 != 0.0f)))
  729. {
  730. // Add contact constraint in world space for the solver
  731. uint32 constraint_idx = mNumConstraints++;
  732. if (constraint_idx >= mMaxConstraints)
  733. {
  734. ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
  735. break;
  736. }
  737. // A constraint will be created
  738. outConstraintCreated = true;
  739. ContactConstraint &constraint = mConstraints[constraint_idx];
  740. new (&constraint) ContactConstraint();
  741. constraint.mBody1 = body1;
  742. constraint.mBody2 = body2;
  743. constraint.mSortKey = input_hash;
  744. world_space_normal.StoreFloat3(&constraint.mWorldSpaceNormal);
  745. constraint.mCombinedFriction = settings.mCombinedFriction;
  746. constraint.mInvMass1 = body1->GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale1 * body1->GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
  747. constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
  748. constraint.mInvMass2 = body2->GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale2 * body2->GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
  749. constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
  750. constraint.mContactPoints.resize(output_cm->mNumContactPoints);
  751. for (uint32 i = 0; i < output_cm->mNumContactPoints; ++i)
  752. {
  753. CachedContactPoint &ccp = output_cm->mContactPoints[i];
  754. WorldContactPoint &wcp = constraint.mContactPoints[i];
  755. wcp.mNonPenetrationConstraint.SetTotalLambda(ccp.mNonPenetrationLambda);
  756. wcp.mFrictionConstraint1.SetTotalLambda(ccp.mFrictionLambda[0]);
  757. wcp.mFrictionConstraint2.SetTotalLambda(ccp.mFrictionLambda[1]);
  758. wcp.mContactPoint = &ccp;
  759. }
  760. JPH_DET_LOG("GetContactsFromCache: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
  761. // Calculate friction and non-penetration constraint properties for all contact points
  762. CalculateFrictionAndNonPenetrationConstraintProperties(constraint, settings, delta_time, transform_body1, transform_body2, *body1, *body2);
  763. // Notify island builder
  764. mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, body1->GetIndexInActiveBodiesInternal(), body2->GetIndexInActiveBodiesInternal());
  765. #ifdef JPH_DEBUG_RENDERER
  766. // Draw the manifold
  767. if (sDrawContactManifolds)
  768. constraint.Draw(DebugRenderer::sInstance, Color::sYellow);
  769. #endif // JPH_DEBUG_RENDERER
  770. }
  771. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  772. input_cm.mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  773. // Fetch the next manifold
  774. input_handle = input_cm.mNextWithSameBodyPair;
  775. }
  776. while (input_handle != ManifoldMap::cInvalidHandle);
  777. output_cbp->mFirstCachedManifold = output_handle;
  778. }
  779. ContactConstraintManager::BodyPairHandle ContactConstraintManager::AddBodyPair(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2)
  780. {
  781. JPH_PROFILE_FUNCTION();
  782. // Swap bodies so that body 1 id < body 2 id
  783. const Body *body1, *body2;
  784. if (inBody1.GetID() < inBody2.GetID())
  785. {
  786. body1 = &inBody1;
  787. body2 = &inBody2;
  788. }
  789. else
  790. {
  791. body1 = &inBody2;
  792. body2 = &inBody1;
  793. }
  794. // Add an entry
  795. BodyPair body_pair_key(body1->GetID(), body2->GetID());
  796. uint64 body_pair_hash = body_pair_key.GetHash();
  797. BPKeyValue *body_pair_kv = mCache[mCacheWriteIdx].Create(ioContactAllocator, body_pair_key, body_pair_hash);
  798. if (body_pair_kv == nullptr)
  799. return nullptr; // Out of cache space
  800. CachedBodyPair *cbp = &body_pair_kv->GetValue();
  801. cbp->mFirstCachedManifold = ManifoldMap::cInvalidHandle;
  802. // Get relative translation
  803. Quat inv_r1 = body1->GetRotation().Conjugated();
  804. Vec3 delta_position = inv_r1 * Vec3(body2->GetCenterOfMassPosition() - body1->GetCenterOfMassPosition());
  805. // Store it
  806. delta_position.StoreFloat3(&cbp->mDeltaPosition);
  807. // Determine relative orientation
  808. Quat delta_rotation = inv_r1 * body2->GetRotation();
  809. // Store it
  810. delta_rotation.StoreFloat3(&cbp->mDeltaRotation);
  811. return cbp;
  812. }
  813. template <EMotionType Type1, EMotionType Type2>
  814. bool ContactConstraintManager::TemplatedAddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
  815. {
  816. // Calculate hash
  817. SubShapeIDPair key { inBody1.GetID(), inManifold.mSubShapeID1, inBody2.GetID(), inManifold.mSubShapeID2 };
  818. uint64 key_hash = key.GetHash();
  819. // Determine number of contact points
  820. int num_contact_points = (int)inManifold.mRelativeContactPointsOn1.size();
  821. JPH_ASSERT(num_contact_points <= MaxContactPoints);
  822. JPH_ASSERT(num_contact_points == (int)inManifold.mRelativeContactPointsOn2.size());
  823. // Reserve space for new contact cache entry
  824. // Note that for dynamic vs dynamic we always require the first body to have a lower body id to get a consistent key
  825. // under which to look up the contact
  826. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  827. MKeyValue *new_manifold_kv = write_cache.Create(ioContactAllocator, key, key_hash, num_contact_points);
  828. if (new_manifold_kv == nullptr)
  829. return false; // Out of cache space
  830. CachedManifold *new_manifold = &new_manifold_kv->GetValue();
  831. // Transform the world space normal to the space of body 2 (this is usually the static body)
  832. RMat44 inverse_transform_body2 = inBody2.GetInverseCenterOfMassTransform();
  833. inverse_transform_body2.Multiply3x3(inManifold.mWorldSpaceNormal).Normalized().StoreFloat3(&new_manifold->mContactNormal);
  834. // Settings object that gets passed to the callback
  835. ContactSettings settings;
  836. settings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  837. settings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  838. settings.mIsSensor = inBody1.IsSensor() || inBody2.IsSensor();
  839. // Get the contact points for the old cache entry
  840. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  841. const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
  842. const CachedContactPoint *ccp_start;
  843. const CachedContactPoint *ccp_end;
  844. if (old_manifold_kv != nullptr)
  845. {
  846. // Call point persisted listener
  847. if (mContactListener != nullptr)
  848. mContactListener->OnContactPersisted(inBody1, inBody2, inManifold, settings);
  849. // Fetch the contact points from the old manifold
  850. const CachedManifold *old_manifold = &old_manifold_kv->GetValue();
  851. ccp_start = old_manifold->mContactPoints;
  852. ccp_end = ccp_start + old_manifold->mNumContactPoints;
  853. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  854. old_manifold->mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  855. }
  856. else
  857. {
  858. // Call point added listener
  859. if (mContactListener != nullptr)
  860. mContactListener->OnContactAdded(inBody1, inBody2, inManifold, settings);
  861. // No contact points available from old manifold
  862. ccp_start = nullptr;
  863. ccp_end = nullptr;
  864. }
  865. // Get inverse transform for body 1
  866. RMat44 inverse_transform_body1 = inBody1.GetInverseCenterOfMassTransform();
  867. bool contact_constraint_created = false;
  868. // If one of the bodies is a sensor, don't actually create the constraint
  869. JPH_ASSERT(settings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  870. if (settings.mIsSensor)
  871. {
  872. // Store the contact manifold in the cache
  873. for (int i = 0; i < num_contact_points; ++i)
  874. {
  875. // Convert to local space to the body
  876. Vec3 p1 = Vec3(inverse_transform_body1 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i]));
  877. Vec3 p2 = Vec3(inverse_transform_body2 * (inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i]));
  878. // Create new contact point
  879. CachedContactPoint &cp = new_manifold->mContactPoints[i];
  880. p1.StoreFloat3(&cp.mPosition1);
  881. p2.StoreFloat3(&cp.mPosition2);
  882. // We don't use this, but reset them anyway for determinism check
  883. cp.mNonPenetrationLambda = 0.0f;
  884. cp.mFrictionLambda[0] = 0.0f;
  885. cp.mFrictionLambda[1] = 0.0f;
  886. }
  887. }
  888. else if ((inBody1.IsDynamic() && settings.mInvMassScale1 != 0.0f) // One of the bodies must have mass to be able to create a contact constraint
  889. || (inBody2.IsDynamic() && settings.mInvMassScale2 != 0.0f))
  890. {
  891. // Add contact constraint
  892. uint32 constraint_idx = mNumConstraints++;
  893. if (constraint_idx >= mMaxConstraints)
  894. {
  895. ioContactAllocator.mErrors |= EPhysicsUpdateError::ContactConstraintsFull;
  896. // Manifold has been created already, we're not filling it in, so we need to reset the contact number of points.
  897. // Note that we don't hook it up to the body pair cache so that it won't be used as a cache during the next simulation.
  898. new_manifold->mNumContactPoints = 0;
  899. return false;
  900. }
  901. // We will create a contact constraint
  902. contact_constraint_created = true;
  903. ContactConstraint &constraint = mConstraints[constraint_idx];
  904. new (&constraint) ContactConstraint();
  905. constraint.mBody1 = &inBody1;
  906. constraint.mBody2 = &inBody2;
  907. constraint.mSortKey = key_hash;
  908. inManifold.mWorldSpaceNormal.StoreFloat3(&constraint.mWorldSpaceNormal);
  909. constraint.mCombinedFriction = settings.mCombinedFriction;
  910. constraint.mInvMass1 = inBody1.GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale1 * inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
  911. constraint.mInvInertiaScale1 = settings.mInvInertiaScale1;
  912. constraint.mInvMass2 = inBody2.GetMotionPropertiesUnchecked() != nullptr? settings.mInvMassScale2 * inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked() : 0.0f;
  913. constraint.mInvInertiaScale2 = settings.mInvInertiaScale2;
  914. JPH_DET_LOG("TemplatedAddContactConstraint: id1: " << constraint.mBody1->GetID() << " id2: " << constraint.mBody2->GetID() << " key: " << constraint.mSortKey);
  915. // Notify island builder
  916. mUpdateContext->mIslandBuilder->LinkContact(constraint_idx, inBody1.GetIndexInActiveBodiesInternal(), inBody2.GetIndexInActiveBodiesInternal());
  917. // Get time step
  918. float delta_time = mUpdateContext->mStepDeltaTime;
  919. // Calculate scaled mass and inertia
  920. float inv_m1;
  921. Mat44 inv_i1;
  922. if constexpr (Type1 == EMotionType::Dynamic)
  923. {
  924. const MotionProperties *mp1 = inBody1.GetMotionPropertiesUnchecked();
  925. inv_m1 = settings.mInvMassScale1 * mp1->GetInverseMass();
  926. inv_i1 = settings.mInvInertiaScale1 * mp1->GetInverseInertiaForRotation(inverse_transform_body1.Transposed3x3());
  927. }
  928. else
  929. {
  930. inv_m1 = 0.0f;
  931. inv_i1 = Mat44::sZero();
  932. }
  933. float inv_m2;
  934. Mat44 inv_i2;
  935. if constexpr (Type2 == EMotionType::Dynamic)
  936. {
  937. const MotionProperties *mp2 = inBody2.GetMotionPropertiesUnchecked();
  938. inv_m2 = settings.mInvMassScale2 * mp2->GetInverseMass();
  939. inv_i2 = settings.mInvInertiaScale2 * mp2->GetInverseInertiaForRotation(inverse_transform_body2.Transposed3x3());
  940. }
  941. else
  942. {
  943. inv_m2 = 0.0f;
  944. inv_i2 = Mat44::sZero();
  945. }
  946. // Calculate tangents
  947. Vec3 t1, t2;
  948. constraint.GetTangents(t1, t2);
  949. constraint.mContactPoints.resize(num_contact_points);
  950. for (int i = 0; i < num_contact_points; ++i)
  951. {
  952. // Convert to world space and set positions
  953. WorldContactPoint &wcp = constraint.mContactPoints[i];
  954. RVec3 p1_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn1[i];
  955. RVec3 p2_ws = inManifold.mBaseOffset + inManifold.mRelativeContactPointsOn2[i];
  956. // Convert to local space to the body
  957. Vec3 p1_ls = Vec3(inverse_transform_body1 * p1_ws);
  958. Vec3 p2_ls = Vec3(inverse_transform_body2 * p2_ws);
  959. // Check if we have a close contact point from last update
  960. bool lambda_set = false;
  961. for (const CachedContactPoint *ccp = ccp_start; ccp < ccp_end; ccp++)
  962. if (Vec3::sLoadFloat3Unsafe(ccp->mPosition1).IsClose(p1_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq)
  963. && Vec3::sLoadFloat3Unsafe(ccp->mPosition2).IsClose(p2_ls, mPhysicsSettings.mContactPointPreserveLambdaMaxDistSq))
  964. {
  965. // Get lambdas from previous frame
  966. wcp.mNonPenetrationConstraint.SetTotalLambda(ccp->mNonPenetrationLambda);
  967. wcp.mFrictionConstraint1.SetTotalLambda(ccp->mFrictionLambda[0]);
  968. wcp.mFrictionConstraint2.SetTotalLambda(ccp->mFrictionLambda[1]);
  969. lambda_set = true;
  970. break;
  971. }
  972. if (!lambda_set)
  973. {
  974. wcp.mNonPenetrationConstraint.SetTotalLambda(0.0f);
  975. wcp.mFrictionConstraint1.SetTotalLambda(0.0f);
  976. wcp.mFrictionConstraint2.SetTotalLambda(0.0f);
  977. }
  978. // Create new contact point
  979. CachedContactPoint &cp = new_manifold->mContactPoints[i];
  980. p1_ls.StoreFloat3(&cp.mPosition1);
  981. p2_ls.StoreFloat3(&cp.mPosition2);
  982. wcp.mContactPoint = &cp;
  983. // Setup velocity constraint
  984. wcp.TemplatedCalculateFrictionAndNonPenetrationConstraintProperties<Type1, Type2>(delta_time, inBody1, inBody2, inv_m1, inv_m2, inv_i1, inv_i2, p1_ws, p2_ws, inManifold.mWorldSpaceNormal, t1, t2, settings, mPhysicsSettings.mMinVelocityForRestitution);
  985. }
  986. #ifdef JPH_DEBUG_RENDERER
  987. // Draw the manifold
  988. if (sDrawContactManifolds)
  989. constraint.Draw(DebugRenderer::sInstance, Color::sOrange);
  990. #endif // JPH_DEBUG_RENDERER
  991. }
  992. // Store cached contact point in body pair cache
  993. CachedBodyPair *cbp = reinterpret_cast<CachedBodyPair *>(inBodyPairHandle);
  994. new_manifold->mNextWithSameBodyPair = cbp->mFirstCachedManifold;
  995. cbp->mFirstCachedManifold = write_cache.ToHandle(new_manifold_kv);
  996. // A contact constraint was added
  997. return contact_constraint_created;
  998. }
  999. bool ContactConstraintManager::AddContactConstraint(ContactAllocator &ioContactAllocator, BodyPairHandle inBodyPairHandle, Body &inBody1, Body &inBody2, const ContactManifold &inManifold)
  1000. {
  1001. JPH_PROFILE_FUNCTION();
  1002. JPH_DET_LOG("AddContactConstraint: id1: " << inBody1.GetID() << " id2: " << inBody2.GetID()
  1003. << " subshape1: " << inManifold.mSubShapeID1 << " subshape2: " << inManifold.mSubShapeID2
  1004. << " normal: " << inManifold.mWorldSpaceNormal << " pendepth: " << inManifold.mPenetrationDepth);
  1005. JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
  1006. // Swap bodies so that body 1 id < body 2 id
  1007. const ContactManifold *manifold;
  1008. Body *body1, *body2;
  1009. ContactManifold temp;
  1010. if (inBody2.GetID() < inBody1.GetID())
  1011. {
  1012. body1 = &inBody2;
  1013. body2 = &inBody1;
  1014. temp = inManifold.SwapShapes();
  1015. manifold = &temp;
  1016. }
  1017. else
  1018. {
  1019. body1 = &inBody1;
  1020. body2 = &inBody2;
  1021. manifold = &inManifold;
  1022. }
  1023. // Dispatch to the correct templated form
  1024. // Note: Non-dynamic vs non-dynamic can happen in this case due to one body being a sensor, so we need to have an extended switch case here
  1025. switch (body1->GetMotionType())
  1026. {
  1027. case EMotionType::Dynamic:
  1028. {
  1029. switch (body2->GetMotionType())
  1030. {
  1031. case EMotionType::Dynamic:
  1032. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1033. case EMotionType::Kinematic:
  1034. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1035. case EMotionType::Static:
  1036. return TemplatedAddContactConstraint<EMotionType::Dynamic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1037. default:
  1038. JPH_ASSERT(false);
  1039. break;
  1040. }
  1041. break;
  1042. }
  1043. case EMotionType::Kinematic:
  1044. switch (body2->GetMotionType())
  1045. {
  1046. case EMotionType::Dynamic:
  1047. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1048. case EMotionType::Kinematic:
  1049. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1050. case EMotionType::Static:
  1051. return TemplatedAddContactConstraint<EMotionType::Kinematic, EMotionType::Static>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1052. default:
  1053. JPH_ASSERT(false);
  1054. break;
  1055. }
  1056. break;
  1057. case EMotionType::Static:
  1058. switch (body2->GetMotionType())
  1059. {
  1060. case EMotionType::Dynamic:
  1061. return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Dynamic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1062. case EMotionType::Kinematic:
  1063. return TemplatedAddContactConstraint<EMotionType::Static, EMotionType::Kinematic>(ioContactAllocator, inBodyPairHandle, *body1, *body2, *manifold);
  1064. case EMotionType::Static: // Static vs static not possible
  1065. default:
  1066. JPH_ASSERT(false);
  1067. break;
  1068. }
  1069. break;
  1070. default:
  1071. JPH_ASSERT(false);
  1072. break;
  1073. }
  1074. return false;
  1075. }
  1076. void ContactConstraintManager::OnCCDContactAdded(ContactAllocator &ioContactAllocator, const Body &inBody1, const Body &inBody2, const ContactManifold &inManifold, ContactSettings &outSettings)
  1077. {
  1078. JPH_ASSERT(inManifold.mWorldSpaceNormal.IsNormalized());
  1079. // Calculate contact settings
  1080. outSettings.mCombinedFriction = mCombineFriction(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  1081. outSettings.mCombinedRestitution = mCombineRestitution(inBody1, inManifold.mSubShapeID1, inBody2, inManifold.mSubShapeID2);
  1082. outSettings.mIsSensor = false; // For now, no sensors are supported during CCD
  1083. // The remainder of this function only deals with calling contact callbacks, if there's no contact callback we also don't need to do this work
  1084. if (mContactListener != nullptr)
  1085. {
  1086. // Swap bodies so that body 1 id < body 2 id
  1087. const ContactManifold *manifold;
  1088. const Body *body1, *body2;
  1089. ContactManifold temp;
  1090. if (inBody2.GetID() < inBody1.GetID())
  1091. {
  1092. body1 = &inBody2;
  1093. body2 = &inBody1;
  1094. temp = inManifold.SwapShapes();
  1095. manifold = &temp;
  1096. }
  1097. else
  1098. {
  1099. body1 = &inBody1;
  1100. body2 = &inBody2;
  1101. manifold = &inManifold;
  1102. }
  1103. // Calculate hash
  1104. SubShapeIDPair key { body1->GetID(), manifold->mSubShapeID1, body2->GetID(), manifold->mSubShapeID2 };
  1105. uint64 key_hash = key.GetHash();
  1106. // Check if we already created this contact this physics update
  1107. ManifoldCache &write_cache = mCache[mCacheWriteIdx];
  1108. MKVAndCreated new_manifold_kv = write_cache.FindOrCreate(ioContactAllocator, key, key_hash, 0);
  1109. if (new_manifold_kv.second)
  1110. {
  1111. // This contact is new for this physics update, check if previous update we already had this contact.
  1112. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  1113. const MKeyValue *old_manifold_kv = read_cache.Find(key, key_hash);
  1114. if (old_manifold_kv == nullptr)
  1115. {
  1116. // New contact
  1117. mContactListener->OnContactAdded(*body1, *body2, *manifold, outSettings);
  1118. }
  1119. else
  1120. {
  1121. // Existing contact
  1122. mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
  1123. // Mark contact as persisted so that we won't fire OnContactRemoved callbacks
  1124. old_manifold_kv->GetValue().mFlags |= (uint16)CachedManifold::EFlags::ContactPersisted;
  1125. }
  1126. // Check if the cache is full
  1127. if (new_manifold_kv.first != nullptr)
  1128. {
  1129. // We don't store any contact points in this manifold as it is not for caching impulses, we only need to know that the contact was created
  1130. CachedManifold &new_manifold = new_manifold_kv.first->GetValue();
  1131. new_manifold.mContactNormal = { 0, 0, 0 };
  1132. new_manifold.mFlags |= (uint16)CachedManifold::EFlags::CCDContact;
  1133. }
  1134. }
  1135. else
  1136. {
  1137. // Already found this contact this physics update.
  1138. // Note that we can trigger OnContactPersisted multiple times per physics update, but otherwise we have no way of obtaining the settings
  1139. mContactListener->OnContactPersisted(*body1, *body2, *manifold, outSettings);
  1140. }
  1141. // If we swapped body1 and body2 we need to swap the mass scales back
  1142. if (manifold == &temp)
  1143. {
  1144. swap(outSettings.mInvMassScale1, outSettings.mInvMassScale2);
  1145. swap(outSettings.mInvInertiaScale1, outSettings.mInvInertiaScale2);
  1146. // Note we do not need to negate the relative surface velocity as it is not applied by the CCD collision constraint
  1147. }
  1148. }
  1149. JPH_ASSERT(outSettings.mIsSensor || !(inBody1.IsSensor() || inBody2.IsSensor()), "Sensors cannot be converted into regular bodies by a contact callback!");
  1150. }
  1151. void ContactConstraintManager::SortContacts(uint32 *inConstraintIdxBegin, uint32 *inConstraintIdxEnd) const
  1152. {
  1153. JPH_PROFILE_FUNCTION();
  1154. QuickSort(inConstraintIdxBegin, inConstraintIdxEnd, [this](uint32 inLHS, uint32 inRHS) {
  1155. const ContactConstraint &lhs = mConstraints[inLHS];
  1156. const ContactConstraint &rhs = mConstraints[inRHS];
  1157. // Most of the time the sort key will be different so we sort on that
  1158. if (lhs.mSortKey != rhs.mSortKey)
  1159. return lhs.mSortKey < rhs.mSortKey;
  1160. // If they're equal we use the IDs of body 1 to order
  1161. if (lhs.mBody1 != rhs.mBody1)
  1162. return lhs.mBody1->GetID() < rhs.mBody1->GetID();
  1163. // If they're still equal we use the IDs of body 2 to order
  1164. if (lhs.mBody2 != rhs.mBody2)
  1165. return lhs.mBody2->GetID() < rhs.mBody2->GetID();
  1166. JPH_ASSERT(inLHS == inRHS, "Hash collision, ordering will be inconsistent");
  1167. return false;
  1168. });
  1169. }
  1170. void ContactConstraintManager::FinalizeContactCacheAndCallContactPointRemovedCallbacks(uint inExpectedNumBodyPairs, uint inExpectedNumManifolds)
  1171. {
  1172. JPH_PROFILE_FUNCTION();
  1173. #ifdef JPH_ENABLE_ASSERTS
  1174. // Mark cache as finalized
  1175. ManifoldCache &old_write_cache = mCache[mCacheWriteIdx];
  1176. old_write_cache.Finalize();
  1177. // Check that the count of body pairs and manifolds that we tracked outside of the cache (to avoid contention on an atomic) is correct
  1178. JPH_ASSERT(old_write_cache.GetNumBodyPairs() == inExpectedNumBodyPairs);
  1179. JPH_ASSERT(old_write_cache.GetNumManifolds() == inExpectedNumManifolds);
  1180. #endif
  1181. // Buffers are now complete, make write buffer the read buffer
  1182. mCacheWriteIdx ^= 1;
  1183. // Get the old read cache / new write cache
  1184. ManifoldCache &old_read_cache = mCache[mCacheWriteIdx];
  1185. // Call the contact point removal callbacks
  1186. if (mContactListener != nullptr)
  1187. old_read_cache.ContactPointRemovedCallbacks(mContactListener);
  1188. // We're done with the old read cache now
  1189. old_read_cache.Clear();
  1190. // Use the amount of contacts from the last iteration to determine the amount of buckets to use in the hash map for the next iteration
  1191. old_read_cache.Prepare(inExpectedNumBodyPairs, inExpectedNumManifolds);
  1192. }
  1193. bool ContactConstraintManager::WereBodiesInContact(const BodyID &inBody1ID, const BodyID &inBody2ID) const
  1194. {
  1195. // The body pair needs to be in the cache and it needs to have a manifold (otherwise it's just a record indicating that there are no collisions)
  1196. const ManifoldCache &read_cache = mCache[mCacheWriteIdx ^ 1];
  1197. BodyPair key;
  1198. if (inBody1ID < inBody2ID)
  1199. key = BodyPair(inBody1ID, inBody2ID);
  1200. else
  1201. key = BodyPair(inBody2ID, inBody1ID);
  1202. uint64 key_hash = key.GetHash();
  1203. const BPKeyValue *kv = read_cache.Find(key, key_hash);
  1204. return kv != nullptr && kv->GetValue().mFirstCachedManifold != ManifoldMap::cInvalidHandle;
  1205. }
  1206. template <EMotionType Type1, EMotionType Type2>
  1207. JPH_INLINE void ContactConstraintManager::sWarmStartConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2, float inWarmStartImpulseRatio)
  1208. {
  1209. // Calculate tangents
  1210. Vec3 t1, t2;
  1211. ioConstraint.GetTangents(t1, t2);
  1212. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  1213. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1214. {
  1215. // Warm starting: Apply impulse from last frame
  1216. if (wcp.mFrictionConstraint1.IsActive())
  1217. {
  1218. JPH_ASSERT(wcp.mFrictionConstraint2.IsActive());
  1219. wcp.mFrictionConstraint1.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t1, inWarmStartImpulseRatio);
  1220. wcp.mFrictionConstraint2.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t2, inWarmStartImpulseRatio);
  1221. }
  1222. wcp.mNonPenetrationConstraint.TemplatedWarmStart<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, ws_normal, inWarmStartImpulseRatio);
  1223. }
  1224. }
  1225. void ContactConstraintManager::WarmStartVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd, float inWarmStartImpulseRatio)
  1226. {
  1227. JPH_PROFILE_FUNCTION();
  1228. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1229. {
  1230. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1231. // Fetch bodies
  1232. Body &body1 = *constraint.mBody1;
  1233. EMotionType motion_type1 = body1.GetMotionType();
  1234. MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
  1235. Body &body2 = *constraint.mBody2;
  1236. EMotionType motion_type2 = body2.GetMotionType();
  1237. MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
  1238. // Dispatch to the correct templated form
  1239. // Note: Warm starting doesn't differentiate between kinematic/static bodies so we handle both as static bodies
  1240. if (motion_type1 == EMotionType::Dynamic)
  1241. {
  1242. if (motion_type2 == EMotionType::Dynamic)
  1243. sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1244. else
  1245. sWarmStartConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1246. }
  1247. else
  1248. {
  1249. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1250. sWarmStartConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2, inWarmStartImpulseRatio);
  1251. }
  1252. }
  1253. }
  1254. template <EMotionType Type1, EMotionType Type2>
  1255. JPH_INLINE bool ContactConstraintManager::sSolveVelocityConstraint(ContactConstraint &ioConstraint, MotionProperties *ioMotionProperties1, MotionProperties *ioMotionProperties2)
  1256. {
  1257. bool any_impulse_applied = false;
  1258. // Calculate tangents
  1259. Vec3 t1, t2;
  1260. ioConstraint.GetTangents(t1, t2);
  1261. // First apply all friction constraints (non-penetration is more important than friction)
  1262. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1263. {
  1264. // Check if friction is enabled
  1265. if (wcp.mFrictionConstraint1.IsActive())
  1266. {
  1267. JPH_ASSERT(wcp.mFrictionConstraint2.IsActive());
  1268. // Calculate impulse to stop motion in tangential direction
  1269. float lambda1 = wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t1);
  1270. float lambda2 = wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintGetTotalLambda<Type1, Type2>(ioMotionProperties1, ioMotionProperties2, t2);
  1271. float total_lambda_sq = Square(lambda1) + Square(lambda2);
  1272. // Calculate max impulse that can be applied. Note that we're using the non-penetration impulse from the previous iteration here.
  1273. // We do this because non-penetration is more important so is solved last (the last things that are solved in an iterative solver
  1274. // contribute the most).
  1275. float max_lambda_f = ioConstraint.mCombinedFriction * wcp.mNonPenetrationConstraint.GetTotalLambda();
  1276. // If the total lambda that we will apply is too large, scale it back
  1277. if (total_lambda_sq > Square(max_lambda_f))
  1278. {
  1279. float scale = max_lambda_f / sqrt(total_lambda_sq);
  1280. lambda1 *= scale;
  1281. lambda2 *= scale;
  1282. }
  1283. // Apply the friction impulse
  1284. if (wcp.mFrictionConstraint1.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t1, lambda1))
  1285. any_impulse_applied = true;
  1286. if (wcp.mFrictionConstraint2.TemplatedSolveVelocityConstraintApplyLambda<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, t2, lambda2))
  1287. any_impulse_applied = true;
  1288. }
  1289. }
  1290. Vec3 ws_normal = ioConstraint.GetWorldSpaceNormal();
  1291. // Then apply all non-penetration constraints
  1292. for (WorldContactPoint &wcp : ioConstraint.mContactPoints)
  1293. {
  1294. // Solve non penetration velocities
  1295. if (wcp.mNonPenetrationConstraint.TemplatedSolveVelocityConstraint<Type1, Type2>(ioMotionProperties1, ioConstraint.mInvMass1, ioMotionProperties2, ioConstraint.mInvMass2, ws_normal, 0.0f, FLT_MAX))
  1296. any_impulse_applied = true;
  1297. }
  1298. return any_impulse_applied;
  1299. }
  1300. bool ContactConstraintManager::SolveVelocityConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
  1301. {
  1302. JPH_PROFILE_FUNCTION();
  1303. bool any_impulse_applied = false;
  1304. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1305. {
  1306. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1307. // Fetch bodies
  1308. Body &body1 = *constraint.mBody1;
  1309. EMotionType motion_type1 = body1.GetMotionType();
  1310. MotionProperties *motion_properties1 = body1.GetMotionPropertiesUnchecked();
  1311. Body &body2 = *constraint.mBody2;
  1312. EMotionType motion_type2 = body2.GetMotionType();
  1313. MotionProperties *motion_properties2 = body2.GetMotionPropertiesUnchecked();
  1314. // Dispatch to the correct templated form
  1315. switch (motion_type1)
  1316. {
  1317. case EMotionType::Dynamic:
  1318. switch (motion_type2)
  1319. {
  1320. case EMotionType::Dynamic:
  1321. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1322. break;
  1323. case EMotionType::Kinematic:
  1324. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Kinematic>(constraint, motion_properties1, motion_properties2);
  1325. break;
  1326. case EMotionType::Static:
  1327. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Dynamic, EMotionType::Static>(constraint, motion_properties1, motion_properties2);
  1328. break;
  1329. default:
  1330. JPH_ASSERT(false);
  1331. break;
  1332. }
  1333. break;
  1334. case EMotionType::Kinematic:
  1335. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1336. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Kinematic, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1337. break;
  1338. case EMotionType::Static:
  1339. JPH_ASSERT(motion_type2 == EMotionType::Dynamic);
  1340. any_impulse_applied |= sSolveVelocityConstraint<EMotionType::Static, EMotionType::Dynamic>(constraint, motion_properties1, motion_properties2);
  1341. break;
  1342. default:
  1343. JPH_ASSERT(false);
  1344. break;
  1345. }
  1346. }
  1347. return any_impulse_applied;
  1348. }
  1349. void ContactConstraintManager::StoreAppliedImpulses(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd) const
  1350. {
  1351. // Copy back total applied impulse to cache for the next frame
  1352. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1353. {
  1354. const ContactConstraint &constraint = mConstraints[*constraint_idx];
  1355. for (const WorldContactPoint &wcp : constraint.mContactPoints)
  1356. {
  1357. wcp.mContactPoint->mNonPenetrationLambda = wcp.mNonPenetrationConstraint.GetTotalLambda();
  1358. wcp.mContactPoint->mFrictionLambda[0] = wcp.mFrictionConstraint1.GetTotalLambda();
  1359. wcp.mContactPoint->mFrictionLambda[1] = wcp.mFrictionConstraint2.GetTotalLambda();
  1360. }
  1361. }
  1362. }
  1363. bool ContactConstraintManager::SolvePositionConstraints(const uint32 *inConstraintIdxBegin, const uint32 *inConstraintIdxEnd)
  1364. {
  1365. JPH_PROFILE_FUNCTION();
  1366. bool any_impulse_applied = false;
  1367. for (const uint32 *constraint_idx = inConstraintIdxBegin; constraint_idx < inConstraintIdxEnd; ++constraint_idx)
  1368. {
  1369. ContactConstraint &constraint = mConstraints[*constraint_idx];
  1370. // Fetch bodies
  1371. Body &body1 = *constraint.mBody1;
  1372. Body &body2 = *constraint.mBody2;
  1373. // Get transforms
  1374. RMat44 transform1 = body1.GetCenterOfMassTransform();
  1375. RMat44 transform2 = body2.GetCenterOfMassTransform();
  1376. Vec3 ws_normal = constraint.GetWorldSpaceNormal();
  1377. for (WorldContactPoint &wcp : constraint.mContactPoints)
  1378. {
  1379. // Calculate new contact point positions in world space (the bodies may have moved)
  1380. RVec3 p1 = transform1 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition1);
  1381. RVec3 p2 = transform2 * Vec3::sLoadFloat3Unsafe(wcp.mContactPoint->mPosition2);
  1382. // Calculate separation along the normal (negative if interpenetrating)
  1383. // Allow a little penetration by default (PhysicsSettings::mPenetrationSlop) to avoid jittering between contact/no-contact which wipes out the contact cache and warm start impulses
  1384. // Clamp penetration to a max PhysicsSettings::mMaxPenetrationDistance so that we don't apply a huge impulse if we're penetrating a lot
  1385. float separation = max(Vec3(p2 - p1).Dot(ws_normal) + mPhysicsSettings.mPenetrationSlop, -mPhysicsSettings.mMaxPenetrationDistance);
  1386. // Only enforce constraint when separation < 0 (otherwise we're apart)
  1387. if (separation < 0.0f)
  1388. {
  1389. // Update constraint properties (bodies may have moved)
  1390. wcp.CalculateNonPenetrationConstraintProperties(body1, constraint.mInvMass1, constraint.mInvInertiaScale1, body2, constraint.mInvMass2, constraint.mInvInertiaScale2, p1, p2, ws_normal);
  1391. // Solve position errors
  1392. if (wcp.mNonPenetrationConstraint.SolvePositionConstraintWithMassOverride(body1, constraint.mInvMass1, body2, constraint.mInvMass2, ws_normal, separation, mPhysicsSettings.mBaumgarte))
  1393. any_impulse_applied = true;
  1394. }
  1395. }
  1396. }
  1397. return any_impulse_applied;
  1398. }
  1399. void ContactConstraintManager::RecycleConstraintBuffer()
  1400. {
  1401. // Reset constraint array
  1402. mNumConstraints = 0;
  1403. }
  1404. void ContactConstraintManager::FinishConstraintBuffer()
  1405. {
  1406. // Free constraints buffer
  1407. mUpdateContext->mTempAllocator->Free(mConstraints, mMaxConstraints * sizeof(ContactConstraint));
  1408. mConstraints = nullptr;
  1409. mNumConstraints = 0;
  1410. // Reset update context
  1411. mUpdateContext = nullptr;
  1412. }
  1413. void ContactConstraintManager::SaveState(StateRecorder &inStream, const StateRecorderFilter *inFilter) const
  1414. {
  1415. mCache[mCacheWriteIdx ^ 1].SaveState(inStream, inFilter);
  1416. }
  1417. bool ContactConstraintManager::RestoreState(StateRecorder &inStream)
  1418. {
  1419. bool success = mCache[mCacheWriteIdx].RestoreState(mCache[mCacheWriteIdx ^ 1], inStream);
  1420. mCacheWriteIdx ^= 1;
  1421. mCache[mCacheWriteIdx].Clear();
  1422. return success;
  1423. }
  1424. JPH_NAMESPACE_END